ANNALES
UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
LUBLIN - POLONIA
VOL. LVII, 5
SECTIO A 2003

# Universal linearly invariant families and Bloch functions in the unit ball 


#### Abstract

In this note we consider universal linearly invariant families of mappings defined in the unit ball. We give a connection of such families with Bloch functions, as well as with Bloch mappings.


1. Preliminaries. Connections between linearly invariant families of functions on the unit disk ( $[\mathrm{P}]$ ) and Bloch functions were studied in several papers (see for example [CCP], [GS1]). In the case of the unit polydisk similar results were obtained in [GS2], [GS3]. In this paper we connect the universal linearly invariant families of locally biholomorphic mappings in the unit ball of $\mathbb{C}^{n}$ ([Pf2]) with Bloch functions ([H1], [H2], [T1], [T2]) or Bloch mappings ([L]).

Let $\mathbb{C}^{n}$ denote $n$-dimensional complex space of all ordered $n$-tuples $z=$ $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ of complex numbers with the inner product $\langle z, w\rangle=z_{1} \bar{w}_{1}+$ $\cdots+z_{n} \bar{w}_{n}$. The unit ball $\mathbf{B}^{n}$ of $\mathbb{C}^{n}$ is then the set of all $z \in \mathbb{C}^{n}$ with $\|z\|=(\langle z, z\rangle)^{\frac{1}{2}}<1$. For a vector-valued, holomorphic mapping $f(z)=\left(f^{1}(z), \ldots, f^{n}(z)\right)$ let $f_{k}^{j}(z)=\frac{\partial f^{j}(z)}{\partial z_{k}}$ and $f_{i k}^{j}(z)=\frac{\partial^{2} f^{j}(z)}{\partial z_{i} \partial z_{k}}$. Then the derivative $\mathrm{D} f(z)$ of $f$ at $z$ is represented by a matrix $\left(f_{k}^{j}(z)\right)$ and let the

[^0]second derivative operator be given by the following formula $\mathrm{D}^{2} f(z)(w, \cdot)=$ ( $\sum_{k=1}^{n} f_{i k}^{j}(z) w_{k}$ ) and the identity matrix by $\mathbf{I}$. The (complex) Jacobian of $f$ at $z$ can be defined by $J_{f}(z)=\operatorname{det} \mathrm{D} f(z)$. Let
$\mathcal{L} \mathcal{S}_{n}=\left\{f: f\right.$ is holomorphic in $\mathbf{B}^{n}$,
$$
\left.J_{f}(z) \neq 0 \text { for } z \in \mathbf{B}^{n}, f(\mathbb{O})=\mathbb{O}, \mathrm{D} f(\mathbb{O})=\mathbf{I}\right\}
$$
be the family of normalized, locally biholomorphic mappings of $\mathbf{B}^{n}$. The operator on $\mathcal{L S}_{n}$ that defines the linear invariance is the Koebe transform
$$
\Lambda_{\phi}(f)(z)=(\mathrm{D} \phi(\mathbb{O}))^{-1}((\mathrm{D} f)(\phi(\mathbb{O})))^{-1}\{f(\phi(z))-f(\phi(\mathbb{O}))\},
$$
where $\phi$ belongs to the set $\mathcal{A}$ of biholomorphic authomorphisms of $\mathbf{B}^{n}$ and $f \in \mathcal{L} \mathcal{S}_{n}$. Up to multiplication by an unitary matrix, the biholomorphic automorphisms of $\mathbf{B}^{n}$ are
$$
\phi(z)=\phi_{a}(z)=\frac{a-P_{a} z-s Q_{a} z}{1-\langle z, a\rangle}, \quad a \in \mathbf{B}^{n},
$$
where $P_{\mathbb{C}}=\mathbb{O}$ and $P_{a} z=\frac{\langle z, a\rangle}{\langle a, a\rangle} a$ for $a \neq \mathbb{O}, Q_{a}=\mathbf{I}-P_{a}$ and $s=$ $\left(1-\|a\|^{2}\right)^{1 / 2}$. For details see $[\mathrm{R}]$. The following definitions are known ([Pf2],[BFG]).
Definition 1.1. A family $\mathcal{F}$ is called linearly invariant if
(i) $\mathcal{F} \subset \mathcal{L} \mathcal{S}_{n}$,
(ii) $\Lambda_{\phi}(f) \in \mathcal{F}$ for all $f \in \mathcal{F}$ and $\phi \in \mathcal{A}$.

Let the trace of a matrix will be denoted by tr. The number

$$
\begin{align*}
\operatorname{ord} \mathcal{F} & =\sup _{g \in \mathcal{F}} \sup _{\|w\|=1}\left|\operatorname{tr}\left\{\frac{1}{2} \mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right| \\
& =\sup _{g \in \mathcal{F}} \sup _{\|w\|=1}\left|\frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} g_{j k}^{j}(\mathbb{O}) w_{k}\right| \tag{1.1}
\end{align*}
$$

is called ([Pf2]) the order of a linearly invariant family $\mathcal{F}$. Let us introduce the notion of the order of a function.

Definition 1.2. For $f \in \mathcal{L} \mathcal{S}_{n}$ the number

$$
\operatorname{ord} f=\sup _{\phi \in \mathcal{A}} \sup _{\|w\|=1} \frac{1}{2}\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right|,
$$

where $g(z)=\Lambda_{\phi}(f)(z)$, is called the order of $f$.

Definition 1.3. The family

$$
\mathcal{U}_{\alpha}=\cup\left\{f \in \mathcal{L} \mathcal{S}_{n}: \text { ord } f \leq \alpha\right\}
$$

is called the universal linearly invariant family.
In the paper we will use the following results. If $\mathcal{F} \subset \mathcal{L} \mathcal{S}_{n}$ is a linearly invariant family of order $\alpha$ and $f \in \mathcal{F}$ then

$$
\begin{align*}
& \frac{(1-\|z\|)^{\alpha-\frac{n+1}{2}}}{(1+\|z\|)^{\alpha+\frac{n+1}{2}}} \leq\left|J_{f}(z)\right| \leq \frac{(1+\|z\|)^{\alpha-\frac{n+1}{2}}}{(1-\|z\|)^{\alpha+\frac{n+1}{2}}}, \quad z \in \mathbf{B}^{n}, \quad([\mathrm{Pf} 2])  \tag{1.2}\\
& \left|\log \left(\left(1-\|z\|^{2}\right)^{\frac{n+1}{2}}\left|J_{f}(z)\right|\right)\right| \leq \alpha \log \frac{1+\|z\|}{1-\|z\|}, \quad z \in \mathbf{B}^{n}, \quad([\mathrm{Pf} 2]) \\
& \frac{d}{d \rho} \log \left(J_{f}(\rho w)\right) \\
& \quad=\operatorname{tr}\left\{(\mathrm{D} f(\rho w))^{-1} \mathrm{D}^{2} f(\rho w)(w, \cdot)\right\}, \rho \in[0,1), w \in \overline{\mathbf{B}^{n}} . \quad([\mathrm{Pf} 1]) \tag{Pf1}
\end{align*}
$$

The above inequalities are rendered by the mappings

$$
K_{\alpha}(z)=\left(k_{\alpha}\left(z_{1}\right), z_{2} \sqrt{k_{\alpha}^{\prime}\left(z_{1}\right)}, \ldots, z_{n} \sqrt{k_{\alpha}^{\prime}\left(z_{1}\right)}\right), \quad([\mathrm{Pf} 2],[\mathrm{LS} 2])
$$

where

$$
k_{\alpha}\left(z_{1}\right)=\frac{n+1}{4 \alpha}\left[\left(\frac{1+z_{1}}{1-z_{1}}\right)^{\frac{2 \alpha}{n+1}}-1\right] .
$$

In [GLS] it was proved the following theorem.
Theorem A. The family $\mathcal{U}_{\alpha}$ coincides with the set of all functions satisfying the conditions of Definition 1.1 and the right hand side inequality in (1.2).
2. Bloch functions. R. Timoney studied ([T1], [T2]) Bloch functions in several complex variables and he gave several equivalent definitions (see also [H1], [H2]). In this paper we will use the following one.
Definition 2.1. A holomorphic function $h: \mathbf{B}^{n} \rightarrow \mathbb{C}$ is called a Bloch function if its norm

$$
\|h\|_{\mathcal{B}}=|h(\mathbb{O})|+\sup _{\phi \in \mathcal{A}}\|\nabla(h \circ \phi)(\mathbb{O})\|
$$

is finite.
Now let

$$
Q_{h}(z)=\sup _{\mathbb{C}^{n} \ni x \neq \mathbb{O}} \frac{|\langle\nabla h(z), \bar{x}\rangle|}{H_{z}(x, x)^{1 / 2}},
$$

where $H_{z}(u, v)=\frac{n+1}{2}\left[\left(1-\|z\|^{2}\right)\langle u, v\rangle+\langle u, z\rangle\langle z, v\rangle\right] /\left(1-\|z\|^{2}\right)^{2}, \quad u, v \in$ $\mathbb{C}^{n}, z \in \mathbf{B}^{n}$, is the Bergman metric. Then from Lemma 1 of [H1] it follows that $Q_{h \circ \phi}(z)=Q_{h}(\phi(z))$ for every automorphism $\phi \in \mathcal{A}$. Therefore $\sup _{a \in \mathbf{B}^{n}} Q_{h}(a)=\frac{2}{n+1} \sup _{\phi \in \mathcal{A},\|x\|=1}|\langle\nabla(h \circ \phi)(\mathbb{O}), x\rangle|=\frac{2}{n+1} \sup _{\phi \in \mathcal{A}}\|\nabla(h \circ \phi)(\mathbb{O})\|$. Thus Definition 2.1 is equivalent to the following definition of Bloch functions given in [H2]: $\sup _{a \in \mathbf{B}^{n}} Q_{h}(a)<\infty$. Timoney in [T1] proved that quantities $\sup _{a \in \mathbf{B}^{n}} Q_{h}(a)$ and $\sup _{\|w\| \leq 1}\left[\left(1-\|w\|^{2}\right)\langle\nabla h(w), \bar{w}\rangle \|\right]$ are equivalent. In this way the norms $\|h\|_{\mathcal{B}}$ and

$$
\begin{equation*}
\|h\|_{X}=|h(0)|+\sup _{w \in \mathbf{B}^{n}}\left(1-\|w\|^{2}\right)|\langle\nabla h(w), \bar{w}\rangle| \tag{2.1}
\end{equation*}
$$

are equivalent. The family of all Bloch functions will be denoted by $\mathcal{B}=$ $\mathcal{B}\left(\mathbf{B}^{n}\right)$. In the next theorem we give a new condition which is equivalent to the definition of a Bloch function.

Theorem 2.1. A holomorphic function $h: \mathbf{B}^{n} \rightarrow \mathbb{C}$ belongs to $\mathcal{B}$ if and only if there exists a mapping $f \in \bigcup_{\alpha<\infty} \mathcal{U}_{\alpha}$ such that

$$
h(z)-h(\mathbb{O})=\log \left(J_{f}(z)\right), \quad z \in \mathbf{B}^{n} .
$$

Moreover, if $h(z)-h(\mathbb{O})=\log \left(J_{f}(z)\right) \in \mathcal{B}$ and ord $f=\alpha$, then

$$
2\left(\alpha-\frac{n+1}{2}\right) \leq\|h-h(\mathbb{O})\|_{X} \leq 2\left(\alpha+\frac{n+1}{2}\right)
$$

and

$$
2\left(\alpha-\frac{n+1}{2}\right) \leq\|h-h(\mathbb{O})\|_{\mathcal{B}} \leq 2\left(\alpha+\frac{n+1}{2}\right)
$$

The inequalities are sharp.
Proof. For $\rho \in[0,1), w \in \partial \mathbf{B}^{n}$ define $h(\rho w)=\log \left(J_{f}(\rho w)\right)$, where ord $f=$ $\alpha$. Observe that we have

$$
\frac{\mathrm{d}}{\mathrm{~d} \rho} h(\rho w)=\langle(\nabla h)(\rho w), \bar{w}\rangle=\frac{\mathrm{d}}{\mathrm{~d} \rho} \log \left(J_{f}(\rho w)\right)
$$

and

$$
\begin{equation*}
\langle(\nabla h)(\rho w), \overline{\rho w}\rangle=\rho \frac{\mathrm{d}}{\mathrm{~d} \rho} \log \left(J_{f}(\rho w)\right) . \tag{2.2}
\end{equation*}
$$

Pfaltzgraff showed ([Pf2]) that for $g(z)=\Lambda_{\phi}(f)(z), \phi=\phi_{a}$ and $a=\rho w$ (2.3)

$$
\begin{aligned}
\rho \frac{\mathrm{d}}{\mathrm{~d} \rho} \log \left(J_{f}(\rho w)\right) & =(n+1) \frac{\|\rho w\|^{2}}{1-\|\rho w\|^{2}}+\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})\left(\frac{-\rho w}{1-\|\rho w\|^{2}}, \cdot\right)\right\} \\
& =(n+1) \frac{\rho^{2}}{1-\rho^{2}}+\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})\left(\frac{-\rho w}{1-\rho^{2}}, \cdot\right)\right\} .
\end{aligned}
$$

Therefore by (2.2) we get

$$
|\langle(\nabla h)(\rho w), \overline{\rho w}\rangle| \leq(n+1) \frac{\rho^{2}}{1-\rho^{2}}+\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})\left(\frac{-\rho w}{1-\rho^{2}} \cdot \cdot\right)\right\}\right|
$$

and thus

$$
\begin{aligned}
\left(1-\rho^{2}\right)|\langle(\nabla h)(\rho w), \overline{\rho w}\rangle| & \leq(n+1) \rho^{2}+\rho\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right| \\
& \leq(n+1) \rho^{2}+2 \rho \alpha \leq((n+1)+2 \alpha) \rho .
\end{aligned}
$$

By (2.1) the function $h$ belongs to the Bloch class $\mathcal{B}$ and $\|h-h(\mathbb{O})\|_{X} \leq$ $2\left(\alpha+\frac{n+1}{2}\right)$.

Conversely, let $h \in \mathcal{B}$ and let $f \in \mathcal{L} \mathcal{S}_{n}$, such that $\log J_{f}(z)=h(z)-h(\mathbb{O})$. In $\mathcal{L S} S_{n}$ there is such mapping, for example

$$
f(z)=\left(z_{1}, \ldots, z_{n-1}, \int_{0}^{z_{n}} \exp \left[h\left(z_{1}, \ldots, z_{n-1}, s\right)-h(\mathbb{O})\right] d s\right) .
$$

Let $z=w \rho$, where $\rho \in[0,1),\|w\|=1$. Let $\phi \in \mathcal{A}$ be fixed. Then let $g(z)=\Lambda_{\phi}(f)(z)$. Now combining (2.2) and (2.3) we get

$$
\left(1-\rho^{2}\right)\langle(\nabla h)(\rho w), \rho \bar{w}\rangle=(n+1) \rho^{2}-\rho \operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\} .
$$

Thus by (2.1) we obtain

$$
\begin{aligned}
\frac{1}{2} \rho\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right| & \leq \frac{n+1}{2} \rho^{2}+\frac{1}{2}\left(1-\rho^{2}\right)|\langle(\nabla h)(\rho w), \rho \bar{w}\rangle| \\
& \leq \frac{n+1}{2}+\frac{1}{2}\|h-h(\mathbb{O})\|_{X} .
\end{aligned}
$$

For $\rho \rightarrow 1$ we get

$$
\frac{1}{2}\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right| \leq \frac{n+1}{2}+\frac{1}{2}\|h-h(\mathbb{O})\|_{X}
$$

Therefore $f$ belongs to a class $\mathcal{U}_{\alpha}$. Moreover

$$
\alpha=\operatorname{ord} f=\frac{1}{2} \sup _{\|w\|=1}\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right| \leq \frac{n+1}{2}+\frac{1}{2}\|h-h(\mathbb{O})\|_{X} .
$$

Thus $2 \alpha-(n+1) \leq\|h-h(\mathbb{O})\|_{X}$. In the above inequality the equality is attained for $f_{0}(z)=z, h(z)=\log J_{f}(z) \equiv 0 ;\left(\right.$ ord $\left.f_{0}=\frac{n+1}{2}\right)$. In the inequality $\|h-h(\mathbb{O})\|_{X} \leq 2 \alpha+n+1$ the equality is attained for $h=h_{\alpha}=$ $\log J_{K_{\alpha}}$, where $K_{\alpha}(z)$ was defined before; (ord $K_{\alpha}=\alpha$, [Pf2]). Since

$$
J_{K_{\alpha}}(z)=\left(k_{\alpha}^{\prime}\left(z_{1}\right)\right)^{(n+1) / 2}=\frac{\left(1+z_{1}\right)^{\alpha-(n+1) / 2}}{\left(1-z_{1}\right)^{\alpha+(n+1) / 2}}
$$

we have $\nabla h_{\alpha}(z)=\left(\frac{2 \alpha+(n+1) z_{1}}{1-z_{1}^{2}}, 0, \ldots, 0\right)$ and

$$
\left\|h_{\alpha}-h_{\alpha}(\mathbb{O})\right\|_{X}=\sup _{\left|z_{1}\right|<1}\left[\left(1-\left|z_{1}\right|^{2}\right)\left|z_{1}\right|\left|\frac{2 \alpha+(n+1) z_{1}}{1-z_{1}^{2}}\right|\right]=2 \alpha+n+1
$$

Now we will prove suitable inequalities for $\|\cdot\|_{\mathcal{B}}$. Let ord $f=\alpha, g=\Lambda_{\phi}(f)$, $\phi \in \mathcal{A}$ and $h=\log J_{f}$. Then $J_{g}(z)=C J_{f}(\phi(z)) J_{\phi}(z)$, where $C$ is a constant. Therefore

$$
\nabla\left(\log J_{g}\right)(\mathbb{O})=\nabla(h \circ \phi)(\mathbb{O})+\frac{\left(\nabla J_{\phi}\right)(\mathbb{O})}{J_{\phi}(\mathbb{O})}
$$

For a holomorphic function $q(z)$ in $\mathbf{B}^{n}$ we have $\frac{\partial \operatorname{Re} q}{\partial z_{k}}=\frac{\partial(q(z)+\overline{q(z)})}{2 \partial z_{k}}=\frac{1}{2} \frac{\partial q}{\partial z_{k}}$. Thus $\nabla \operatorname{Re} q=\frac{1}{2} \nabla q$. Moreover $\left|J_{\phi}(z)\right|=\left(\frac{1-\|a\|^{2}}{|1-\langle z, a\rangle|^{2}}\right)^{(n+1) / 2}$, for $a \in \mathbf{B}^{n}$ (see $[\mathrm{R}]$ ), and then

$$
\left(\nabla \log J_{\phi}\right)(\mathbb{O})=2\left(\nabla \log \left|J_{\phi}\right|\right)(\mathbb{O})=(n+1) \bar{a},
$$

where $a$ is an arbitrary element in $\mathbf{B}^{n}$ for arbitrary $\phi \in \mathcal{A}$.
It is known (see for example $[\mathrm{S}]$ ) that for a matrix $\left(f_{k, j}(z)\right)_{k, j=1}^{n}$, where $f_{k, j}(z)$ are analytic functions in a domain,

$$
\frac{\mathrm{d}}{\mathrm{dz}} \operatorname{det}\left(f_{k, j}\right)_{k, j=1}^{n}=\sum_{k=1}^{n} \operatorname{det}\left(\begin{array}{ccc}
f_{11}(z) & \ldots & f_{1 n}(z) \\
\vdots & \vdots & \vdots \\
f_{k 1}^{\prime}(z) & \ldots & f_{k n}^{\prime}(z) \\
\vdots & \vdots & \vdots \\
f_{n 1}(z) & \ldots & f_{n n}(z)
\end{array}\right)
$$

From the normalization of $g(z)=\left(g^{1}, \ldots, g^{n}\right)$ it follows that

$$
\left(\nabla J_{g}\right)(\mathbb{O})=\left(\sum_{k=1}^{n} g_{1 k}^{k}(\mathbb{O}), \ldots, \sum_{k=1}^{n} g_{n k}^{k}(\mathbb{O})\right)
$$

and $\left\langle\left(\nabla J_{g}\right)(\mathbb{D}), \bar{w}\right\rangle=\operatorname{tr}\left\{\mathrm{D}^{2} g(0)(w, \cdot)\right\}$. Therefore

$$
\left\langle\nabla\left(\log J_{g}\right)(\mathbb{O}), \bar{w}\right\rangle=\operatorname{tr}\left\{\mathrm{D}^{2} g(0)(w, \cdot)\right\}=\langle\nabla(h \circ \phi)(\mathbb{O}), \bar{w}\rangle+(n+1)\langle a, \bar{w}\rangle,
$$

where $a$ depends on $\phi$ and

$$
\begin{aligned}
\sup _{\phi \in \mathcal{A},\|w\|=1} & |\langle\nabla(h \circ \phi)(\mathbb{O}), \bar{w}\rangle|-(n+1) \cdot \sup _{a \in \mathbf{B}^{n},\|w\|=1}|\langle a, \bar{w}\rangle| \\
& \leq 2 \alpha=\sup _{\phi \in \mathcal{A},\|w\|=1}\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(0)(w, \cdot)\right\}\right| \\
& \leq \sup _{\phi \in \mathcal{A}}\|\nabla(h \circ \phi)(\mathbb{O})\|+(n+1) \sup _{a \in \mathbf{B}^{n}}\|a\|,
\end{aligned}
$$

which is equivalent to the following inequalities

$$
2 \alpha-n-1 \leq\|h-h(\mathbb{O})\|_{\mathcal{B}} \leq 2 \alpha+n+1 .
$$

For $h \equiv 0$ we have the equality in the left inequality. Similarly as before for $h=h_{\alpha}$ we have the equality in the right inequality. It is sufficient to prove that $\sup _{a \in \mathbf{B}^{n}}\left\|\nabla\left(h_{\alpha} \circ \phi_{a}\right)(\mathbb{O})\right\|=2 \alpha+n+1$. Indeed

$$
\begin{gathered}
h_{\alpha} \circ \phi_{a}=\left(\alpha-\frac{n+1}{2}\right) \log \left(1+\phi_{a}^{1}\right)-\left(\alpha+\frac{n+1}{2}\right) \log \left(1-\phi_{a}^{1}\right), \\
\nabla\left(h_{\alpha} \circ \phi_{a}\right)(\mathbb{O})=\frac{2 \alpha+a_{1}(n+1)}{1-a_{1}^{2}} \nabla \phi_{a}^{1}(\mathbb{O}), \quad a=\left(a_{1}, \ldots, a_{n}\right) .
\end{gathered}
$$

Since (see [R])

$$
\phi_{a}^{1}(z)=\frac{a_{1}-a_{1} \frac{\langle z, a\rangle}{\|a\|^{2}}-s\left(z_{1}-a_{1} \frac{\langle z, a\rangle}{\|a\|^{2}}\right)}{1-\langle z, a\rangle}, \quad s=\sqrt{1-\|a\|^{2}},
$$

we get

$$
\nabla \phi_{a}^{1}(\mathbb{O})=\left(\ldots, a_{1} \bar{a}_{k} \frac{s}{s+1}-s \delta_{k}^{1}, \ldots\right), \quad 1 \leq k \leq n
$$

where $\delta_{k}^{i}$ denotes the Kronecker delta. Therefore

$$
\begin{aligned}
\left\|\nabla\left(h_{\alpha} \circ \phi_{a}\right)(\mathbb{O})\right\| & =\frac{\left|2 \alpha+a_{1}(n+1)\right|}{\left|1-a_{1}^{2}\right|}\left\|\nabla \phi_{a}^{1}(\mathbb{O})\right\| \\
& =\frac{\left|2 \alpha+a_{1}(n+1)\right|}{\left|1-a_{1}^{2}\right|} \sqrt{\frac{1-\|a\|^{2}}{1-\left|a_{1}\right|^{2}}}
\end{aligned}
$$

and

$$
\left\|h_{\alpha}\right\|_{\mathcal{B}} \geq \sup _{a \in \mathbf{B}^{n}}\left[\frac{\left|2 \alpha+a_{1}(n+1)\right|}{\left|1-a_{1}^{2}\right|} \sqrt{\left(1-\|a\|^{2}\right)\left(1-\left|a_{1}\right|^{2}\right)}\right]=2 \alpha+n+1
$$

This proves the exactness of the inequality $\|h-h(\mathbb{O})\|_{\mathcal{B}} \leq 2 \alpha+n+1$.
It was proved in [LS1] that for every $f$ from $\mathcal{U}_{\alpha}$ and every $v \in \mathbb{C}^{n}$, $\|v\|=1$, the quantities

$$
\left|J_{f}(r v)\right| \frac{(1-r)^{\alpha+(n+1) / 2}}{(1+r)^{\alpha-(n+1) / 2}} \quad \text { and } \quad \max _{\|v\|=1}\left|J_{f}(r v)\right| \frac{(1-r)^{\alpha+(n+1) / 2}}{(1+r)^{\alpha-(n+1) / 2}}
$$

are decreasing with respect to $r \in[0,1)$ and for $r \rightarrow 1^{-}$they have limits which belong to the interval $[0,1]$. From the above and Theorem 2.1 the next result follows.

Corollary 2.1. For every function $h \in \mathcal{B}$ and every $v \in \mathbb{C}^{n},\|v\|=1$ the quantities

$$
\operatorname{Re}[h(r v)-h(\mathbb{O})]+\left(\alpha+\frac{n+1}{2}\right) \log (1-r)-\left(\alpha-\frac{n+1}{2}\right) \log (1+r)
$$

and
$\max _{\|v\|=1} \operatorname{Re}[h(r v)-h(\mathbb{O})]+\left(\alpha+\frac{n+1}{2}\right) \log (1-r)-\left(\alpha-\frac{n+1}{2}\right) \log (1+r)$
are decreasing with respect to $r \in[0,1)$ and for $r \rightarrow 1^{-}$they have nonpositive limits, where $\alpha=\operatorname{ord} f$ for $f \in \cup_{\alpha<\infty} \mathcal{U}_{\alpha}$ such that $h(z)-h(\mathbb{O})=$ $\log J_{f}(z)$.

Since order of $e^{i \lambda} h$ is changing with $\lambda \in \mathbb{R}$ note that it is not possible to replace the real part by the modulus sign in the last corollary.

Theorem 2.2. A holomorphic function $h: \mathbf{B}^{n} \rightarrow \mathbb{C}$ belongs to $\mathcal{B}$ if and only if there exists a positive constant $C$ such that for all $z \in \mathbf{B}^{n}$

$$
\begin{align*}
& \sup _{\phi \in \mathcal{A}}|\operatorname{Re}[h(\phi(z))-h(\phi(\mathbb{O}))]+\log | \frac{J_{\phi}(z)}{J_{\phi}(\mathbb{O})}\left|+\log \left(1-\|z\|^{2}\right)^{\frac{n+1}{2}}\right|  \tag{2.4}\\
& \leq C \log \frac{1+\|z\|}{1-\|z\|}
\end{align*}
$$

where the best value (the smallest) of $C$ is equal to ord $f$, for a mapping $f$ from $\mathcal{L S} \mathcal{S}_{n}$ such that $\log J_{f}(z)=h(z)-h(\mathbb{O})$.

Proof. Let $h \in \mathcal{B}$. We can assume that $h(\mathbb{O})=0$. Then by Theorem 2.1 there exists a mapping $f \in \cup_{\alpha<\infty} \mathcal{U}_{\alpha}$ such that $h(z)=\log \left(J_{f}(z)\right)$. For $g(z)=\Lambda_{\phi}(f)(z)$ we get

$$
\mathrm{D} g(z)=(\mathrm{D} \phi(\mathbb{O}))^{-1}((\mathrm{D} f)(\phi(\mathbb{O})))^{-1}(\mathrm{D} f)(\phi(z)) \mathrm{D} \phi(z)
$$

Moreover, it is clear that

$$
\log \left|J_{g}(z)\right|=\operatorname{Re}[h(\phi(z))-h(\phi(\mathbb{O}))]-\log \left|J_{\phi}(\mathbb{O})\right|+\log \left|J_{\phi}(z)\right|
$$

By (1.3) we have

$$
\left|\log \left(\left(1-\|z\|^{2}\right)^{\frac{n+1}{2}}\left|J_{g}(z)\right|\right)\right| \leq \alpha \log \frac{1+\|z\|}{1-\|z\|}
$$

where $\alpha=\operatorname{ord} f$. The equality is attained for $g=K_{\alpha}$ and $z=\left(z_{1}, 0, \ldots, 0\right)$ $\in \mathbf{B}^{n}$. Thus we get (2.4). The equality is attained for $g=K_{\alpha}, z=$ $\left(z_{1}, 0, \ldots, 0\right) \in \mathbf{B}^{n}$.

Conversely, suppose that a holomorphic function $h$ satisfies inequality (2.4). Now, let $f(z)=\left(z_{1}, \ldots, z_{n-1}, \int_{0}^{z_{n}} \exp \left[h\left(z_{1}, \ldots, z_{n-1}, s\right)-h(\mathbb{O})\right] d s\right)$. Note that $f$ belongs to $\mathcal{L} \mathcal{S}_{n}$ and $J_{f}(z)=\exp [h(z)-h(\mathbb{O})]$. Thus for an automorphism $\phi \in \mathcal{A}$ we get

$$
\exp [h(\phi(z))-h(\phi(\mathbb{O}))]=\frac{J_{f}[\phi(z)]}{J_{f}[\phi(\mathbb{O})]}
$$

As in the first part the proof, for $g(z)=\Lambda_{\phi}(f)(z)$ we have

$$
J_{g}(z)=\frac{J_{f}[\phi(z)] \cdot J_{\phi}(z)}{J_{\phi}(\mathbb{O}) \cdot J_{f}[\phi(\mathbb{O})]}
$$

Observe that

$$
\begin{align*}
\log \left|J_{g}(z)\right| & =\log \left|\frac{J_{f}[\phi(z)]}{J_{f}[\phi(\mathbb{O})]}\right|+\log \left|\frac{J_{\phi}(z)}{J_{\phi}(\mathbb{O})}\right| \\
& =\operatorname{Re}[h(\phi(z))-h(\phi(\mathbb{O}))]+\log \left|\frac{J_{\phi}(z)}{J_{\phi}(\mathbb{O})}\right| . \tag{2.5}
\end{align*}
$$

Thus by (2.4) we obtain

$$
|\log | J_{g}(z)\left|+\frac{n+1}{2} \log \left(1-\|z\|^{2}\right)\right| \leq C \log \frac{1+\|z\|}{1-\|z\|}, \quad z \in \mathbf{B}^{n} .
$$

Hence for $z=\rho w, \rho \in[0,1), w \in \partial \mathbf{B}^{n}$,

$$
-C \log \frac{1+\rho}{1-\rho} \leq \operatorname{Re}\left[\log J_{g}(\rho w)+\frac{n+1}{2} \log \left(1-\rho^{2}\right)\right] \leq C \log \frac{1+\rho}{1-\rho}
$$

For $\rho=0$ the equality holds in the above inequalities. Therefore, after differentiation with respect to $\rho$ at $\rho=0$ we get (using (1.4))

$$
-2 C \leq \operatorname{Re}\left[\operatorname{tr}(\mathrm{D} g(\mathbb{O}))^{-1} \mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right] \leq 2 C
$$

Since $\mathrm{D} g(\mathbb{O})=\mathbf{I}$, we have

$$
\left|\operatorname{Re}\left[\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right]\right| \leq 2 C
$$

For fixed $u \in \mathbb{C}^{n}$ we have

$$
\|u\| \leq \sup _{\|w\|=1} \operatorname{Re}\langle w, u\rangle \leq \sup _{\|w\|=1}|\langle w, u\rangle| \leq\|u\| .
$$

Therefore

$$
\sup _{\|w\|=1}|\langle w, u\rangle|=\sup _{\|w\|=1} \operatorname{Re}\langle w, u\rangle .
$$

Note that $\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}=\langle w, u\rangle$ for some $u \in \mathbb{C}^{n}$. Then

$$
\max _{\|w\|=1}\left|\operatorname{Re}\left[\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right]\right|=\max _{\|w\|=1}\left|\operatorname{tr}\left\{\mathrm{D}^{2} g(\mathbb{O})(w, \cdot)\right\}\right| \leq 2 C
$$

Thus $f \in \mathcal{U}_{C}$ and (by Theorem 2.1) $h \in \mathcal{B}$.
Now let us observe that from the proof it follows that $\alpha=$ ord $f \leq C$. Thus from the first part of the proof we get that $C=$ ord $f=\alpha$ is the best constant in (2.4).

Remark 2.1. ([GLS]) From Theorem $A$ and the fact that

$$
J_{\Lambda_{\phi}(f)}(z)=\frac{J_{f}(\phi(z)) J_{\phi}(z)}{J_{f}(\phi(\mathbb{O})) J_{\phi}(\mathbb{O})},
$$

it follows that for $f_{1}, f_{2} \in \mathcal{L} \mathcal{S}_{n}$ with $J_{f_{1}}(z)=J_{f_{2}}(z)$ we have ord $f_{1}=\operatorname{ord} f_{2}$.
3. Bloch mappings. In this section we will consider Bloch mappings from the unit ball $\mathbf{B}^{n}$ into $\mathbb{C}^{n}$ and their connections with linearly invariant families of mappings. Now we give a definition of Bloch mappings (see [L]).

Definition 3.1. A holomorphic mapping $h: \mathbf{B}^{n} \rightarrow \mathbb{C}^{n}$ is called a Bloch mapping if it has a finite Bloch norm

$$
\|h\|_{\mathcal{B}(n)}=\|h(\mathbb{O})\|+\sup _{\phi \in \mathcal{A}}\|\mathrm{D}(h \circ \phi)(\mathbb{O})\|,
$$

where $\|\mathrm{D} h(z)\|$ denotes the norm of linear operator $\mathrm{D} h(z)$.
The family of all such mappings will be denoted by $\mathcal{B}(n)$. Let functions $f_{k}$ belong to $\mathcal{U}_{\alpha}$, for $k=1, \ldots, n$. Then by (1.2) we have

$$
\log \left|J_{f_{k}}(z)\right| \leq\left(\alpha-\frac{n+1}{2}\right) \log (1+\|z\|)-\left(\alpha+\frac{n+1}{2}\right) \log (1-\|z\|),
$$

$k=1, \ldots, n$. The next theorem gives a relationship between $\mathcal{B}(n)$ and $\mathcal{U}_{\alpha}$.
Theorem 3.1. A holomorphic mapping $h: \mathbf{B}^{n} \rightarrow \mathbb{C}^{n}$ belongs to $\mathcal{B}(n)$ if and only if there exist mappings $f_{1}, \ldots, f_{n} \in \cup_{\alpha<\infty} \mathcal{U}_{\alpha}$ such that

$$
h(z)-h(\mathbb{O})=\left(\log J_{f_{1}}(z), \ldots, \log J_{f_{n}}(z)\right) .
$$

Moreover, if $\alpha_{k}=\operatorname{ord} f_{k}, k=1, \ldots, n$ then

$$
2 \sqrt{\sum_{k=1}^{n}\left(\alpha_{k}-\frac{n+1}{2}\right)^{2}} \leq\|h-h(\mathbb{O})\|_{\mathcal{B}(n)} \leq 2 \sqrt{\sum_{k=1}^{n}\left(\alpha_{k}+\frac{n+1}{2}\right)^{2}} ;
$$

and both inequalities are best possible.
Proof. Let $h=\left(h^{1}, \ldots, h^{n}\right)=\left(\log J_{f_{1}}, \ldots, \log J_{f_{n}}\right)$ and let for every $k=$ $1, \ldots, n$ ord $f_{k}=\alpha_{k}<\infty$. Then by Theorem 2.1

$$
\left\|h^{k}\right\|_{\mathcal{B}}=\left|h^{k}(\mathbb{O})\right|+\sup _{\phi \in \mathcal{A}}\left\|\nabla\left(h^{k} \circ \phi\right)(\mathbb{O})\right\| \leq 2 \alpha_{k}+n+1,
$$

for every $k=1, \ldots, n$ and $h^{k} \in \mathcal{B}$. Because $\mathrm{D}(h \circ \phi)(\mathbb{O})=\left(\frac{\partial\left(h^{j} \circ \phi\right)}{\partial z_{k}}(\mathbb{O})\right)_{j, k=1}^{n}$, then for every $\phi \in \mathcal{A}$, we have

$$
\begin{aligned}
\|\mathrm{D}(h \circ \phi)(\mathbb{O})\| & =\sup _{\|w\|=1}\|\mathrm{D}(h \circ \phi)(\mathbb{O}) w\| \\
& =\sup _{\|w\|=1} \|\left(\left\langle\nabla\left(h^{1} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle, \ldots,\left\langle\nabla\left(h^{n} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle \|\right. \\
& \leq \sqrt{\sum_{k=1}^{n}\left\|\nabla\left(h^{k} \circ \phi\right)(\mathbb{O})\right\|^{2}} \leq \sqrt{\sum_{k=1}^{n}\left(2 \alpha_{k}+n+1\right)^{2}} .
\end{aligned}
$$

By the above we get that $h \in \mathcal{B}(n)$ and

$$
\|h-h(\mathbb{O})\|_{\mathcal{B}(n)} \leq \sqrt{\sum_{k=1}^{n}\left(2 \alpha_{k}+n+1\right)^{2}} .
$$

From the proof of Theorem 1 exactness of the last inequality follows. The equality is attained for the mapping $h=\left(h_{\alpha_{1}}, \ldots, h_{\alpha_{n}}\right)$, where $h_{\alpha_{k}}$ were defined in Theorem 2.1.

Conversely, let $h \in \mathcal{B}(n), h=\left(h^{1}, \ldots, h^{n}\right)=\left(\log J_{f_{1}}, \ldots, \log J_{f_{n}}\right)$, where (similarly as in the proof of Theorem 2.1)

$$
f_{k}(z)=\left(z_{1}, \ldots, z_{n-1}, \int_{0}^{z_{n}} \exp \left[h^{k}\left(z_{1}, \ldots, z_{n-1}, s\right)-h^{k}(\mathbb{O})\right] d s\right) \in \mathcal{L} \mathcal{S}_{n}
$$

$k=1, \ldots, n$.
Then by Definition 3.1 there is a constant $C=C(h)$ such that for every automorphism $\phi \in \mathcal{A}$ holds $\|\mathrm{D}(h \circ \phi)(\mathbb{O})\| \leq C$, which is equivalent to

$$
\sup _{\|w\|=1, \phi \in \mathcal{A}} \|\left(\left\langle\nabla\left(h^{1} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle, \ldots,\left\langle\nabla\left(h^{n} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle \| \leq C .\right.
$$

Thus for every $k=1, \ldots, n \sup _{\phi \in \mathcal{A}}\left\|\nabla\left(h^{k} \circ \phi\right)(\mathbb{O})\right\| \leq C$, or equivalently $h^{k} \in \mathcal{B}$ by Definition 2.1. By Theorem 2.1 ord $f_{k}=\alpha_{k}<\infty$, which means that $f_{1}, \ldots, f_{n} \in \cup_{\alpha<\infty} \mathcal{U}_{\alpha}$. Then we obtain

$$
2 \alpha_{k}-n-1 \leq \sup _{\phi \in \mathcal{A}}\left\|\nabla\left(h^{k} \circ \phi\right)(\mathbb{O})\right\|=\sup _{\phi \in \mathcal{A},\|w\|=1}\left|\left\langle\nabla\left(h^{k} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle\right|,
$$

and therefore

$$
\begin{aligned}
\|h-h(\mathbb{O})\|_{\mathcal{B}(n)} & =\sup _{\phi \in \mathcal{A},\|w\|=1}\|\mathrm{D}(h \circ \phi)(\mathbb{O}) w\| \\
& =\sup _{\|w\|=1, \phi \in \mathcal{A}}\left\|\left(\left\langle\nabla\left(h^{1} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle, \ldots,\left\langle\nabla\left(h^{n} \circ \phi\right)(\mathbb{O}), \bar{w}\right\rangle\right)\right\| \\
& \geq \sqrt{\sum_{k=1}^{n}\left(2 \alpha_{k}-n-1\right)^{2}} .
\end{aligned}
$$

The equality holds for $h(z) \equiv \mathbb{O}$.

Remark 3.1. A holomorphic mapping $h=\left(h_{1}, \ldots, h_{n}\right)$ belongs to $\mathcal{B}(n)$ if and only if for every $k=1, \ldots, n$ a function $h_{k}$ belongs to $\mathcal{B}$.

## References

[BFG] Barnard, R.W., C.H. FitzGerald and S. Gong, Distortion theorem for biholomorphic mappings in $\mathbb{C}^{2}$, Trans. Amer. Math. Soc. 344 (1994), 907-924.
[CCP] Campbell, D.M., J.A. Cima and J.A. Pfaltzgraff, Linear space and linear-invariant families of locally univalent analytic functions, Manuscripta Math. 4 (1971), 1-30.
[GLS] Godula, J., P. Liczberski and V.V. Starkov, Order of linearly invariant family of mappings in $\mathbb{C}^{n}$, Complex Variables Theory Appl. 42 (2000), 89-96.
[GS1] Godula, J., V.V. Starkov, Applications of ideas of Möbius invariance to obtain equivalent definitions of Bloch functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 49 (1995), 41-58.
[GS2] Godula, J., V.V. Starkov, Regularity theorem for linearly invariant families of functions in a polydisk, Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1995), 21-31. (Russian)
[GS3] Godula, J., V.V. Starkov, Linearly invariant families of holomorphic functions in the unit polydisk, Generalizations of Complex Analysis, Banach Center Publ. 37 (1996), 115-127.
[H1] Hahn, K.T., Quantitative Bloch's theorem for certain classes of holomorphic mappings of ball into $P_{n} C$, J. Reine Angew. Math. 283 (1976), 99-109.
[H2] Hahn, K.T., Holomorphic mappings of the hyperbolic space into the complex Euclidean space and the Bloch theorem, Canad. J. Math. 27 (1975), 446-458.
[L] Liu, X., Bloch functions of several complex variables, Pacific J. Math. 152 (1992), no. 2, 347-363.
[LS1] Liczberski, P., V.V. Starkov, Regularity theorem for linearly invariant families of mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 54 (2000), 61-73.
[LS2] Liczberski, P., V.V. Starkov, Linearly invariant families of holomorphic mappings of a ball. Dimension reduction method, Siberian Math. J. 42 (2001), 849-867.
[P] Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen.I, Math. Ann. 155 (1964), 108-154.
[Pf1] Pfaltzgraff, J.A., Subordination chains and quasiconformal extension of holomorphic maps in $\mathbb{C}^{n}$, Ann. Acad. Sci. Fenn. Ser. A, I Math. 1 (1975), 13-25.
[Pf2] Pfaltzgraff, J.A., Distortion of locally biholomorphic maps of the n-ball, Complex Variables Theory Appl. 33 (1997), 239-253.
[R] Rudin, W., Function Theory in the Unit Ball of $\mathcal{C}^{n}$, Springer-Verlag, New York, 1980.
[S] Spivak, M., Calculus on Manifolds, W. A. Benjamin, Inc., New York-Amsterdam, 1965.
[T1] Timoney, R.M., Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980), 241-267.
[T2] Timoney, R.M., Bloch functions in several complex variables, II, J. Reine Angew. Math. 319 (1980), 1-22.

Institute of Mathematics Department of Mathematics
Maria Curie-Skłodowska University
20-031 Lublin, Poland
e-mail: godula@golem.umcs.lublin.pl
University of Petrozavodsk
185640 Petrozavodsk, Russia
e-mail: starkov@mainpgu.karelia.ru
Received January 15, 2002


[^0]:    2000 Mathematics Subject Classification. 32A10, 32A18, 32A99.
    Key words and phrases. Linearly invariant family, universal linearly invariant family, order of a function, order of a mapping, order of a family, Bloch function, Bloch mapping.

