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A structure of common fixed point sets

of commuting holomorphic mappings

in finite powers of domains

Abstract. In this paper we consider bounded convex domains D in com-
plex reflexive Banach spaces which are locally uniformly linearly convex in

the Kobayashi distance kD. We show that nonempty common fixed point

sets of commuting holomorphic mappings in finite powers of these kind of
domains are holomorphic retracts.

1. Introduction. In this paper we apply the notion of a uniform linear
convexity of the Kobayashi distance to obtain holomorphic retracts in the
finite Cartesian product of bounded convex domains.

2. Basic properties of the Kobayashi distance. Throughout this
paper all Banach spaces X will be complex and all domains D ⊂ X will be
bounded and convex.

Let D be a bounded convex domain in a reflexive Banach space (X, ‖·‖) .
In D we have the Kobayashi distance (in fact, this is a definition of the
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Lempert function δ [32] – see also [12], [22])

kD (x, y) = δD (x, y)

= inf {k∆ (0, γ) : there exists f ∈ H(∆, D)

such that f (0) = x and f (γ) = y}

[25], [26]. The Kobayashi distance kD is always locally equivalent to the
norm ‖·‖. If x, y, w, z ∈ D and s ∈ [0, 1], then

kD (sx + (1− s) y, sw + (1− s) z) ≤ max {kD (x, w) , kD (y, z)} .

Hence each open (closed) kD-ball in the metric space (D, kD) is convex [31].
Next, there is the following connection between the Kobayashi distance and
the weak topology in a reflexive Banach space X: if {xλ}λ∈I and {yλ}λ∈I

are nets in D which are weakly convergent to x and y respectively, x, y ∈ D,
then

kD (x, y) ≤ lim inf
λ

kD (xλ, yλ) ,

i.e., the Kobayashi distance is lower semicontinuous with respect to the
weak topology in X [28] (see also [9], [23]).

Let us observe that, if Dj is a bounded convex domain in a reflexive
Banach space (Xj , ‖·‖j) for j = 1, 2, ..n, and X =

∏n
j=1 Xj is a finite

Cartesian product of Xj with the maximum norm, then

k∏n
j=1 Dj

(x, y) = max
1≤j≤n

kDj
(xj , yj)

for all x = (x1, ..., xn), y = (y1, ..., yn) ∈
∏n

j=1 Dj [20].
We will use the standard definition of strict convexity. A point x on the

boundary of a bounded convex set D ⊂ X is called a real extreme point if
{x + ty ∈ X : −1 ≤ t ≤ 1} ⊂ D implies y = 0. If each boundary point of a
bounded convex domain D is an extreme point, then D is called a strictly
convex domain.

If D is strictly convex, then we can say more about linear convexity of
balls in (D, kD).

Theorem 2.1. [7], [34], [35] (see also [33]). If D is a strictly convex domain
in a reflexive Banach space X, then each kD-ball is also strictly convex in
a linear sense.

Remark 2.1. More information about strict convexity in a linear sense of
kD-balls can be found in [4] and [9].

Recently, the first author introduced the notion of local uniform linear
convexity of the domain D with respect to the Kobayashi distance [4] (ear-
lier, a similar notion in the Hilbert ball BH was considered by the second
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author [27]) who gave examples of such domains and applications of these
domains in the fixed point theory of holomorphic mappings (see [4], [5], [6],
[8], [35]).

Definition 2.1. [5]. Let D be a bounded and convex domain in a reflexive
Banach space X. The metric space (D, kD) is said to be a locally uniformly
linearly convex space, if there exist w ∈ D and the function

δ(w, ·, ·, ·, ·, ·)

such that for all x, y ∈ D, R1 > 0, z ∈ D with kD(w, z) ≤ R1, 0 < R2 ≤
R ≤ R3, and 0 < ε1 ≤ ε ≤ ε2 < 2 we have

δ (w,R1, R2, R3, ε1, ε2) > 0

and

lkD (z, x) ≤ R
kD (z, y) ≤ R
kD (x, y) = εR

 ⇒ kD

(
z,

1
2
x +

1
2
y

)
≤ (1− δ (w,R1, R2, R3, ε1, ε2))R.

The function δ(w, ·, ·, ·, ·, ·) is called a modulus of linear convexity for the
Kobayashi distance kD.

Now we recall the notion of an asymptotic center [14]. Let D be a
bounded convex domain in a reflexive Banach space X, {xλ}λ∈Λ a kD-
bounded net in D and C a nonempty, kD-closed and convex subset of D.
Consider the functional

r(·, {xλ}λ∈Λ) : D → [0,∞)

defined by
r(x, {xλ}λ∈Λ) = lim sup

λ∈Λ
kD(x, xλ).

A point z in C is said to be an asymptotic center of the net {xλ}λ∈Λ with
respect to C if

r(z, {xλ}λ∈Λ) = inf{r(x, {xλ}λ∈Λ) : x ∈ C}.

The infimum of r(·, {xλ}λ∈Λ) over C is called an asymptotic radius of
{xλ}λ∈Λ with respect to C and denoted by r(C, {xλ}λ∈Λ). Let us observe
that the function r(·, {xλ}λ∈Λ) is quasi-convex, i.e.,

r((1− t)x + ty, {xλ}λ∈Λ) ≤ max(r(x, {xλ}λ∈Λ), r(y, {xλ}λ∈Λ))

for all x and y in D and 0 ≤ t ≤ 1.
It is easy to prove the following proposition.
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Proposition 2.2. [4], [8]. Let D be a bounded convex domain in a reflex-
ive Banach space X such that the metric space (D, kD) is locally linearly
uniformly convex. Then each kD-bounded net {xλ}λ∈Λ in D has a unique
asymptotic center with respect to any nonempty, kD-closed and convex sub-
set C of D.

3. Holomorphic mappings and kD-nonexpansive mappings. In
this section we recall basic properties of holomorphic mappings and kD-
nonexpansive mappings.

Let D be a bounded convex domain in a reflexive Banach space X and C
a nonempty and kD-closed subset of D. We say that a mapping f : C → C
is kD-nonexpansive if

kD (f(x), f(y)) ≤ kD (x, y)

for all x, y ∈ C [17]. Each holomorphic self-mapping f : D → D is kD-
nonexpansive ([11], [16]). We also have the following useful property of
such mappings.

Proposition 3.1.. [10], [21], [28], [30]. Let D be a bounded convex domain
in a reflexive Banach space X. If {fλ}λ∈Λ is a net of kD-nonexpansive
(holomorphic) self-mappings of D which is weakly pointwise convergent to
a mapping f : D → D, then f is also kD-nonexpansive (holomorphic).

Now, we recall two important facts about kD-nonexpansive self-mappings
of bounded convex domains D in reflexive Banach spaces.

Let C be a nonempty convex and kD-closed subset of D. If f : C → C
is kD-nonexpansive, then for each 0 < t < 1 and a ∈ C the mapping

ft,a = (1− t)a + tf

is a contraction. Therefore, for each x ∈ C, the sequence {fn
t,a(x)} tends to

a unique fixed point yt,a in C. Additionally, we have

lim
t→1−

‖yt,a − ft,a(yt,a)‖ = 0

[13].
For a kD-nonexpansive f : C → C, we call a sequence {xn} in C an

approximating sequence if

lim
n

kD(xn, f(xn)) = 0.

So, we are ready to state the following theorem.
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Theorem 3.2. [4]. Let D be a bounded convex domain in a reflexive Ba-
nach space X such that the metric space (D, kD) is locally uniformly lin-
early convex, C be a nonempty convex and kD-closed subset of D and let
f : C → C be a kD-nonexpansive mapping. Then the following statements
are equivalent:

(i) f has a fixed point;
(ii) There exists a point x in C such that the sequence of iterates {fn(x)}

is kD-bounded;
(iii) The sequence of iterates {fn(x)} is kD-bounded for all x in C;
(iv) There exists a kD-bounded approximating sequence {xn} for f.

Next we have

Lemma 3.3. [7]. Let X be a reflexive Banach space and D a bounded
convex domain in X such that the metric space (D, kD) is strictly convex in
a linear sense. If f : D → D is kD-nonexpansive and has a fixed point, then
f has a fixed point in each nonempty, f-invariant, kD-closed and convex
subset C of D.

Finally, we consider holomorphic (kD-nonexpansive) retracts. By using
the Bruck method ([1], [2]) we can obtain the following theorem about
holomorphic (kD-nonexpansive) retracts.

Theorem 3.4. [7], [9]. Let D be a bounded strictly convex domain in a
reflexive Banach space X. If f : D → D is kD-nonexpansive (holomorphic),
then the set Fix (f) of fixed points of f is either empty or a kD-nonexpansive
(holomorphic) retract of D.

For a family of commuting holomorphic (kD-nonexpansive) mappings in
a locally uniformly linearly convex metric space (D, kD) we have a similar
result.

Theorem 3.5. [6]. Let D be a bounded convex domain in a reflexive Ba-
nach space X. Suppose that the metric space (D, kD) is locally uniformly lin-
early convex. Then, for every family F of holomorphic (kD-nonexpansive)
self-mappings of D with a nonempty common fixed point set Fix (F), this
set Fix (F) is a holomorphic (kD-nonexpansive) retract of D.

One of the main tools in the proof of the above theorem is the following
lemma.

Lemma 3.6. [6]. Let D be a bounded convex domain in a reflexive Banach
space X. Suppose that the metric space (D, kD) is locally linearly uniformly
convex. Let F be a family of holomorphic (kD-nonexpansive) self-mappings
of D with a nonempty common fixed point set Fix (F). If a nonempty kD-
closed convex set C ⊂ D is F-invariant, then C ∩ Fix (F) is nonempty.
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4. A common fixed point set of a family of holomorphic mappings
in the finite Cartesian product of domains. We begin this section
with the following generalization of Theorem 3.2

Theorem 4.1. Let Dj be a bounded convex domain in a reflexive Banach
space Xj, j = 1, ..., n. Suppose that each metric space

(
Dj , kDj

)
is locally

uniformly linearly convex, C is a nonempty, convex and kD-closed subset
of D =

∏n
j=1 Dj and f : C → C is a kD-nonexpansive mapping. Then the

following statements are equivalent:

(i) f has a fixed point;
(ii) There exists a point x in C such that the sequence of iterates {fm(x)}

is kD-bounded;
(iii) The sequence of iterates {fm(x)} is kD-bounded for all x in C;
(iv) There exists a kD-bounded approximating sequence {xm} for f.

Proof. To prove this theorem it is sufficient to apply the asymptotic center
method and the following facts:

1. Each nonempty, closed, convex, kD-bounded and f -invariant subset
C0 of C contains a kD-bounded approximating sequence for f ;

2. If {xn} is a kD-bounded approximating sequence for f , then

r(f(y), {xn}) ≤ r(y, {xn})

for each y ∈ C;
3. If x ∈ C has the kD-bounded sequence of iterates {fn(x)}, then

r(f(y), {fn(x)}) ≤ r(y, {fn(x)})

for each y ∈ C;
4. By Proposition 2.2 every kD-bounded sequence {xn} in D has an as-

ymptotic center with respect to any nonempty, kD-closed and convex
subset C of D and this asymptotic center is equal to

∏n
j=1 Aj ∩ C,

where each Aj is nonempty, closed and convex, and at least one
of Aj is a singleton. Hence we can apply Theorem 3.2. and the
mathematical induction with respect to n. �

Remark 4.1. Note that in the case of the open unit ball BH of a Hilbert
space H an analogous theorem is known [18], [19], [27], [30].

For our next considerations we need the following generalization of
Lemma 3.6.
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Lemma 4.2. Let Dj be a bounded convex domain in a reflexive Banach
space Xj, j = 1, ..., n. Suppose that each metric space

(
Dj , kDj

)
is lo-

cally uniformly linearly convex, C is a nonempty convex and kD-closed sub-
set of D =

∏n
j=1 Dj, and F a family of holomorphic (kD-nonexpansive)

self-mappings of D with a nonempty common fixed point set Fix (F). If a
nonempty kD-closed convex set C ⊂ D is F-invariant, then C ∩ Fix (F) is
nonempty.

Proof. For n = 1 see Lemma 3.6. Assume n ≥ 2. Let x0 be a common
fixed point of F and C a nonempty, F-invariant, kD-closed and convex
subset of D. If

d = distkD
(x0, C) = inf

x∈C
kD(x0, x),

then the set

C0 = C ∩BkD
(x0, d + 1) = C ∩ {x ∈ D : kD(x0, x) ≤ d + 1}

is nonempty, convex and weakly compact. Therefore, by the weak lower
semicontinuity of the Kobayashi distance kD and by the weak compactness
of kD-balls, there exists a point x1 ∈ C such that

kD(x0, x1) = d = distkD
(x0, C).

Hence the set

C̃ = {x ∈ C : kD(x0, x) = d = distkD
(x0, C)}

is nonempty and is equal to
∏n

j=1 Aj∩C̃, where each Aj is nonempty, closed
and convex, and at least one of Aj is a singleton. Choose f ∈ F . To get
f(C̃) ⊂ C̃ it is sufficient to observe that

kD(x0, f(x)) = kD(f(x0), f(x)) ≤ kD(x0, x).

for every x ∈ C̃. Hence we can apply Lemma 3.6 and the mathematical
induction with respect to n. This completes the proof. �

5. A structure of a common fixed point set of a family of com-
muting holomorphic mappings. In this section we state and prove the
main theorem of our paper.

Theorem 5.1. Let Dj be a bounded convex domain in a reflexive Banach
space Xj, j = 1, ..., n and D =

∏n
j=1 Dj. Suppose that each metric space(

Dj , kDj

)
is locally uniformly linearly convex. Then for every family F

of commuting holomorphic (kD-nonexpansive) self-mappings of D with a
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nonempty common fixed point set Fix (F), this set Fix (F) is a holomorphic
(kD-nonexpansive) retract of D.

Proof. We will use the Bruck method [2] (see also [1]). We prove this result
only in the holomorphic case. Our metric approach works equally well in
the kD-nonexpansive case.

Set

N = {h : h is a holomorphic self-mapping of D, Fix (F) ⊂ Fix (h)}

and choose x0 ∈ Fix (F) . Note that

N ⊂
∏
x∈D

{y ∈ D : kD (y, x0) ≤ kD (x, x0)} =
∏
x∈D

Cx.

If each Cx is equipped with the weak topology, then each Cx is weakly com-
pact and by Tychonoff’s Theorem ([15], [24]) the set

∏
x∈D Cx is compact

in the product topology. The set N is closed in this topology, i.e., in the
topology of coordinate pointwise weak convergence (see Proposition 3.1).
Preorder N by setting g ≤ h if and only if

kD (g (x) , w) ≤ kD (h (x) , w)

for all w ∈ Fix (F) and x ∈ D. Let us choose a descending chain {gλ}λ∈Λ

in (N ,≤) and let Λ′ be an ultranet in Λ. By the compactness of
∏

x∈D Cx,
a subnet {gλ′}λ′∈Λ′ is an ultranet which is pointwise weakly convergent and

w − lim
λ′

gλ′ (x) = g (x) , x ∈ D.

The mapping g is holomorphic (see Proposition 3.1). Since the Kobayashi
distance kD is weakly lower semicontinuous, the following inequalities are
valid for each w ∈ Fix (F) and x ∈ D:

kD (g (x) , w) ≤ lim
λ′

kD (gλ′ (x) , w) ≤ kD (gλ (x) , w) , λ ∈ Λ,

and this means that g is a lower bound of the chain. So Zorn’s Lemma
implies that N contains a minimal element r. Now, we need to show that r
maps D onto Fix (F). Suppose there exists y ∈ D such that r (y) /∈ Fix (F).
Since r ◦ r ≤ r and r is minimal,

kD (r (y0) , w) = kD (y0, w) > 0

for y0 = r (y) and all w ∈ Fix (F). Let

C = {(g ◦ r)(y0) : g ∈ N} .
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We see that C is kD-bounded, convex and weakly compact. The definition
of N implies that C is f -invariant for each f ∈ F and therefore, by Lemma
4.2, we have

C ∩ Fix (F) 6= ∅.

Let us choose an arbitrary point (g ◦ r) (y0) ∈ C ∩Fix (F). Then we get the
following contradiction:

0 = kD ((g ◦ r) (y0) , (g ◦ r) (y0)) = kD ((g ◦ r) (y0) , (g ◦ g ◦ r) (y0))

= kD (r (y0) , (g ◦ r) (y0)) > 0.

This completes the proof. �

Finally, we note that the assumption in the above theorem that the
common fixed point set Fix (F) is nonempty, is essential as the example
given in [29] shows.

6. The case of a finite commuting family of holomorphic mappings.
We begin with the following simple lemma.

Lemma 6.1. Let Dj be a bounded convex domain in a reflexive Banach
space Xj, j = 1, ..., n and D =

∏n
j=1 Dj. Suppose that each metric space(

Dj , kDj

)
is locally uniformly linearly convex. If f : D → D is a holomor-

phic (kD-nonexpansive) mapping with Fix (f) 6= ∅ and a nonempty set A
is invariant under f and is a holomorphic (kD-nonexpansive) retract of D,
then Fix (f) ∩ A is a nonempty holomorphic (kD-nonexpansive) retract of
D.

Proof. Let r be a holomorphic (kD-nonexpansive) retraction of D onto
A. Let us observe that f ◦ r : D −→ A, (f ◦ r)|A = f|A, Fix (f) 6= ∅, and
f : D → D is a holomorphic (kD-nonexpansive) mapping. Choose x0 ∈ A.
Then by Theorem 4.1 the sequence {f ◦ rm(x0)} = {fm(x0)} is kD-bounded
and again by Theorem 4.1 this implies that the set Fix (f ◦ r) is nonempty.
It is easy to see that

Fix (f) ∩A = Fix (f ◦ r)

and therefore by Theorem 5.1, Fix (f)∩A is a holomorphic (kD-nonexpan-
sive) retract. �

The above lemma implies the following theorem.

Theorem 6.2. Let Dj be a bounded convex domain in a reflexive Banach
space Xj, j = 1, ..., n and D =

∏n
j=1 Dj . Suppose that each metric space(

Dj , kDj

)
is locally uniformly linearly convex. Then, for every finite family

{f1, ..., fl} of commuting holomorphic (kD-nonexpansive) self-mappings of
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D a common fixed point set Fix (f1) ∩ · · · ∩ Fix (fm) is nonempty and a
holomorphic (kD-nonexpansive) retract of D.

Proof. It is sufficient to apply Theorem 5.1, Lemma 6.1 and the mathe-
matical induction with respect to l. �
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