ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LVI, 6

SECTIO A

2002

WŁODZIMIERZ M. MIKULSKI

The natural affinors on dual *r*-jet prolongations of bundles of 2-forms

ABSTRACT. Let $J^r(\Lambda^2 T^*)M$ be the *r*-jet prolongation of $\Lambda^2 T^*M$ of an *n*dimensional manifold M. For natural numbers r and $n \geq 3$ all natural affinors on $(J^r(\Lambda^2 T^*)M)^*$ are the constant multiples of the identity affinor only.

0. Let us recall the following definitions (see e.g. [4]).

Let $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a functor from the category $\mathcal{M}f_n$ of all *n*dimensional manifolds and their local diffeomorphisms into the category $\mathcal{F}\mathcal{M}$ of fibered manifolds. Let *B* be the base functor from the category of fibered manifolds to the category of manifolds.

A natural bundle over n-manifolds is a functor F satisfying $B \circ F = \text{id}$ and the localization condition: for every inclusion of an open subset $i_U : U \to M$, FU is the restriction $p_M^{-1}(U)$ of $p_M : FM \to M$ over U and Fi_U is the inclusion $p_M^{-1}(U) \to FM$.

An affinor Q on a manifold M is a tensor type (1, 1), i.e. a linear morphism $Q: TM \to TM$ over id_M .

¹⁹⁹¹ Mathematics Subject Classification. 58A20, 53A55.

Key words and phrases. natural bundles, natural transformations, natural affinors.

A natural affinor on a natural bundle F is a system of affinors Q: $TFM \rightarrow TFM$ on FM for every *n*-manifold M satisfying $TFf \circ Q = Q \circ TFf$ for every local diffeomorphism $f: M \rightarrow N$.

A connection on a fibre bundle Y is an affinor $\Gamma : TY \to TY$ on Y such that $\Gamma \circ \Gamma = \Gamma$ and $im(\Gamma) = VY$, the vertical bundle of Y.

A natural connection on a natural bundle F is a system of connections $\Gamma: TFM \to TFM$ on FM for every *n*-manifold M which is (additionally) a natural affinor on F.

In [5] it was shown how natural affinors Q on some natural bundles FM can be used to study the torsion $\tau = [\Gamma, Q]$ of connections Γ on the same bundles FM. That is why natural affinors have been classified in many papers, [1]-[3], [6]-[11].

In this paper one considers the natural bundle $F = (J^r(\Lambda^2 T^*))^*$ which associates to every *n*-manifold M the vector bundle $(J^r(\Lambda^2 T^*))^*M = (J^r(\Lambda^2 T^*)M)^*$, where $J^r(\Lambda^2 T^*)M = \{j_x^r \omega \mid \omega \text{ is a 2-form on } M, x \in M\}$, and to every embedding $\varphi : M \to N$ of *n*-manifolds the induced vector bundle mapping $(J^r(\Lambda^2 T^*))^*\varphi = (J^r(\Lambda^2 T^*)\varphi^{-1})^* : (J^r(\Lambda^2 T^*)M)^* \to (J^r(\Lambda^2 T^*)N)^*$, where the map $J^r(\Lambda^2 T^*)\varphi : J^r(\Lambda^2 T^*)M \to J^r(\Lambda^2 T^*)N$ is given by $j_x^r \omega \to j_{\varphi(x)}^r(\varphi_*\omega)$.

For integers $r \geq 1$ and $n \geq 3$ we classify all natural affinors on $(J^r(\Lambda^2 T^*))^* M$. We prove that every natural affinor Q on $(J^r(\Lambda^2 T^*))^* M$ is proportional to the identity affinor.

We note that the classification of natural affinors on $(J^r T^* M)^*$ is different. In [9] we proved that for $n \ge 2$ the vector space of all natural affinors on $(J^r T^* M)^*$ is 2-dimensional.

The above result shows that "torsion" of a connection Γ on $(J^r(\Lambda^2 T^*))^* M$ makes no sense because of $[\Gamma, id] = 0$.

The above result also shows that for integers $r \ge 1$ and $n \ge 3$ there are no natural connections on $(J^r(\Lambda^2 T^*))^*$ over *n*-manifolds.

The usual coordinates on \mathbb{R}^n are denoted by x^i and $\partial_i = \frac{\partial}{\partial x^i}$, i = 1, ..., n. All manifolds and maps are assumed to be of class C^{∞} .

1. We start with the classification of all linear natural transformations $A: T(J^r(\Lambda^2 T^*))^* M \to (J^r(\Lambda^2 T^*))^* M$ in the sense of [4] over *n*-manifolds M.

A natural transformation $T(J^r(\Lambda^2 T^*))^* \to (J^r(\Lambda^2 T^*))^*$ over n-manifolds is a system of fibered maps $A: T(J^r(\Lambda^2 T^*))^*M \to (J^r(\Lambda^2 T^*))^*M$ over id_M for every n-manifold M satisfying $(J^r(\Lambda^2 T^*))^*f \circ A = A \circ T(J^r(\Lambda^2 T^*))^*f$ for every local diffeo. $f: M \to N$. The linearity means that A gives a linear map $T_y(J^r(\Lambda^2 T^*))^*M \to (J^r(\Lambda^2 T^*))^*M$ for any $y \in (J^r(\Lambda^2 T^*))^*M$, $x \in M$. **Proposition 1.** If $n \geq 3$ and r are natural numbers then every linear natural transformation $A: T(J^r(\Lambda^2 T^*))^* \to (J^r(\Lambda^2 T^*))^*$ over n-manifolds is 0.

Proof. Every element from the fibre $(J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$ is a linear combination of the $(j_0^r(x^{\alpha} dx^i \wedge dx^j))^*$ for all $\alpha \in (\mathbf{N} \cup \{0\})^n$ with $|\alpha| \leq r$ and i, j = 1, ..., n, i < j, where the $(j_0^r(x^{\alpha} dx^i \wedge dx^j))^*$ form the basis dual to the $j_0^r(x^{\alpha} dx^i \wedge dx^j) \in (J^r(\Lambda^2 T^*))_0 \mathbf{R}^n$ for α and i, j as beside.

Consider a linear natural transformation $A: T(J^r(\Lambda^2 T^*))^* \to (J^r(\Lambda^2 T^*))^*$ over *n*-manifolds.

Clearly, A is uniquely determined by the values $\langle A(u), j_0^r(x^{\alpha}dx^i \wedge dx^j) \rangle \in \mathbf{R}$ for $u \in (T(J^r(\Lambda^2 T^*))^* \mathbf{R}^n)_0 \cong \mathbf{R}^n \times (V(J^r(\Lambda^2 T^*))^* \mathbf{R}^n)_0 \cong \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^$

Since A is invariant with respect to the coordinate permutations, A is uniquely determined by the values $\langle A(u), j_0^r(x^{\alpha}dx^1 \wedge dx^2) \rangle$, where u and α are as above.

If $|\alpha| \geq 1$, then the local diffeomorphisms $\varphi_{\alpha} = (x^1, x^2, x^3 + x^{\alpha}, x^4, ..., x^n)^{-1}$ sends $j_0^r (x^3 dx^1 \wedge dx^2)$ into $j_0^r (x^3 dx^1 \wedge dx^2) + j_0^r (x^{\alpha} dx^1 \wedge dx^2)$. Then by the invariance of A with respect to the φ 's, A is uniquely determined by the values $\langle A(u), j_0^r (x^3 dx^1 \wedge dx^2) \rangle \in \mathbf{R}$ and $\langle A(u), j_0^r (dx^1 \wedge dx^2) \rangle \in \mathbf{R}$, where $u \in (T(J^r (\Lambda^2 T^*))^* \mathbf{R}^n)_0 = \mathbf{R}^n \times (J^r (\Lambda^2 T^*))^* \mathbf{R}^n \times (J^r (\Lambda^2 T^*))^* \mathbf{R}^n$.

The proof of Proposition 1 will be complete after proving that $\langle A(u), j_0^r(dx^1 \wedge dx^2) \rangle = 0$ and $\langle A(u), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = 0$ for any $u \in (T(J^r(\Lambda^2 T^*))^* \mathbf{R}^n)_0 \cong \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$. We will prove these conditions in Lemmas 1 - 6.

At first we study the values $\langle A(u), j_0^r(dx^1 \wedge dx^2) \rangle$.

Lemma 1. There exist the numbers $\lambda, \mu, \nu \in \mathbf{R}$ such that

(1)
$$\langle A(u), j_0^r(dx^1 \wedge dx^2) \rangle = \lambda u_1^1 u_1^2 + \mu u_{2,(0),1,2} + \nu u_{3,(0),1,2}$$

for every $u = (u_1, u_2, u_3) \in \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$, where $u_1 = (u_1^1, ..., u_1^n) \in \mathbf{R}^n$, $u_{\tau,\alpha,i,j}$ is the coefficient of $u_\tau \in (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$ on $(j_0^r(x^\alpha dx^i \wedge dx^j))^*$, $\tau = 2, 3, (0) = (0, ..., 0) \in (\mathbf{N} \cup \{0\})^n$.

Proof of Lemma 1. By the naturality of A with respect to the homotheties $a_t = (t^1 x^1, ..., t^n x^n)$ for $t = (t^1, ..., t^n) \in \mathbf{R}^n_+$,

$$\langle A(T(J^r(\Lambda^2 T^*))^*(a_t)(u)), j_0^r(dx^1 \wedge dx^2) \rangle = t^1 t^2 \langle A(u), j_0^r(dx^1 \wedge dx^2) \rangle$$

for any $t = (t^1, ..., t^n) \in \mathbf{R}^n_+$. For $t \in \mathbf{R}^n$, i, j = 1, ..., n, i < j and $\alpha \in (\mathbf{N} \cup \{0\})^n$ we have $T(J^r(\Lambda^2 T^*))^*(a_t)((j_0^r(x^\alpha dx^i \wedge dx^j))^*) = t^{\alpha+e_i+e_j}(j_0^r(x^\alpha dx^i \wedge dx^j))^*$. Then the lemma follows from the homogeneous function theorem, [4]. \Box

Lemma 2. We have $\lambda = \mu = \nu = 0$.

Proof of Lemma 2. Since $\langle A(u_1, u_2, u_3), j_0^r(dx^1 \wedge dx^2) \rangle$ is linear in (u_1, u_3) for u_2 , we have $\lambda = \mu = 0$. Then (in particular) we have

(2)
$$\langle A(\partial_1^C|_w), j_0^r(dx^1 \wedge dx^2) \rangle = \langle A(e_1, w, 0), j_0^r(dx^1 \wedge dx^2) \rangle = 0$$

for $w \in (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$, where ()^C is the complete lift.

To prove $\nu = 0$ it is sufficient to show that

$$\langle A(0,0,(j_0^r(dx^1 \wedge dx^2))^*), j_0^r(dx^1 \wedge dx^2) \rangle = 0$$

But we have

$$(3) \qquad 0 = \langle A(((x^1)^{r+1}\partial_1)^C_{|w}), j_0^r(dx^1 \wedge dx^2) \rangle = (r+1) \langle A(0, w, (j_0^r(dx^1 \wedge dx^2))^* + \dots), j_0^r(dx^1 \wedge dx^2) \rangle = (r+1) \langle A(0, 0, (j_0^r(dx^1 \wedge dx^2))^*), j_0^r(dx^1 \wedge dx^2) \rangle ,$$

where $w = (j_0^r((x^1)^r dx^1 \wedge dx^2))^*$ and the dots mean the linear combination of the $(j_0^r(x^\alpha dx^i \wedge dx^j))^*$ with $(j_0^r(x^\alpha dx^i \wedge dx^j))^* \neq (j_0^r(dx^1 \wedge dx^2))^*$.

Let us explain (3).

Let φ_t be the flow of $(x^1)^{r+1}\partial_1$. We have

$$\begin{split} \langle ((x^{1})^{r+1}\partial_{1})_{|w}^{C}, j_{0}^{r}(dx^{1} \wedge dx^{2}) \rangle \\ &= \langle \frac{d}{dt}_{|t=0} (J^{r}(\Lambda^{2}T^{*}))_{0}^{*}(\varphi_{t})(w), j_{0}^{r}(dx^{1} \wedge dx^{2}) \rangle \\ &= \frac{d}{dt}_{|t=0} \langle (J^{r}(\Lambda^{2}T^{*}))_{0}^{*}(\varphi_{t})(w), j_{0}^{r}(dx^{1} \wedge dx^{2}) \rangle \\ &= \frac{d}{dt}_{|t=0} \langle w, j_{0}^{r}((\varphi_{-t})_{*}(dx^{1} \wedge dx^{2})) \rangle \\ &= \langle w, j_{0}^{r}(\frac{d}{dt}_{|t=0}(\varphi_{-t})_{*}(dx^{1} \wedge dx^{2})) \rangle \\ &= \langle w, j_{0}^{r}(L_{(x^{1})^{r+1}\partial_{1}}(dx^{1} \wedge dx^{2})) \rangle \\ &= (r+1) \langle w, j_{0}^{r}((x^{1})^{r}dx^{1} \wedge dx^{2}) \rangle = r+1 \; . \end{split}$$

Then $((x^1)^{r+1}\partial_1)^C_{|w} = (r+1)(j^r_0(dx^1 \wedge dx^2))^* + \dots$ under the canonical isomorphism $V_w((J^r(\Lambda^2 T^*))^* \mathbf{R}^n) = (J^r(\Lambda^2 T^*))^*_0 \mathbf{R}^n$, i.e. $\langle A(((x^1)^{r+1}\partial_1)^C_{|w}), j^r_0(dx^1 \wedge dx^2) \rangle = (r+1) \langle A(0,w,(j^r_0(dx^1 \wedge dx^2))^* + \dots), j^r_0(dx^1 \wedge dx^2) \rangle.$

The equality $(r+1)\langle A(0,w,(j_0^r(dx^1 \wedge dx^2))^* + \dots), j_0^r(dx^1 \wedge dx^2) \rangle = (r+1)\langle A(0,0,(j_0^r(dx^1 \wedge dx^2))^*), j_0^r(dx^1 \wedge dx^2) \rangle$ is clear because of (1) and $\mu = 0$.

We can prove the equality $0 = \langle A(((x^1)^{r+1}\partial_1)_{|w}^C), j_0^r(dx^1 \wedge dx^2) \rangle$ as follows. Vector fields $\partial_1 + (x^1)^{r+1}\partial_1$ and ∂_1 have the same *r*-jets at 0. Then by [11], there exists a diffeomorphism $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ such that $j_0^{r+1}\varphi = \mathrm{id}$ and $\varphi_*\partial_1 = \partial_1 + (x^1)^{r+1}\partial_1$ near 0. Clearly, φ preserves $j_0^r(dx^1 \wedge dx^2)$ because of the jet argument. Then, by the naturality of A with respect to φ , it follows from (2) that

$$\langle A((\partial_1 + (x^1)^{r+1}\partial_1)^C|_w), j_0^r(dx^1 \wedge dx^2) \rangle = 0$$

for any $w \in (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$. Now, applying the linearity of A, we end the proof of the equality. \Box

Now, we study the values $\langle A(u), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = 0.$

Lemma 3. There exist the numbers $a, b, c, e, f, g \in \mathbf{R}$ such that

(4)
$$\langle A(u), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = a u_1^1 u_{2,(0),2,3} + b u_1^2 u_{2,(0),1,3} \\ + c u_1^3 u_{2,(0),1,2} + e u_{3,e_1,2,3} + f u_{3,e_2,1,3} + g u_{3,e_3,1,2}$$

for any $u = (u_1, u_2, u_3)$, where $u_1 = (u_1^1, ..., u_1^n) \in \mathbf{R}^n$, $u_2, u_3 \in (J^r(T^* \land T^*))_0^* \mathbf{R}^n$, $u_{\tau,\alpha,i,j}$ is as in Lemma 1 and $e_i = (0, ..., 1, 0, ..., 0) \in (\mathbf{N} \cup \{0\})^n$, 1 in i-position.

Proof of Lemma 3. The proof is similar to the proof of Lemma 1. We apply the naturality of A with respect to the homotheties $a_t = (t^1x^1, ..., t^nx^n)$ for $t = (t^1, ..., t^n) \in \mathbf{R}^n_+$, the homogeneous function theorem and the linearity of A. \Box

To prove g = f = e = a = b = c = 0 we shall use the following

Lemma 4. For every $u \in (T(J^r(\Lambda^2 T^*))^* \mathbf{R}^n)_0$ we have

(5)
$$\langle A(u), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = \langle A(u'), j_0^r(x^3 dx^1 \wedge dx^2) \rangle ,$$

where u' is the image of u by $(x^2, x^3, x^1) \times \operatorname{id}_{\mathbf{R}^{n-3}}$.

Proof of Lemma 4. We consider $u \in (T(J^r(\Lambda^2 T^*))^* \mathbf{R}^n)_0$. Let \tilde{u} be the image of u by $(x^1 + x^1 x^3, x^2, ..., x^n)$. By Lemma 2 we have $\lambda = \mu = \nu = 0$, i.e. $\langle A(\tilde{u}), j_0^r(dx^1 \wedge dx^2) \rangle = \langle A(u), j_0^r(dx^1 \wedge dx^2) \rangle = 0$. Then by the invariance of A with respect to $(x^1 + x^1 x^3, x^2, ..., x^n)^{-1}$ we get

$$0 = \langle A(u), j_0^r(dx^1 \wedge dx^2) \rangle + \langle A(u), j_0^r(x^3 dx^1 \wedge dx^2) \rangle - \langle A(u), j_0^r(x^1 dx^2 \wedge dx^3) \rangle$$

as $(x^1+x^1x^3, x^2, ..., x^n)^{-1}$ sends $j_0^r(dx^1 \wedge dx^2)$ into $j_0^r(dx^1 \wedge dx^2) + j_0^r(x^3dx^1 \wedge dx^2)$ $dx^2) - j_0^r(x^1dx^2 \wedge dx^3)$. Hence $\langle A(u), j_0^r(x^3dx^1 \wedge dx^2) \rangle = \langle A(u), j_0^r(x^1dx^2 \wedge dx^3) \rangle$. Therefore we have (5) because $(x^2, x^3, x^1) \times \operatorname{id}_{\mathbf{R}^{n-3}}$ sends $j_0^r(x^1dx^2 \wedge dx^3)$ into $j_0^r(x^3dx^1 \wedge dx^2)$. \Box **Lemma 5.** We have g = f = e = 0.

Proof of Lemma 5. We have to show

$$\begin{split} \langle A(0,0,(j_0^r(x^3dx^1 \wedge dx^2))^*), j_0^r(x^3dx^1 \wedge dx^2) \rangle \\ &= \langle A(0,0,-(j_0^r(x^2dx^1 \wedge dx^3))^*), j_0^r(x^3dx^1 \wedge dx^2) \rangle \\ &= \langle A(0,0,(j_0^r(x^1dx^2 \wedge dx^3))^*), j_0^r(x^3dx^1 \wedge dx^2) \rangle = 0. \end{split}$$

We see that $(x^2, x^3, x^1) \times \operatorname{id}_{\mathbf{R}^{n-3}}$ sends $(j_0^r(x^3dx^1 \wedge dx^2))^*$ into $-(j_0^r(x^2dx^1 \wedge dx^3))^*$ and $-(j_0^r(x^2dx^1 \wedge dx^3))^*$ into $(j_0^r(x^1dx^2 \wedge dx^3))^*$. Then due to (5) it suffices to verify that $\langle A(0, 0, (j_0^r(x^3dx^1 \wedge dx^2))^*), j_0^r(x^3dx^1 \wedge dx^2) \rangle = 0$. But we have

(6)

$$0 = \langle A(((x^{1})^{r}\partial_{1})^{C}_{|w}), j^{r}_{0}(x^{3}dx^{1} \wedge dx^{2}) \rangle$$

$$= r \langle A(0, w, (j^{r}_{0}(x^{3}dx^{1} \wedge dx^{2}))^{*}), j^{r}_{0}(x^{3}dx^{1} \wedge dx^{2}) \rangle$$

$$= r \langle A(0, 0, (j^{r}_{0}(x^{3}dx^{1} \wedge dx^{2}))^{*}), j^{r}_{0}(x^{3}dx^{1} \wedge dx^{2}) \rangle,$$

where $w = (j_0^r (x^3 (x^1)^{r-1} dx^1 \wedge dx^2))^* \in (J^r (\Lambda^2 T^*))_0^* \mathbf{R}^n$. Let us explain (6).

That $\langle A(0, w, (j_0^r(x^3dx^1 \wedge dx^2))^*), j_0^r(x^3dx^1 \wedge dx^2) \rangle = \langle A(0, 0, (j_0^r(x^3dx^1 \wedge dx^2))^*), j_0^r(x^3dx^1 \wedge dx^2) \rangle$ is clear, see (4).

We can prove $0 = \langle A(((x^1)^r \partial_1)_{|w}^C), j_0^r(x^3 dx^1 \wedge dx^2) \rangle$ as follows. Vector fields $\partial_1 + (x^1)^r \partial_1$ and ∂_1 have the same r-1-jets at 0. Then by [11] there exists a diffeomorphism $\varphi = \varphi_1 \times \operatorname{id}_{\mathbf{R}^{n-1}} : \mathbf{R}^n = \mathbf{R} \times \mathbf{R}^{n-1} \to \mathbf{R}^n = \mathbf{R} \times \mathbf{R}^{n-1}$ such that $\varphi_1 : \mathbf{R} \to \mathbf{R}, j_0^r \varphi = \operatorname{id}$ and $\varphi_* \partial_1 = \partial_1 + (x^1)^r \partial_1$ near 0. Let φ^{-1} send w into \tilde{w} . Then \tilde{w} is the linear combination of the $(j_0^r(x^\alpha dx^i \wedge dx^j))^* \in (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n$ for $|\alpha| \ge 1$ and i, j = 1, ..., n with i < j. (For, $\langle \tilde{w}, j_0^r(dx^i \wedge dx^j) \rangle = \langle w, j_0^r(d(x^i \circ \varphi^{-1}) \wedge d(x^j \circ \varphi^{-1})) \rangle = 0$.) Then, by (4), $\langle A(\partial_1^C|_{\tilde{w}}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = \langle A(e_1, \tilde{w}, 0), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = 0$. Clearly, φ preserves $j_0^r(x^3 dx^1 \wedge dx^2)$. Then, using the naturality of A with respect to φ we get $\langle A((\partial_1 + (x^1)^r \partial_1)^C|_w), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = 0$. Now, applying the linearity of A, we end the proof of equality.

Using the flow argument one can prove $\langle A(((x^1)^r \partial_1)^C_{|w}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = r \langle A(0, w, (j_0^r(x^3 dx^1 \wedge dx^2))^*), j_0^r(x^3 dx^1 \wedge dx^2) \rangle$ as follows. For any $\alpha \in (\mathbf{N} \cup \{0\})^n$ with $|\alpha| \leq r$ and any i, j = 1, ..., n with i < j we have

$$\begin{aligned} \langle ((x^1)^r \partial_1)^C |_w, j_0^r (x^\alpha dx^i \wedge dx^j) \rangle &= \langle w, j_0^r (L_{(x^1)^r \partial_1} x^\alpha dx^i \wedge dx^j) \rangle \\ &= \langle w, \alpha_1 j_0^r ((x^1)^{r-1} x^\alpha dx^i \wedge dx^j) \rangle \\ &+ \langle w, j_0^r (x^\alpha \delta_1^i r(x^1)^{r-1} dx^1 \wedge dx^j) \rangle \end{aligned}$$

Since $w = (j_0^r (x^3 (x^1)^{r-1} dx^1 \wedge dx^2))^*$, the sum is equal to r if $\alpha = e_3$ and (i, j) = (1, 2) and equal to 0 in the other cases. Hence $((x^1)^r \partial_1)^C|_w = r(j_0^r (x^3 dx^1 \wedge dx^2))^* \in V_w (J^r (\Lambda^2 T^*))^* \mathbf{R}^n$. This ends the proof of $\langle A(((x^1)^r \partial_1)_{|_w}^C), j_0^r (x^3 dx^1 \wedge dx^2) \rangle = r \langle A(0, w, (j_0^r (x^3 dx^1 \wedge dx^2))^*), j_0^r (x^3 dx^1 \wedge dx^2) \rangle$. \Box

Lemma 6. We have a = b = c = 0.

Proof of Lemma 6. By (5), similarly as for e = f = g = 0, it is sufficient to prove that c = 0, i.e. $\langle A(\partial_3^C|_{(j_0^r(dx^1 \wedge dx^2))^*}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = 0$. But we have

(7)

$$0 = \langle A(\partial_3^C | (j_0^r((x^1)^r dx^1 \wedge dx^2))^*), j_0^r(x^3 dx^1 \wedge dx^2) \rangle$$

$$= \langle A(\partial_3^C | (j_0^r(dx^1 \wedge dx^2))^* + ...), j_0^r(x^3 dx^1 \wedge dx^2) \rangle$$

$$= \langle A(\partial_3^C | (j_0^r(dx^1 \wedge dx^2))^*), j_0^r(x^3 dx^1 \wedge dx^2) \rangle ,$$

where the dots denote the linear combination of the $(j_0^r(x^{\alpha}dx^i \wedge dx^j))^* \neq (j_0^r(dx^1 \wedge dx^2))^*$ for $|\alpha| \leq r$ and i, j = 1, ..., n, i < j.

Let us explain (7).

The equality $0 = \langle A(\partial_3^C|_{(j_0^r((x^1)^r dx^1 \wedge dx^2))^*}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle$ follows from (4). Similarly, from (4) we obtain $\langle A(\partial_3^C|_{(j_0^r(dx^1 \wedge dx^2))^*+...}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = \langle A(\partial_3^C|_{(j_0^r(dx^1 \wedge dx^2))^*}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle.$

We consider the local diffeomorphism $\varphi = (x^1 + \frac{1}{r+1}(x^1)^{r+1}, x^2, ..., x^n)^{-1}$. We see that φ^{-1} preserves $j_0^r(x^3dx^1 \wedge dx^2)$ and ∂_3 . Moreover, we see that φ^{-1} sends $(j_0^r((x^1)^r dx^1 \wedge dx^2))^*$ into $(j_0^r(dx^1 \wedge dx^2))^* + ...$, where the dots are as above, because of $\langle (j_0^r((x^1)^r dx^1 \wedge dx^2))^*, j_0^r(\varphi_*(dx^1 \wedge dx^2)) \rangle = 1$. Now, by the invariance of A with respect to φ^{-1} we get $\langle A(\partial_3^C_{|(j_0^r((x^1)^r dx^1 \wedge dx^2))^*}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle = \langle A(\partial_3^C_{|(j_0^r(dx^1 \wedge dx^2))^* + ...}), j_0^r(x^3 dx^1 \wedge dx^2) \rangle$. \Box

The proof of Proposition 1 is complete. \Box

2. The tangent map $T\pi : T(J^r(\Lambda^2 T^*))^*M \to TM$ of the bundle projection $\pi : (J^r(\Lambda^2 T^*))^*M \to M$ defines a linear natural transformation $T\pi : T(J^r(\Lambda^2 T^*))^* \to T$ over *n*-manifolds. (The definition of linear natural transformations $T(J^r(\Lambda^2 T^*))^* \to T$ over *n*-manifolds is similar to the one of Section 1.)

Proposition 2. If r and $n \ge 2$ are natural numbers, then every linear natural transformation $B: T(J^r(\Lambda^2 T^*))^* \to T$ over n-manifolds is proportional to $T\pi$.

Proof. Due to similar arguments as in the proof of Proposition 1, *B* is uniquely determined by the values $\langle B(u), d_0 x^1 \rangle$ for $u \in (T(J^r(\Lambda^2 T^*))^* \mathbf{R}^n)_0$ $\tilde{=} \mathbf{R}^n \times (J^r(\Lambda^2 T^*))^*_0 \mathbf{R}^n \times (J^r(\Lambda^2 T^*))^*_0 \mathbf{R}^n$.

By the naturality of B with respect to the homotheties $(t^1x^1, ..., t^nx^n)$ for $t \in \mathbf{R}^n_+$ and the homogeneous function theorem we deduce that $\langle B(.), dx^1 \rangle = x^1 \circ p_1$, where $p_1 : \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n \times (J^r(\Lambda^2 T^*))_0^* \mathbf{R}^n \to \mathbf{R}^n$ is the canonical projection.

Then the vector space of all B as above is 1-dimensional. \Box

3. The main result of this paper is the following theorem.

Theorem 1. If $n \ge 3$ and r are natural numbers, then every natural affinor Q on $(J^r(\Lambda^2 T^*))^*$ over n-manifolds is a constant multiple of id.

Proof. Let $Q: T(J^r(\Lambda^2 T^*))^* M \to T(J^r(\Lambda^2 T^*))^* M$ be a natural affinor on $(J^r(\Lambda^2 T^*))^*$ over *n*-manifolds. Then $B = T\pi \circ Q: T(J^r(\Lambda^2 T^*))^* \to T$ is a linear natural transformation. By Proposition 2, $B = T\pi \circ Q = \lambda T\pi$ for some λ . Clearly, $T\pi \circ id = T\pi$. Then $Q - \lambda id$ is an affinor of vertical type. Now, applying Proposition 1 we deduce that $Q - \lambda id$ is the zero affinor. \Box

From Theorem 1 we obtain immediately

Corollary 1. If $n \ge 3$ and r are natural numbers, then there is no natural connection on $(J^r(\Lambda^2 T^*))^*$ over n-manifolds.

References

- Doupovec, M., Natural transformations between TTT*M and TT*TM, Czech Math. J. 43(118) (1993), 599–613.
- [2] Doupovec, M., I. Kolář, Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205–209.
- [3] Gancarzewicz, J., I. Kolář, Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95–100.
- Kolář I., P.W. Michor and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
- [5] Kolář, I., M. Modugno, Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2 (1992), 1–16.
- [6] Kurek, J., Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175–180.
- [7] Mikulski, W.M., Natural affinors on r-jet prolongation of the tangent bundle, Arch. Math. (Brno) 34(2) (1998), 321–328.
- [8] Mikulski, W.M., The natural affinors on $\otimes^k T^{(r)}$, Note di Matematica **19(2)** (1999), 269–274.
- [9] Mikulski, W.M., The natural affinors on $(J^{r}T^{*})^{*}$, Arch. Math. (Brno) **36(4)** (2000), 261–267.
- [10] Mikulski, W.M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Roma 21(VII) (2001), 339–349.
- [11] Zajtz, A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169–178.

Institute of Mathematics Jagiellonian University Kraków, Reymonta 4, Poland e-mail: mikulski@im.uj.edu.pl received February 7, 2001