UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVI, 6
SECTIO A 2002

WŁODZIMIERZ M. MIKULSKI

The natural affinors on dual r-jet prolongations of bundles of 2 -forms

Abstract

Let $J^{r}\left(\Lambda^{2} T^{*}\right) M$ be the r-jet prolongation of $\Lambda^{2} T^{*} M$ of an n dimensional manifold M. For natural numbers r and $n \geq 3$ all natural affinors on $\left(J^{r}\left(\Lambda^{2} T^{*}\right) M\right)^{*}$ are the constant multiples of the identity affinor only.

0. Let us recall the following definitions (see e.g. [4]).

Let $F: \mathcal{M} f_{n} \rightarrow \mathcal{F M}$ be a functor from the category $\mathcal{M} f_{n}$ of all n dimensional manifolds and their local diffeomorphisms into the category $\mathcal{F M}$ of fibered manifolds. Let B be the base functor from the category of fibered manifolds to the category of manifolds.

A natural bundle over n-manifolds is a functor F satisfying $B \circ F=\mathrm{id}$ and the localization condition: for every inclusion of an open subset $i_{U}: U \rightarrow M$, $F U$ is the restriction $p_{M}^{-1}(U)$ of $p_{M}: F M \rightarrow M$ over U and $F i_{U}$ is the inclusion $p_{M}^{-1}(U) \rightarrow F M$.

An affinor Q on a manifold M is a tensor type (1, 1), i.e. a linear morphism $Q: T M \rightarrow T M$ over id_{M}.

[^0]A natural affinor on a natural bundle F is a system of affinors Q : $T F M \rightarrow T F M$ on $F M$ for every n-manifold M satisfying $T F f \circ Q=$ $Q \circ T F f$ for every local diffeomorphism $f: M \rightarrow N$.

A connection on a fibre bundle Y is an affinor $\Gamma: T Y \rightarrow T Y$ on Y such that $\Gamma \circ \Gamma=\Gamma$ and $\operatorname{im}(\Gamma)=V Y$, the vertical bundle of Y.

A natural connection on a natural bundle F is a system of connections $\Gamma: T F M \rightarrow T F M$ on $F M$ for every n-manifold M which is (additionally) a natural affinor on F.

In [5] it was shown how natural affinors Q on some natural bundles $F M$ can be used to study the torsion $\tau=[\Gamma, Q]$ of connections Γ on the same bundles $F M$. That is why natural affinors have been classified in many papers, [1]-[3], [6]-[11].

In this paper one considers the natural bundle $F=\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ which associates to every n-manifold M the vector bundle $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M=$ $\left(J^{r}\left(\Lambda^{2} T^{*}\right) M\right)^{*}$, where $J^{r}\left(\Lambda^{2} T^{*}\right) M=\left\{j_{x}^{r} \omega \mid \omega\right.$ is a 2 -form on $\left.M, x \in M\right\}$, and to every embedding $\varphi: M \rightarrow N$ of n-manifolds the induced vector bundle mapping $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \varphi=\left(J^{r}\left(\Lambda^{2} T^{*}\right) \varphi^{-1}\right)^{*}:\left(J^{r}\left(\Lambda^{2} T^{*}\right) M\right)^{*} \rightarrow$ $\left(J^{r}\left(\Lambda^{2} T^{*}\right) N\right)^{*}$, where the map $J^{r}\left(\Lambda^{2} T^{*}\right) \varphi: J^{r}\left(\Lambda^{2} T^{*}\right) M \rightarrow J^{r}\left(\Lambda^{2} T^{*}\right) N$ is given by $j_{x}^{r} \omega \rightarrow j_{\varphi(x)}^{r}\left(\varphi_{*} \omega\right)$.

For integers $r \geq 1$ and $n \geq 3$ we classify all natural affinors on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M$. We prove that every natural affinor Q on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M$ is proportional to the identity affinor.

We note that the classification of natural affinors on $\left(J^{r} T^{*} M\right)^{*}$ is different. In [9] we proved that for $n \geq 2$ the vector space of all natural affinors on $\left(J^{r} T^{*} M\right)^{*}$ is 2-dimensional.

The above result shows that " torsion" of a connection Γ on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M$ makes no sense because of $[\Gamma, \mathrm{id}]=0$.

The above result also shows that for integers $r \geq 1$ and $n \geq 3$ there are no natural connections on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds.

The usual coordinates on \mathbf{R}^{n} are denoted by x^{i} and $\partial_{i}=\frac{\partial}{\partial x^{i}}, i=1, \ldots, n$. All manifolds and maps are assumed to be of class C^{∞}.

1. We start with the classification of all linear natural transformations $A: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M \rightarrow\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M$ in the sense of [4] over n-manifolds M.

A natural transformation $T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds is a system of fibered maps $A: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M \rightarrow\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M$ over id ${ }_{M}$ for every n-manifold M satisfying $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} f \circ A=A \circ T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} f$ for every local diffeo. $f: M \rightarrow N$. The linearity means that A gives a linear map $T_{y}\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M \rightarrow\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{x}^{*} M$ for any $y \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{x}^{*} M$, $x \in M$.

Proposition 1. If $n \geq 3$ and r are natural numbers then every linear natural transformation $A: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds is 0 .

Proof. Every element from the fibre $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$ is a linear combination of the $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*}$ for all $\alpha \in(\mathbf{N} \cup\{0\})^{n}$ with $|\alpha| \leq r$ and $i, j=$ $1, \ldots, n, i<j$, where the $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*}$ form the basis dual to the $j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right) \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0} \mathbf{R}^{n}$ for α and i, j as beside.

Consider a linear natural transformation $A: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds.

Clearly, A is uniquely determined by the values $\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right\rangle \in$ \mathbf{R} for $u \in\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0} \xlongequal[=]{\mathbf{R}^{n} \times\left(V\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0} \tilde{=} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*}, ~}$ $\mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}, \alpha \in(\mathbf{N} \cup\{0\})^{n}$ with $|\alpha| \leq r$ and $i, j=1, \ldots, n, i<j$, where $\tilde{=}$ is the standard trivialization and the canonical identification.

Since A is invariant with respect to the coordinate permutations, A is uniquely determined by the values $\left\langle A(u), j_{0}^{r}\left(x^{\alpha} d x^{1} \wedge d x^{2}\right)\right\rangle$, where u and α are as above.

If $|\alpha| \geq 1$, then the local diffeomorphisms $\varphi_{\alpha}=\left(x^{1}, x^{2}, x^{3}+x^{\alpha}, x^{4}, \ldots, x^{n}\right)^{-1}$ sends $j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)$ into $j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)+j_{0}^{r}\left(x^{\alpha} d x^{1} \wedge d x^{2}\right)$. Then by the invariance of A with respect to the φ 's, A is uniquely determined by the values $\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \in \mathbf{R}$ and $\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle \in \mathbf{R}$, where $u \in\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0} \tilde{=} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$.

The proof of Proposition 1 will be complete after proving that $\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=0$ and $\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0$ for any $u \in$ $\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0} \stackrel{\sim}{=} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$. We will prove these conditions in Lemmas 1 - 6 .

At first we study the values $\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle$.
Lemma 1. There exist the numbers $\lambda, \mu, \nu \in \mathbf{R}$ such that

$$
\begin{equation*}
\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=\lambda u_{1}^{1} u_{1}^{2}+\mu u_{2,(0), 1,2}+\nu u_{3,(0), 1,2} \tag{1}
\end{equation*}
$$

for every $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$, where $u_{1}=\left(u_{1}^{1}, \ldots, u_{1}^{n}\right) \in \mathbf{R}^{n}, u_{\tau, \alpha, i, j}$ is the coefficient of $u_{\tau} \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$ on $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*}, \tau=2,3,(0)=(0, \ldots, 0) \in(\mathbf{N} \cup\{0\})^{n}$.
Proof of Lemma 1. By the naturality of A with respect to the homotheties $a_{t}=\left(t^{1} x^{1}, \ldots, t^{n} x^{n}\right)$ for $t=\left(t^{1}, \ldots, t^{n}\right) \in \mathbf{R}_{+}^{n}$,

$$
\left\langle A\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}\left(a_{t}\right)(u)\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=t^{1} t^{2}\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle
$$

for any $t=\left(t^{1}, \ldots, t^{n}\right) \in \mathbf{R}_{+}^{n}$. For $t \in \mathbf{R}^{n}, i, j=1, \ldots, n, i<j$ and $\alpha \in(\mathbf{N} \cup$ $\{0\})^{n}$ we have $T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}\left(a_{t}\right)\left(\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*}\right)=t^{\alpha+e_{i}+e_{j}}\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge\right.\right.$ $\left.\left.d x^{j}\right)\right)^{*}$. Then the lemma follows from the homogeneous function theorem, [4].

Lemma 2. We have $\lambda=\mu=\nu=0$.
Proof of Lemma 2. Since $\left\langle A\left(u_{1}, u_{2}, u_{3}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle$ is linear in $\left(u_{1}, u_{3}\right)$ for u_{2}, we have $\lambda=\mu=0$. Then (in particular) we have

$$
\begin{equation*}
\left\langle A\left(\partial_{1}^{C}{ }_{\mid w}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A\left(e_{1}, w, 0\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=0 \tag{2}
\end{equation*}
$$

for $w \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$, where ()C is the complete lift.
To prove $\nu=0$ it is sufficient to show that

$$
\left\langle A\left(0,0,\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=0
$$

But we have

$$
\begin{align*}
0 & =\left\langle A\left(\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =(r+1)\left\langle A\left(0, w,\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle \tag{3}\\
& =(r+1)\left\langle A\left(0,0,\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle,
\end{align*}
$$

where $w=\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \wedge d x^{2}\right)\right)^{*}$ and the dots mean the linear combination of the $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*}$ with $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*} \neq\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}$.

Let us explain (3).
Let φ_{t} be the flow of $\left(x^{1}\right)^{r+1} \partial_{1}$. We have

$$
\begin{aligned}
& \left\langle\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}, j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =\left\langle\frac{d}{d t}{ }_{\mid t=0}\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*}\left(\varphi_{t}\right)(w), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =\left.\frac{d}{d t}\right|_{t=0}\left\langle\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*}\left(\varphi_{t}\right)(w), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =\left.\frac{d}{d t}\right|_{t=0}\left\langle w, j_{0}^{r}\left(\left(\varphi_{-t}\right)_{*}\left(d x^{1} \wedge d x^{2}\right)\right)\right\rangle \\
& =\left\langle w, j_{0}^{r}\left(\left.\frac{d}{d t} \right\rvert\, t=0\right.\right. \\
& \left.\left.=\left\langle\varphi_{-t}\right)_{*}\left(d x^{1} \wedge d x^{2}\right)\right)\right\rangle \\
& =(r+1)\left\langle w, j_{0}^{r}\left(L_{\left(x^{1}\right)^{r+1} \partial_{1}}\left(d x^{1} \wedge d x^{2}\right)\right)\right\rangle \\
& \left.=\left(x^{r} d x^{1} \wedge d x^{2}\right)\right\rangle=r+1
\end{aligned}
$$

Then $\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}=(r+1)\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots$ under the canonical isomorphism $V_{w}\left(\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right) \tilde{=}\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$, i.e. $\left\langle A\left(\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}\right)\right.$, $\left.j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=(r+1)\left\langle A\left(0, w,\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle$.

The equality $(r+1)\left\langle A\left(0, w,\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=$ $(r+1)\left\langle A\left(0,0,\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle$ is clear because of (1) and $\mu=0$.

We can prove the equality $0=\left\langle A\left(\left(\left(x^{1}\right)^{r+1} \partial_{1}\right)_{\mid w}^{C}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle$ as follows. Vector fields $\partial_{1}+\left(x^{1}\right)^{r+1} \partial_{1}$ and ∂_{1} have the same r-jets at 0 . Then by [11], there exists a diffeomorphism $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $j_{0}^{r+1} \varphi=\mathrm{id}$ and $\varphi_{*} \partial_{1}=\partial_{1}+\left(x^{1}\right)^{r+1} \partial_{1}$ near 0 . Clearly, φ preserves $j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)$ because of the jet argument. Then, by the naturality of A with respect to φ, it follows from (2) that

$$
\left\langle A\left(\left(\partial_{1}+\left(x^{1}\right)^{r+1} \partial_{1}\right)^{C}{ }_{\mid w}\right), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=0
$$

for any $w \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$. Now, applying the linearity of A, we end the proof of the equality.

Now, we study the values $\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0$.
Lemma 3. There exist the numbers $a, b, c, e, f, g \in \mathbf{R}$ such that

$$
\begin{align*}
\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1}\right.\right. & \left.\left.\wedge d x^{2}\right)\right\rangle=a u_{1}^{1} u_{2,(0), 2,3}+b u_{1}^{2} u_{2,(0), 1,3} \tag{4}\\
& +c u_{1}^{3} u_{2,(0), 1,2}+e u_{3, e_{1}, 2,3}+f u_{3, e_{2}, 1,3}+g u_{3, e_{3}, 1,2}
\end{align*}
$$

for any $u=\left(u_{1}, u_{2}, u_{3}\right)$, where $u_{1}=\left(u_{1}^{1}, \ldots, u_{1}^{n}\right) \in \mathbf{R}^{n}, u_{2}, u_{3} \in\left(J^{r}\left(T^{*} \wedge\right.\right.$ $\left.\left.T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}, u_{\tau, \alpha, i, j}$ is as in Lemma 1 and $e_{i}=(0, \ldots, 1,0, \ldots, 0) \in(\mathbf{N} \cup\{0\})^{n}$, 1 in i-position.
Proof of Lemma 3. The proof is similar to the proof of Lemma 1. We apply the naturality of A with respect to the homotheties $a_{t}=\left(t^{1} x^{1}, \ldots, t^{n} x^{n}\right)$ for $t=\left(t^{1}, \ldots, t^{n}\right) \in \mathbf{R}_{+}^{n}$, the homogeneous function theorem and the linearity of A.

To prove $g=f=e=a=b=c=0$ we shall use the following
Lemma 4. For every $u \in\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0}$ we have

$$
\begin{equation*}
\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A\left(u^{\prime}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle, \tag{5}
\end{equation*}
$$

where u^{\prime} is the image of u by $\left(x^{2}, x^{3}, x^{1}\right) \times \mathrm{id}_{\mathbf{R}^{n-3}}$.
Proof of Lemma 4. We consider $u \in\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0}$. Let \tilde{u} be the image of u by $\left(x^{1}+x^{1} x^{3}, x^{2}, \ldots, x^{n}\right)$. By Lemma 2 we have $\lambda=\mu=\nu=$ 0 , i.e. $\left\langle A(\tilde{u}), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle=0$. Then by the invariance of A with respect to $\left(x^{1}+x^{1} x^{3}, x^{2}, \ldots, x^{n}\right)^{-1}$ we get
$0=\left\langle A(u), j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right\rangle+\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle-\left\langle A(u), j_{0}^{r}\left(x^{1} d x^{2} \wedge d x^{3}\right)\right\rangle$
as $\left(x^{1}+x^{1} x^{3}, x^{2}, \ldots, x^{n}\right)^{-1}$ sends $j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)$ into $j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)+j_{0}^{r}\left(x^{3} d x^{1} \wedge\right.$ $\left.d x^{2}\right)-j_{0}^{r}\left(x^{1} d x^{2} \wedge d x^{3}\right)$. Hence $\left\langle A(u), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A(u), j_{0}^{r}\left(x^{1} d x^{2} \wedge\right.\right.$ $\left.\left.d x^{3}\right)\right\rangle$. Therefore we have (5) because $\left(x^{2}, x^{3}, x^{1}\right) \times \operatorname{id}_{\mathbf{R}^{n-3}}$ sends $j_{0}^{r}\left(x^{1} d x^{2} \wedge\right.$ $\left.d x^{3}\right)$ into $j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)$.

Lemma 5. We have $g=f=e=0$.
Proof of Lemma 5. We have to show

$$
\begin{aligned}
\left\langleA \left(0,0,\left(j_{0}^{r}\right.\right.\right. & \left.\left.\left.\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =\left\langle A\left(0,0,-\left(j_{0}^{r}\left(x^{2} d x^{1} \wedge d x^{3}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \\
\quad= & \left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{1} d x^{2} \wedge d x^{3}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0 .
\end{aligned}
$$

We see that $\left(x^{2}, x^{3}, x^{1}\right) \times \operatorname{id}_{\mathbf{R}^{n-3}}$ sends $\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}$ into $-\left(j_{0}^{r}\left(x^{2} d x^{1}\right.\right.$ $\left.\left.\wedge d x^{3}\right)\right)^{*}$ and $-\left(j_{0}^{r}\left(x^{2} d x^{1} \wedge d x^{3}\right)\right)^{*}$ into $\left(j_{0}^{r}\left(x^{1} d x^{2} \wedge d x^{3}\right)\right)^{*}$. Then due to (5) it suffices to verify that $\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0$. But we have

$$
\begin{align*}
0 & =\left\langle A\left(\left(\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid w}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =r\left\langle A\left(0, w,\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \tag{6}\\
& =r\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle,
\end{align*}
$$

where $w=\left(j_{0}^{r}\left(x^{3}\left(x^{1}\right)^{r-1} d x^{1} \wedge d x^{2}\right)\right)^{*} \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$.
Let us explain (6).
That $\left\langle A\left(0, w,\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A\left(0,0,\left(j_{0}^{r}\left(x^{3} d x^{1}\right.\right.\right.\right.$ $\left.\left.\left.\left.\wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$ is clear, see (4).

We can prove $0=\left\langle A\left(\left(\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid w}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$ as follows. Vector fields $\partial_{1}+\left(x^{1}\right)^{r} \partial_{1}$ and ∂_{1} have the same $r-1$-jets at 0 . Then by [11] there exists a diffeomorphism $\varphi=\varphi_{1} \times \operatorname{id}_{\mathbf{R}^{n-1}}: \mathbf{R}^{n}=\mathbf{R} \times \mathbf{R}^{n-1} \rightarrow \mathbf{R}^{n}=$ $\mathbf{R} \times \mathbf{R}^{n-1}$ such that $\varphi_{1}: \mathbf{R} \rightarrow \mathbf{R}, j_{0}^{r} \varphi=$ id and $\varphi_{*} \partial_{1}=\partial_{1}+\left(x^{1}\right)^{r} \partial_{1}$ near 0 . Let φ^{-1} send w into \tilde{w}. Then \tilde{w} is the linear combination of the $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*} \in\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$ for $|\alpha| \geq 1$ and $i, j=1, \ldots, n$ with $i<j$. (For, $\left\langle\tilde{w}, j_{0}^{r}\left(d x^{i} \wedge d x^{j}\right)\right\rangle=\left\langle w, j_{0}^{r}\left(d\left(x^{i} \circ \varphi^{-1}\right) \wedge d\left(x^{j} \circ \varphi^{-1}\right)\right)\right\rangle=0$.) Then, by (4), $\left\langle A\left(\partial_{1}^{C} \mid \tilde{w}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A\left(e_{1}, \tilde{w}, 0\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0$. Clearly, φ preserves $j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)$. Then, using the naturality of A with respect to φ we get $\left\langle A\left(\left(\partial_{1}+\left(x^{1}\right)^{r} \partial_{1}\right)^{C}{ }_{\mid w}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0$. Now, applying the linearity of A, we end the proof of equality.

Using the flow argument one can prove $\left\langle A\left(\left(\left(x^{1}\right)^{r} \partial_{1}\right)_{\mid w}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=$ $r\left\langle A\left(0, w,\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$ as follows. For any $\alpha \in$ $(\mathbf{N} \cup\{0\})^{n}$ with $|\alpha| \leq r$ and any $i, j=1, \ldots, n$ with $i<j$ we have

$$
\begin{aligned}
\left\langle\left(\left(x^{1}\right)^{r} \partial_{1}\right)^{C}{ }_{\mid w,}, j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right\rangle & =\left\langle w, j_{0}^{r}\left(L_{\left(x^{1}\right)^{r} \partial_{1}} x^{\alpha} d x^{i} \wedge d x^{j}\right)\right\rangle \\
& =\left\langle w, \alpha_{1} j_{0}^{r}\left(\left(x^{1}\right)^{r-1} x^{\alpha} d x^{i} \wedge d x^{j}\right)\right\rangle \\
& +\left\langle w, j_{0}^{r}\left(x^{\alpha} \delta_{1}^{i} r\left(x^{1}\right)^{r-1} d x^{1} \wedge d x^{j}\right)\right\rangle .
\end{aligned}
$$

Since $w=\left(j_{0}^{r}\left(x^{3}\left(x^{1}\right)^{r-1} d x^{1} \wedge d x^{2}\right)\right)^{*}$, the sum is equal to r if $\alpha=e_{3}$ and $(i, j)=(1,2)$ and equal to 0 in the other cases. Hence $\left(\left(x^{1}\right)^{r} \partial_{1}\right)^{C}{ }_{\mid w}=$ $r\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*} \in V_{w}\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}$. This ends the proof of $\left\langle A\left(\left(\left(x^{1}\right)^{r}\right.\right.\right.$ $\left.\left.\left.\partial_{1}\right)_{\mid w}^{C}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=r\left(A\left(0, w,\left(j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$.

Lemma 6. We have $a=b=c=0$.
Proof of Lemma 6. By (5), similarly as for $e=f=g=0$, it is sufficient to prove that $c=0$, i.e. $\left\langle A\left(\partial_{3}^{C}{ }_{\left.\mid\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}\right)}\right) j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=0$. But we have

$$
\begin{align*}
0 & =\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \\
& =\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle \tag{7}\\
& =\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle
\end{align*}
$$

where the dots denote the linear combination of the $\left(j_{0}^{r}\left(x^{\alpha} d x^{i} \wedge d x^{j}\right)\right)^{*} \neq$ $\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}$ for $|\alpha| \leq r$ and $i, j=1, \ldots, n, i<j$.

Let us explain (7).
The equality $0=\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \wedge d x^{2}\right)\right)^{*}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$ follows from (4). Similarly, from (4) we obtain $\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=$ $\left\langle A\left(\partial_{3}^{C}{ }_{\mid\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}}\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$.

We consider the local diffeomorphism $\varphi=\left(x^{1}+\frac{1}{r+1}\left(x^{1}\right)^{r+1}, x^{2}, \ldots, x^{n}\right)^{-1}$. We see that φ^{-1} preserves $j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)$ and ∂_{3}. Moreover, we see that φ^{-1} sends $\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \wedge d x^{2}\right)\right)^{*}$ into $\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots$, where the dots are as above, because of $\left\langle\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \wedge d x^{2}\right)\right)^{*}, j_{0}^{r}\left(\varphi_{*}\left(d x^{1} \wedge d x^{2}\right)\right)\right\rangle=1$. Now, by the invariance of A with respect to φ^{-1} we get $\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(\left(x^{1}\right)^{r} d x^{1} \wedge d x^{2}\right)\right)^{*}\right)\right.$, $\left.j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle=\left\langle A\left(\partial_{3}^{C} \mid\left(j_{0}^{r}\left(d x^{1} \wedge d x^{2}\right)\right)^{*}+\ldots\right), j_{0}^{r}\left(x^{3} d x^{1} \wedge d x^{2}\right)\right\rangle$.

The proof of Proposition 1 is complete.
2. The tangent map $T \pi: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M \rightarrow T M$ of the bundle projection $\pi:\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M \rightarrow M$ defines a linear natural transformation $T \pi: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow T$ over n-manifolds. (The definition of linear natural transformations $T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow T$ over n-manifolds is similar to the one of Section 1.)
Proposition 2. If r and $n \geq 2$ are natural numbers, then every linear natural transformation $B: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow T$ over n-manifolds is proportional to $T \pi$.

Proof. Due to similar arguments as in the proof of Proposition 1, B is uniquely determined by the values $\left\langle B(u), d_{0} x^{1}\right\rangle$ for $u \in\left(T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \mathbf{R}^{n}\right)_{0}$ $\tilde{=} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n}$.

By the naturality of B with respect to the homotheties $\left(t^{1} x^{1}, \ldots, t^{n} x^{n}\right)$ for $t \in \mathbf{R}_{+}^{n}$ and the homogeneous function theorem we deduce that $\left\langle B(),. d x^{1}\right\rangle=$ $x^{1} \circ p_{1}$, where $p_{1}: \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n} \times\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)_{0}^{*} \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the canonical projection.

Then the vector space of all B as above is 1-dimensional.
3. The main result of this paper is the following theorem.

Theorem 1. If $n \geq 3$ and r are natural numbers, then every natural affinor Q on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds is a constant multiple of id.

Proof. Let $Q: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M \rightarrow T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} M$ be a natural affinor on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds. Then $B=T \pi \circ Q: T\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*} \rightarrow T$ is a linear natural transformation. By Proposition $2, B=T \pi \circ Q=\lambda T \pi$ for some λ. Clearly, $T \pi \circ \mathrm{id}=T \pi$. Then $Q-\lambda i d$ is an affinor of vertical type. Now, applying Proposition 1 we deduce that Q - $\lambda i d$ is the zero affinor.

From Theorem 1 we obtain immediately
Corollary 1. If $n \geq 3$ and r are natural numbers, then there is no natural connection on $\left(J^{r}\left(\Lambda^{2} T^{*}\right)\right)^{*}$ over n-manifolds.

References

[1] Doupovec, M., Natural transformations between $T T T^{*} M$ and $T T^{*} T M$, Czech Math. J. 43(118) (1993), 599-613.
[2] Doupovec, M., I. Kolář, Natural affinors on time-dependent Weil bundles, Arch. Math. (Brno) 27 (1991), 205-209.
[3] Gancarzewicz, J., I. Kolář, Natural affinors on the extended r-th order tangent bundles, Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95-100.
[4] Kolář I., P.W. Michor and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
[5] Kolář, I., M. Modugno, Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2 (1992), 1-16.
[6] Kurek, J., Natural affinors on higher order cotangent bundles, Arch. Math. (Brno) 28 (1992), 175-180.
[7] Mikulski, W.M., Natural affinors on r-jet prolongation of the tangent bundle, Arch. Math. (Brno) 34(2) (1998), 321-328.
[8] Mikulski, W.M., The natural affinors on $\otimes^{k} T^{(r)}$, Note di Matematica 19(2) (1999), 269-274.
[9] Mikulski, W.M., The natural affinors on $\left(J^{r} T^{*}\right)^{*}$, Arch. Math. (Brno) 36(4) (2000), 261-267.
[10] Mikulski, W.M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Roma 21(VII) (2001), 339-349.
[11] Zajtz, A., On the order of natural operators and liftings, Ann. Polon. Math. 49 (1988), 169-178.

Institute of Mathematics
received February 7, 2001
Jagiellonian University
Kraków, Reymonta 4, Poland
e-mail: mikulski@im.uj.edu.pl

[^0]: 1991 Mathematics Subject Classification. 58A20, 53A55.
 Key words and phrases. natural bundles, natural transformations, natural affinors.

