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Note on random partitions of the segment

ABSTRACT. Let (X5) be a sequence of independent random variables uni-
formly distributed on the interval [0,1]. R, stands for the diameter of the
partition of [0, 1] by the random points X1, Xo,..., Xn—1. It was shown by
R. Jajte that the sequence (nR;,/logn) converges to 1 in probability. We
prove the convergence in p-th mean, p > 0, of the sequence (nR,/logn) to
1. We are also interested in the rate of convergence in probability of this
sequence. Almost sure convergence of (nRy /logn) to 1 is also obtained.

1. Introduction. Let (X,,) be a sequence of independent random variables
uniformly distributed on the interval [0, 1] and let R,, stand for the diameter
of the partition of [0, 1] by the random points X1, X5, ..., X;,_1. The distri-
bution of R,, is presented in [3]. It is easily seen that lim,,_ . R, = 0 with
probability 1, but it gives no information about the asymptotic behaviour of
the sequence (nR,). It is shown in [5] by the Laplace transform technique
that the sequence (nR,/logn) converges in probability to 1.

We prove that the sequence (nR,,/logn) converges to 1 in mean of order
p, p > 0. Hence we estimate the rate of convergence in probability of
this sequence. Moreover, we show that the sequence (nR,,/logn) converges
almost surely to 1.
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2. Preliminaries. We start with some moment properties of the diameter
R,. It is known (cf. [5]) that the r-th moment of R,, is equal to

rl
n(r) Tns

(1) ER; =
where .
ro__ _1\k—1 n —r
= ()
k=1
and (") (the notation from [7]) denotes the rising factorial, i.e.
e =z(x+1).. . (z+7r—1).

In [5] it was also shown that the quantity 7] can be written as

n
1_§
’Yn_ )

=1

1
'f': D ————— :2,37....
Tn 2. L

1<i1 <...<ip<n

S| =

(2)

The numbers v, in (2) are inconvenient for evaluations, so we represent
them in a different form.

Define a, = a, (a1,...,a,), ¥ = 1,2,...,n, the elementary symmetric
function of weight r, and h, = h, (a1,...,a,), 7 = 1,2,..., the so-called
homogeneous product sum symmetric function of weight r (cf. [6], pp. 47,
93) by the equations

1/(1 —oqx)(1 — agx)(1 — agx) ... (1 — anx)
=1/(1 — a1z + agz® + ... 4+ (—=1)"a,z")
=14+hz+ha’+...+ha"+....

For instance
ar(aq,...,on) =a1+as+ ...+ ay,
as(a,...,0n) = pas +jas + ...+ ap_10,
and

hi(ag,...,an) =a1 +as+...+ay,

ho(an,...,an) =af +a3+...+ a2+ (cag +a1az + ...+ an_1ay).
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The generating function of the sequence {~), » > 0} in (2) has the form

1
Z” “U-oa-i..a-z (W

Thus, we see that

rop L
(3) f}/n_hr(]-727”'7n)‘

It is known that the homogeneous product sum symmetric function
hy (aq, ..., ) satisfies

(4) rlhy (a1,...,00) = Cr(s1,...,8.), (cf. [6], p. 119),

where s; denotes the so-called power sum symmetric function given by

n
(5) s; = Z al,
j=1
and C, is the so-called cycle indicator of the symmetric group defined by

(6) Cr(s1,---,8r) = Z (ryan,...,a;)% syt .. 807,

ai+2as+...4+ra,=r
(cf. [6], p. 68), with the notation from [1]

r!

(7) (ryag,...,a.)" =

laigq12a2q5! .. rarq,!

The sum in (6) is over all non-negative integer values of a;, 1 <1i <r, such
that a1 + 2as + ...+ ra, = r, or equivalently, over all partitions of n. For
instance

C1(s1)
Ca(s1,52)
Cs(s1, 82, 53)
) =

Jr 59
+ 38182 + 283

Cy(s1, 82, 83,84) = sl + 65132 + 382 + 85153 + 64

(cf. [6], the table on p. 69).
Letting in (5)
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we write s, r > 1, as the harmonic number of order r

(8) HO) = Zl P>, (cf [4]).

i=1

n

We are interested in positive integer values of r in (8). If r = 1 then

(9) logn < HY <logn+1, n>1,
and for r > 2 we use the notation of the Riemann’s (-function
1
(r)=HY =) —.
=1

Combining (3), (4), (5) and (6) we deduce that the quantity v, can be
written as

1 ai Qr
(10) = 3 (ria1, ..., ar)* (H7§1>) (H;;)) .
" a142az+...+ra.=r
The following recurrence relation for ~, permits us to derive the recurrence

formula for the moments of R,,.

Lemma 1. The numbers {~], r > 0} satisfy the recurrence equation

1 T . ‘
—— Y HYy r=0,1,2...

7‘—|—1j:0

(11) nt=

and 79 = 1.

Proof. Knowing that the generating function of the sequence {7, » > 0}
is

- T T 1
Gn(z)Z;%Z Ta-(1-2) ... (1-2)"

we have -
G (2) = Z(r + 1)y tter
r=0
On the other hand,
G! (2) 101
n - — ] " — -
Gn(z) dz 08 Gn(2) —il-3
L AV
=252 ()
=1 7=0
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Therefore -
Gh(2) = Gn(2) > HYTV
=0
Or o0 oo T
Z(r + 1)yt = Z Z HUHDAr=i 1
r=0 r=0 j=0

From this equality we conclude that (11) holds. O
Now putting (10) into (1) we get

(12) BRI = — S (han...a) (HﬁLl))al...(Hg”)ar.

n(")
a1+2as+...4+ra,.=r
The recurrence relation for ER] is given by

Proposition 1. The moments ER;], satisfy the following recurrence rela-

tion
r ! 1 ) )
il _ r (G+1) pRr—i -
(13) ER" Zo(r—j)!(n+r—j)(j+1)H" ERT™, r=1,2,...,
]:
and

ER, = lH<1>.
n n

Proof. From (1) and (11) we have
(r+ D

r+1 __
ER™ = )
r! - - :
_ +1)r—
= oo 2 HT
§=0
" r! 1

_ G+1) ppr-i
) e R

which gives (13). O

3. L,—convergence. We see that by (1)

o ("B _ H,Q”'
logn logn

Taking the limit as n — oo and using (9) we get

(1)
n Hy
lim E<nR )zlim —1

n—00 logn n—oo logn

Now, taking into account that F (ﬁ){:;) — 1 as n — oo, it is sufficient to

2k
estimate F ("R“ - ”ER”> )

logn logn
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Proposition 2. For k € N and sufficiently large n

(14) E(R, — ER,)* < i(zlz)
where
2k
1 cm=% 3 ZEL___oagg) . gorp).

202q5! .. . pira,!
p=02as+...+pay=p 2 prrap

Proof. By the binomial formula

2k
2
E(R, — ER,)™" =" < r’“) (—1)**"ER;,(ER,)**".

r=0
Hence by (12)

2k
2k 1
E (Rn - ERn)Zk = Z ( )(_1)2k W

r=0

T e () () (0

a1+2as+...4ra,=r
Now, taking the sum with respect to a; we get

E (R — ER,) n% Z <2k> 1)2k- TTZT) (H(l))%ﬂ
XZ Z (ripy...,a.)" (H}P)p... (H}p)ar.

p=0p+2as+...+ra,.=r

Using the identity

2%k 1 2k 2k
Y alrp) =) alr,r—p)
r=0 p=0 p=0r=p
we obtain
2k 2k o r Y
(R = BRp)™ = -5 ZZ( ) S ()

p=0r=p

r—p Qr
X Z (r;r—p,...,a.)" (pr) <H7(f)>
r—p+2az+...+ra.=r

2k 2k 2% o oy
“m s () ()

p=0r=p

X Z (rir—py...,a.)" (Hfll))r_p... (H,g”)tlr.

2a9+...+ra,=p
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The sum
r—p Qr
Y (rir=p,..a) (H,(})) (Hp)
2a2+...4ra,=p
can be written as
T—p a
Yoo (mr=p,ay)” <H7§1)) (H,(P) ’
2a2+...+pap=p
as apy1 = ... =a, =0 and by (7)

(ryr—p,...,a.) = (r;r—p,...,ap,0,...,0)"
———

r—p
7!
(r—p)129zqay! .. pra,!
=(rr—op,...,ap)"
Therefore
2k 2k nr
_ _ 2k r (1)
By~ BR) = 55 () o ()

p=0r=p

X Z (ryr—p,...,ap)" (H,(f)) - (HT(LP)) '
2as+...+pap=p
2k—1

1 az ap
_ H@® (2) (p)
B n% Z ( > Z 202a5!. .. pray! (H” ) (H” )

2a2+...+pap=p

2k 2k rl "
XZ() (r—p)!n®

1 (Qk)' az azk
- H(2)) o (H(Qk)
+ n(2k) Z 2%2a5! . .. (2k)%2k agy! ( " " )
2a2+...+2ka2k:2k
= A(n) + B(n),
say, where

2k—1

2k—p
_ g
- n2k Z ( )
1 az ap
(2) (»)
% Z 202q,5] ... piray <H” ) (H” >

2a2+...+pap=p

2k 2k rl "
XZ() (r=p)n®)
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and

| (2h) a o) 02
B(n) = (2@)" . (HED)
n(2k)2a2+...—§a2k:2k 202q4! . .. (Qk)a%agk!

Taking into account that

T

§<2rk>(‘”%_r e

T=p

2k—p

n? 2k —
( Z < p> 1)2k—p—rnr(n+r+p)(2k—r—p)7

(% p)! n(ZH)

we see that
2k—1

= an Z n(2k) ( 7(11)>2k—p(22(11)p)!

(2k)! 2\ )\
8 Z 202q5! ... pira,! (H" ) (H" ) ’

2a2+...+pap=p

where

2k—p B
a(n) — Z <2k P> (_1)2k—p—rnr(n_’_r+p)(2k—r—p)'

r
r=0

2k—p—1

But the order of the quantity a(n) is less than or equal to n since the

coefficient of n?*~P in a(n) is equal to

zkz—:p (2/.@74— p> (—1)2k—P=7 = 0,

r=0
Thus |a(n)| < c¢(p)n?*~P~1, where ¢(p) is a positive constant independent
of n. Hence
2k—1

2 1 0\ 2P c(p)
nAm) < Y = (HD) T a

p=0
(2k)!
2)%2 .. ap
XD Gamagt gy @)
2az+...4+pap,=p

23:1 IOg”+1 )*FP e(p)

(2k —p)!

Y L

202q5! .. . pira,!
2ag+...+pap=p 2 p p
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as H" satisfies (9).
Then we get
lim n?*A(n) =0,

n—oo

so for n sufficiently large

2k—1

16 a*aml< S % N

202q45! .. . pora,!
p=0 2a2+...+pap=p 2 P ap

Moreover, we conclude that

lim n?*B(n)

n—oo

= Z (25)! C%2(2)...¢%%(2k).

20251 ... (2k)%2k agy!
2a2+...+2ka2k:2k 2 ( ) 2k

(17)

Therefore by (16) and (17) we obtain (14). O

Remark 1. The properties of the moments of R,, allow us to give estimates
in the cases k = 1 and k = 2 valid for all n € N. Namely, we have

(18) o’R, < —
and
(19) E(R, — ER,)* <
respectively, e =2,71....
Proof. For the variance of R,, we have

0’R, = ER? — (ER,)*

Using the recurrence relation for FR], and (12) we get

1 1 > ((2) w2
Rp=—— HO (g} <
R nn+1)""  n%(n+1) < " ) ~ n?  6n?

To prove the second inequality we also use the recurrence relation for ER],
and formula (12). By the binomial formula it follows

E(R, — ER,)* =) <i> (-1)*"ER"(ER,)*".
r=0
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Using the formula for the r-th moment of R,we get

3n N
B(R, = BR)' < Sy v a7y ()
3 @)
M n(n+1)(n+2)(n+3) (H” )
- 0 H®,

nn+1)(n+2)(n+3) "
Hence by (9)

W E(R, — ERy)* <3 (W + @)+ 2((4)) .

4
The function f(z) = %, z > 1, attains the maximum value 1% for
2

r = e. Moreover, note that ((2) = % and ((4) =
yields the desired result. [J

4 . . .
59> Which immediately

The following theorem is an easy consequence of Proposition 2.

Theorem 1. Forp >0

nR, L,
— 1, n—oo.

logn
By Markov’s inequality and Proposition 2 we get the rate of convergence
in probability of the sequence (nR,/logn) to 1 stated in [5].
Theorem 2. Let k € N. Then for any given € > 0

p “ nRk,
logn

C(k)

b
2k 1og?* n

(20) —1‘ 25] <

for sufficiently large n, where C(k) is given by (15).

Proof. From Markov’s inequality it follows that

(21)

p U nR, nER,

an ok
>el<—— E(R, - ER,)*.

logn  logn £2k 1og?k

Hence by (21) and (14) we immediately get (20). O

Remark 2. Using Remark 1 we have

2
P U nR, nER, > g] < T

logn  logn = 6e2log®n
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T T etlog?n \20 €2

and

p ‘an 7 nER,,
logn logn

Remark 3. For any given € > 0

i 1, ‘ _ nER,
n logn logn

_8]<Cznlog n >

where C is a positive constant not depending on n.

4. Almost sure convergence. Following an idea of Etemadi (cf. [2]) we
prove that the sequence (nR,,/logn) converges to unity almost surely.
Theorem 3.

nR’I’L a.s.
— 1, n—oo.

22
(22) logn

Proof. Let ¢ > 0, > 1 and m,, = [a™] for n > 1, where

[x] = the smallest integer greater than or equal to x
(the notation from [4]),
i.e. [z] denotes the ceiling function of z. In what follows, C' denotes a finite

positive constant that can vary from step to step.
Then using Theorem 2, for all £ € N

ip [ Mp R,  mnERpy,

log m,, log m,

ZE} <Czlog My

n=1

n=1

The Borel-Cantelli lemma implies

mann a.s.
— =1, n—oo.

log my,
Let p(n) be such that my,) < n < myey41, for n > 1. Since R, as a
function n is non-increasing, we have

m R,, .

lim inf 72 > fim inf 2 e Mem)

n—o0 logn n—oo logmp(n)+1 Mp(n)+1
1 mp(n)+1Rmp(n)+l l

> — lim = —.
an—oo  logmymn)41 «
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Similarly, we can get an analogous relation for the upper limit, namely

R, My () 12 m
lim sup " < limsup p(n) Fmpn) Mp(n)+1
n—oo 108MN n—oo lOg Mp(n) Mep(n)
<o lim TR _

n—oo log Mp(n)

Since o > 1 was arbitrary, letting o — 1 we obtain (22). O
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