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Subordination chains and Loewner differential

equations in several complex variables

Abstract. Let B be the unit ball of Cn with respect to the Euclidean norm

and f(z, t) be a Loewner chain. In this paper we study certain properties

of f(z, t) and we obtain a sufficient condition for the transition mapping
associated to f(z, t) to satisfy the Loewner differential equation.

1. Introduction and preliminaries. Let Cn be the space of n complex

variables z = (z1, . . . , zn)′ with the usual inner product 〈z, w〉 =
n∑

j=1

zjwj

and the Euclidean norm ‖z‖ = 〈z, z〉1/2, z ∈ Cn. The symbol ′ means
transpose of vectors and matrices. Let Br = {z ∈ Cn : ‖z‖ < r} and let
B = B1 be the unit ball in Cn. The closed ball {z ∈ Cn : ‖z‖ ≤ r} is
denoted by Br. In the case of one variable Br is denoted by Ur and the unit
disc U1 by U . If G is an open set in Cn, let H(G) be the set of holomorphic
maps from G into Cn.

By L(Cn, Cm) we denote the space of continuous linear operators from
Cn into Cm with the standard operator norm. Let I be the identity in
L(Cn, Cn).
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We say that f ∈ H(B) is locally biholomorphic on B if f has a local
holomorphic inverse at each point in B.

If f, g ∈ H(B), we say that f is subordinate to g if there is a Schwarz
mapping v (i.e. v ∈ H(B), v(0) = 0 and ‖v(z)‖ < 1, z ∈ B) such that
f(z) = g(v(z)), z ∈ B. We shall write f ≺ g to mean that f is subordinate
to g.

Definition 1.1. The mapping f : B × [0,∞) → Cn is called a Loewner
chain (or a subordination chain) if

(i) f(·, t) is holomorphic and univalent on B, t ≥ 0;
(ii) f(0, t) = 0, Df(0, t) = etI, t ≥ 0;
(iii) f(·, s) ≺ f(·, t) for 0 ≤ s ≤ t < ∞;
(iv) f(z, t) is a locally absolutely continuous function of t ∈ [0,∞) locally

uniformly with respect to z ∈ B.

Note that in the case of one variable, the assumption (iv) is always sa-
tisfied, as a consequence of the distortion result for the class of normalized
univalent functions on U .

The subordination condition (iii) is equivalent to the condition

(1.1) f(z, s) = f(v(z, s, t), t), z ∈ B, 0 ≤ s ≤ t < ∞,

where v = v(z, s, t) is a univalent Schwarz mapping, normalized by
v(0, s, t) = 0 and Dv(0, s, t) = es−tI.

A key role in our discussion is played by the n-dimensional version of the
Carathéodory set:

M = {h ∈ H(B) : h(0) = 0, Dh(0) = I, Re 〈h(z), z〉 ≥ 0, z ∈ B}.

Recently the authors proved in [2] the following result.

Lemma 1.2. Let p ∈M. Then for each r ∈ (0, 1) there is a constant

M = M(r) ≤ 4
(1− r)2

,

which is independent of p, such that ‖p(z)‖ ≤ M(r) for ‖z‖ ≤ r.

Also in [1] the present authors have recently proved that the transition
mapping v = v(z, s, t) associated to a Loewner chain is locally Lipschitz
continuous in t ∈ [s,∞) locally uniformly with respect to z ∈ B.

Lemma 1.3. Let f(z, t) be a Loewner chain and v = v(z, s, t) be the tran-
sition mapping associated to f(z, t). Then for all r ∈ (0, 1) and 0 ≤ s ≤
t1 < t2 < ∞,

(1.2) ‖v(z, s, t1)− v(z, s, t2)‖ ≤
4

(1− r)2
(t2 − t1), ‖z‖ ≤ r.
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Also for all r ∈ (0, 1) and 0 ≤ s1 < s2 ≤ t < ∞,

(1.3) ‖v(z, s1, t)− v(z, s2, t)‖ ≤
4(1 + r)
(1− r)3

(s2 − s1), ‖z‖ ≤ r.

2. Main results. We begin this section with the following result.

Lemma 2.1. Let f(z, t) = etz + . . . be a Loewner chain. Then for each
r ∈ (0, 1) and t0 > 0 there is K = K(r, t0) > 0, such that

(2.1) ‖f(z, t)− f(z, s)‖ ≤ K(r, t0)(t− s), ‖z‖ ≤ r, 0 ≤ s ≤ t ≤ t0.

Thus f(z, t) is locally Lipschitz in t, locally uniformly with respect to z ∈ B.

Proof. It is easy to see that f is a continuous mapping on B × [0,∞),
since f(z, ·) is locally absolutely continuous function of t ∈ [0,∞) locally
uniformly with respect to z ∈ B, Hence, for each r ∈ (0, 1) and t0 > 0 there
exists M = M(r, t0) > 0 such that

(2.2) ‖f(z, t)‖ ≤ M(r, t0), ‖z‖ ≤ r, t ∈ [0, t0].

On the other hand, using the Cauchy integral formula, it is not difficult
to prove that there exists L = L(r, t0) > 0 such that

(2.3) ‖Df(z, t)‖ ≤ L(r, t0), ‖z‖ ≤ r, t ∈ [0, t0].

Indeed,

Df(z, t)(u) =
1

2πi

∫
|ζ|=ρ

f(z + ζu, t)
ζ2

dζ,

for all u ∈ Cn, ‖u‖ = 1 and ρ ∈ (0, 1), such that z + ζu ∈ B, |ζ| = ρ. For

example, if ρ =
1− r

2
, then ‖z + ζu‖ ≤ 1 + r

2
< 1 and the above equality

yields that

‖Df(z, t)(u)‖ ≤ M

(
1 + r

2
, t0

)
2

1− r
= L(r, t0),

for ‖z‖ ≤ r < 1, ‖u‖ = 1 and t ∈ [0, t0]. Thus (2.3) follows. Moreover, since

‖f(z, t)− f(w, t)‖ ≤ ‖z − w‖
∫ 1

0

‖Df((1− τ)z + τw, t)‖dτ,
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for ‖z‖ ≤ r, ‖w‖ ≤ r, and t ∈ [0, t0], we obtain in view of (2.3) that

‖f(z, t)− f(w, t)‖ ≤ L(r, t0)‖z − w‖, ‖z‖ ≤ r, ‖w‖ ≤ r,

for all t ∈ [0, t0]. Taking into account (1.1), (1.2) and the above relation,
we deduce that

‖f(z, s)− f(z, t)‖ =‖f(v(z, s, t), t)− f(z, t)‖

≤ L(r, t0)‖z − v(z, s, t)‖ ≤ 4
(1− r)2

L(r, t0)(t− s)

=
8

(1− r)3
M

(
1 + r

2
, t0

)
(t− s),

for ‖z‖ ≤ r, 0 ≤ s ≤ t ≤ t0. Here we have used the fact that ‖v(z, s, t)‖ ≤
‖z‖ ≤ r, since v(z, s, t) is a Schwarz map. This completes the proof. �

Next, we show the following result.

Lemma 2.2. Let f(z, t) = etz+. . . be a Loewner chain and let v = v(z, s, t)
be the transition mapping associated to f(z, t). Then the following condi-
tions hold:

(i) There exists a subset E of (0,∞) of measure zero such that for each
t ∈ (0,∞) \ E, the limit

(2.4)
∂f

∂t
(z, t) = lim

h→0

f(z, t + h)− f(z, h)
h

exists uniformly on compact sets in B. Moreover, the mapping
∂f

∂t
(·, t)

given by (2.4) is holomorphic on B for each t ∈ (0,∞) \ E.
(ii) For each s ≥ 0, there exists a subset E′ of [s,∞) of measure zero

such that for each t ∈ [s,∞) \ E′ the limit

(2.5)
∂v

∂t
(z, s, t) = lim

h→0

v(z, s, t + h)− v(z, s, t)
h

exists uniformly on compact sets in B. Also, the mapping
∂v

∂t
(·, s, t) given

by (2.5) is holomorphic on B for each t ∈ [s,∞) \ E′.
(iii) For each t > 0, there exists a subset E′′ of (0, t) of measure zero

such that for each s ∈ (0, t] \ E′′, the limit

∂v

∂s
(z, s, t) = lim

h→0

v(z, s + h, t)− v(z, s, t)
h
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exists uniformly on compact sets in B. The above mapping
∂v

∂s
(·, s, t) is

holomorphic on B for each s ∈ (0, t] \ E′′.

Proof. It suffices to prove the first condition, for the latter and third
conditions it would be possible to use similar arguments as to (i).

Since f(z, t) is subordination chain, f(z, t) is a locally absolutely con-
tinuous function of t locally uniformly with respect to z ∈ B. Hence the
limit

∂f

∂t
(z, t) = lim

h→0

f(z, t + h)− f(z, t)
h

exists for a.e. t ≥ 0. The exceptional null set depends on z, but we can

choose a set E ⊂ (0,∞) of measure zero such that
∂f

∂t
(z, t) exists for all

t ∈ (0,∞) \ E and z ∈ Q, where Q is a countable set of uniqueness for
the holomorphic functions on B (for example, any countable dense subset
of B may be chosen as Q). Next, fix t ∈ (0,∞) \ E. Since f(z, t) is locally
Lipschitz in t, the set {

f(z, t + h)− f(z, t)
h

}
0<|h|< t

2

is locally uniformly bounded on B. In view of Vitali’s theorem for holomor-
phic functions in higher dimensions [3], we conclude that the limit

lim
m→∞

f(z, t + hm)− f(z, t)
hm

exists uniformly on compact sets for any sequence {hm}m≥0 such that
lim

m→∞
hm = 0. Since Q is a set of uniqueness and all two such limits coincide

on Q, (2.4) follows. Finally, since the limit

∂f

∂t
(z, t) = lim

h→0

f(z, t + h)− f(z, t)
h

exists uniformly on compact sets in B, we deduce that
∂f

∂t
(·, t) is holomor-

phic on B for t ∈ (0,∞) \ E. �

We are now able to prove that Loewner chains satisfy the generalized
Loewner differential equation. A part of this result was also obtained in
[2, Theorem 1.10], but here we give another proof.



40 P. Curt and G. Kohr

Theorem 2.3. Let f : B × [0,∞) → Cn be a Loewner chain. Then there
exists a set E ⊂ (0,∞) of measure zero such that for each t ∈ (0,∞) \ E,
there exists a mapping h = h(z, t) such that

(i) h(·, t) ∈M, t ∈ (0,∞) \ E,
(ii) h(z, ·) is measurable on [0,∞) for each z ∈ B, and

(2.6)
∂f

∂t
(z, t) = Df(z, t)h(z, t), t ∈ (0,∞) \ E, ∀ z ∈ B.

Proof. Let v = v(z, s, t) be the transition mapping associated to f(z, t).
Then

f(z, s) = f(v(z, s, t), t), z ∈ B, 0 ≤ s ≤ t < ∞,

and hence

f(z, s)− f(z, t) =f(v(z, s, t), t)− f(z, t)

=Df(z, t)(v(z, s, t)− z) + o(v(z, s, t), z),

where
‖o(w, z)‖
‖w − z‖

→ 0 as ‖w − z‖ → 0.

In view of Lemma 2.2, there is a null set E ⊂ (0,∞) such that
∂f

∂t
(·, t)

exists and is holomorphic on B for each t ∈ (0,∞) \ E. For such t ∈
(0,∞) \ E, we have

(2.7)
[Df(z, t)]−1 ∂f

∂t
(z, t) = [Df(z, t)]−1 lim

s↗t

f(z, s)− f(z, t)
s− t

= lim
s↗t

[
v(z, s, t)− z

s− t
− [Df(z, t)]−1 o(v(z, s, t), z)

t− s

]
.

First, we show that for t ∈ (0,∞) \ E and z ∈ B,

(2.8) lim
s↗t

o(v(z, s, t), z)
t− s

= 0.

Indeed,

lim
s↗t

o(v(z, s, t), z)
t− s

= lim
s↗t

o(v(z, s, t), z)
‖v(z, s, t)− z‖

· ‖v(z, s, t)− z‖
t− s

= 0,

since
o(v(z, s, t), z)
‖v(z, s, t)− z‖

→ 0 and
‖v(z, s, t)− z‖

t− s
is bounded in view of (1.2).

Hence, from (2.7) and (2.8) we deduce that for each t ∈ (0,∞) \ E, the
limit

lim
s↗t

z − v(z, s, t)
t− s
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exists for each z ∈ B. Further, if

h(z, t) = lim
s↗t

z − v(z, s, t)
t− s

,

for all z ∈ B and t ∈ (0,∞) \E, then h(·, t) ∈ H(B) and in view of the fact
that v = v(·, s, t) is a Schwarz mapping, we obtain

Re 〈h(z, t), z〉 = lim
s↗t

1
t− s

[‖z‖2 − Re 〈v(z, s, t), z〉] ≥ 0.

Also, since v(0, s, t) = 0 and Dv(0, s, t) = es−tI, it is obvious that
h(0, t) = 0 and Dh(0, t) = I for t ∈ (0,∞) \ E. Therefore, h(·, t) ∈ M.
Moreover, using (2.7), the equality (2.6) now follows.

Finally, we show that h(z, t) is a measurable function of t ∈ [0,∞).
Indeed, since

h(z, t) = lim
m→∞

m

(
z − v

(
z, t− 1

m
, t

))
,

it suffices to prove that for each m ∈ N, v

(
z, t− 1

m
, t

)
is a continuous

function of t. For this purpose, we observe that∥∥∥∥v

(
z, t− 1

m
, t

)
− v

(
z, τ − 1

m
, τ

)∥∥∥∥
≤

∥∥∥∥v

(
z, t− 1

m
, t

)
− v

(
z, t− 1

m
, τ

)∥∥∥∥
+

∥∥∥∥v

(
z, t− 1

m
, τ

)
− v

(
z, τ − 1

m
, τ

)∥∥∥∥ ≤ 8
(1− ‖z‖)3

|t− τ |,

where for the last inequality we have used the relations (1.2) and (1.3). This
completes the proof. �

In order to prove that the transition mappings associated to Loewner
chains satisfy the Loewner differential equation (compare with [5, Theorem
6.3]), we use the lemma below. For the proof, it suffices to use similar kind
of arguments as in [6, p.192-193].

Lemma 2.4. Let f : [a, b] → Cn given by f(t) = g(h(t), t), where g : Br ×
[a, b] → Cn and h : [a, b] → Br. Assume for each t ∈ [a, b], g(·, t) ∈ H(Br)
and there exist some constants M,K > 0 such that

‖g(z, t)− g(w, t)‖ ≤ M‖z − w‖
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and
‖g(z, s)− g(z, t)‖ ≤ K|s− t|

for all s, t ∈ [a, b] and z, w ∈ Br.
If h is absolutely continuous, then f is also absolutely continuous and

df

dt
(t) = Dg(h(t), t)

dh

dt
(t) +

∂g

∂t
(h(t), t), a.e. t ∈ [a, b].

Theorem 2.5. Let f : B × [0,∞) → Cn be a Loewner chain and let v =
v(z, s, t) be the transition mapping associated to f(z, t). Also let h = h(z, t)
be given by Theorem 2.3. Then for each s ≥ 0 and for almost all t ≥ s,

(2.9)
∂v

∂t
(z, s, t) = −h(v(z, s, t), t), ∀ z ∈ B.

Proof. Fix s ≥ 0. In view of Lemmas 2.1 and 2.2 we deduce that for

almost all t ≥ s there exist the mappings
∂f

∂t
(·, t) and

∂v

∂t
(·, s, t) which are

holomorphic on B. Also for any τ > s and for almost all t ∈ [s, τ ], there

exist the mappings
∂v

∂t
(·, t, τ) which are holomorphic on B. Moreover,

v(z, s, τ) = v(v(z, s, t), t, τ), z ∈ B, 0 ≤ s ≤ t ≤ τ < ∞,

(see for example [1]) and

f(w, t) = f(v(w, s, t), t), w ∈ B, 0 ≤ s ≤ t < ∞.

Differentiating the first equality with respect to t and the second equality
with respect to t and w, we deduce that

(2.10) 0 =
∂v

∂t
(z, s, τ) = Dv(v(z, s, t), t, τ)

∂v

∂t
(z, s, τ) +

∂v

∂t
(v(z, s, t), t, τ),

for all z ∈ B and a.e. t ∈ [s, τ ], and

(2.11)

∂f

∂t
(w, t) = Df(v(w, t, τ), τ)

∂v

∂t
(w, t, τ)

= Df(w, t)[Dv(w, t, τ)]−1 ∂v

∂t
(w, t, τ),

for all w ∈ B and a.e. t ∈ [s, τ ]. Next, combining the relations (2.6) and
(2.11), we obtain

∂v

∂t
(w, t, τ) = Dv(w, t, τ)h(w, t), w ∈ B, a.e. t ∈ [s, τ ].
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Letting w = v(z, s, t) in the above relation and taking into account (2.10),
we conclude that

0 = Dv(v(z, s, t), t, τ)
[
∂v

∂t
(z, s, t) + h(v(z, s, t), t)

]
,

for all z ∈ B and a.e. t ∈ [s, τ ]. Since Dv(v(z, s, t), t, τ) is nonsingular
and τ was arbitrarily chosen, (2.9) follows, as desired. This completes the
proof. �
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