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The natural affinors on dual r-jet prolongations

of bundles of 2-forms

Abstract. Let Jr(Λ2T ∗)M be the r-jet prolongation of Λ2T ∗M of an n-

dimensional manifold M . For natural numbers r and n ≥ 3 all natural
affinors on (Jr(Λ2T ∗)M)∗ are the constant multiples of the identity affinor

only.

0. Let us recall the following definitions (see e.g. [4]).
Let F : Mfn → FM be a functor from the category Mfn of all n-

dimensional manifolds and their local diffeomorphisms into the category
FM of fibered manifolds. Let B be the base functor from the category of
fibered manifolds to the category of manifolds.

A natural bundle over n-manifolds is a functor F satisfying B◦F = id and
the localization condition: for every inclusion of an open subset iU : U → M ,
FU is the restriction p−1

M (U) of pM : FM → M over U and FiU is the
inclusion p−1

M (U) → FM .
An affinor Q on a manifold M is a tensor type (1, 1), i.e. a linear mor-

phism Q : TM → TM over idM .
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A natural affinor on a natural bundle F is a system of affinors Q :
TFM → TFM on FM for every n-manifold M satisfying TFf ◦ Q =
Q ◦ TFf for every local diffeomorphism f : M → N .

A connection on a fibre bundle Y is an affinor Γ : TY → TY on Y such
that Γ ◦ Γ = Γ and im(Γ) = V Y , the vertical bundle of Y .

A natural connection on a natural bundle F is a system of connections
Γ : TFM → TFM on FM for every n-manifold M which is (additionally)
a natural affinor on F .

In [5] it was shown how natural affinors Q on some natural bundles FM
can be used to study the torsion τ = [Γ, Q] of connections Γ on the same
bundles FM . That is why natural affinors have been classified in many
papers, [1]-[3], [6]-[11].

In this paper one considers the natural bundle F = (Jr(Λ2T ∗))∗ which as-
sociates to every n-manifold M the vector bundle (Jr(Λ2T ∗))∗M =
(Jr(Λ2T ∗)M)∗, where Jr(Λ2T ∗)M = {jr

xω | ω is a 2-form on M , x ∈ M},
and to every embedding ϕ : M → N of n-manifolds the induced vec-
tor bundle mapping (Jr(Λ2T ∗))∗ϕ = (Jr(Λ2T ∗)ϕ−1)∗ : (Jr(Λ2T ∗)M)∗ →
(Jr(Λ2T ∗)N)∗, where the map Jr(Λ2T ∗)ϕ : Jr(Λ2T ∗)M → Jr(Λ2T ∗)N is
given by jr

xω → jr
ϕ(x)(ϕ∗ω).

For integers r ≥ 1 and n ≥ 3 we classify all natural affinors on
(Jr(Λ2T ∗))∗M . We prove that every natural affinor Q on (Jr(Λ2T ∗))∗M
is proportional to the identity affinor.

We note that the classification of natural affinors on (JrT ∗M)∗ is differ-
ent. In [9] we proved that for n ≥ 2 the vector space of all natural affinors
on (JrT ∗M)∗ is 2-dimensional.

The above result shows that ”torsion” of a connection Γ on (Jr(Λ2T ∗))∗M
makes no sense because of [Γ, id] = 0.

The above result also shows that for integers r ≥ 1 and n ≥ 3 there are
no natural connections on (Jr(Λ2T ∗))∗ over n-manifolds.

The usual coordinates on Rn are denoted by xi and ∂i = ∂
∂xi , i = 1, ..., n.

All manifolds and maps are assumed to be of class C∞.

1. We start with the classification of all linear natural transformations
A : T (Jr(Λ2T ∗))∗M → (Jr(Λ2T ∗))∗M in the sense of [4] over n-manifolds
M .

A natural transformation T (Jr(Λ2T ∗))∗ →(Jr(Λ2T ∗))∗ over n-manifolds
is a system of fibered maps A : T (Jr(Λ2T ∗))∗M → (Jr(Λ2T ∗))∗M over idM

for every n-manifold M satisfying (Jr(Λ2T ∗))∗f ◦ A = A ◦ T (Jr(Λ2T ∗))∗f
for every local diffeo. f : M → N . The linearity means that A gives a
linear map Ty(Jr(Λ2T ∗))∗M → (Jr(Λ2T ∗))∗xM for any y ∈ (Jr(Λ2T ∗))∗xM ,
x ∈ M .
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Proposition 1. If n ≥ 3 and r are natural numbers then every linear
natural transformation A : T (Jr(Λ2T ∗))∗ → (Jr(Λ2T ∗))∗ over n-manifolds
is 0.

Proof. Every element from the fibre (Jr(Λ2T ∗))∗0R
n is a linear combination

of the (jr
0(xαdxi ∧ dxj))∗ for all α ∈ (N ∪ {0})n with |α| ≤ r and i, j =

1, ..., n, i < j, where the (jr
0(xαdxi ∧ dxj))∗ form the basis dual to the

jr
0(xαdxi ∧ dxj) ∈ (Jr(Λ2T ∗))0Rn for α and i, j as beside.

Consider a linear natural transformation A :T (Jr(Λ2T ∗))∗→(Jr(Λ2T ∗))∗

over n-manifolds.
Clearly, A is uniquely determined by the values 〈A(u), jr

0(xαdxi∧dxj)〉 ∈
R for u∈(T (Jr(Λ2T ∗))∗Rn)0=̃Rn×(V (Jr(Λ2T ∗))∗Rn)0=̃Rn×(Jr(Λ2T ∗))∗0
Rn×(Jr(Λ2T ∗))∗0R

n , α ∈ (N∪{0})n with |α| ≤ r and i, j = 1, ..., n, i < j,
where =̃ is the standard trivialization and the canonical identification.

Since A is invariant with respect to the coordinate permutations, A is
uniquely determined by the values 〈A(u), jr

0(xαdx1 ∧ dx2)〉, where u and α
are as above.

If |α|≥1, then the local diffeomorphisms ϕα=(x1, x2, x3+xα, x4, ..., xn)−1

sends jr
0(x3dx1 ∧ dx2) into jr

0(x3dx1 ∧ dx2) + jr
0(xαdx1 ∧ dx2). Then by the

invariance of A with respect to the ϕ’s, A is uniquely determined by the
values 〈A(u), jr

0(x3dx1 ∧ dx2)〉 ∈ R and 〈A(u), jr
0(dx1 ∧ dx2)〉 ∈ R, where

u ∈ (T (Jr(Λ2T ∗))∗Rn)0=̃Rn × (Jr(Λ2T ∗))∗0R
n × (Jr(Λ2T ∗))∗0R

n.
The proof of Proposition 1 will be complete after proving that

〈A(u), jr
0(dx1 ∧ dx2)〉 = 0 and 〈A(u), jr

0(x3dx1 ∧ dx2)〉 = 0 for any u ∈
(T (Jr(Λ2T ∗))∗Rn)0 =̃ Rn × (Jr(Λ2T ∗))∗0R

n × (Jr(Λ2T ∗))∗0R
n. We will

prove these conditions in Lemmas 1 — 6.
At first we study the values 〈A(u), jr

0(dx1 ∧ dx2)〉.

Lemma 1. There exist the numbers λ, µ, ν ∈ R such that

(1) 〈A(u), jr
0(dx1 ∧ dx2)〉 = λu1

1u
2
1 + µu2,(0),1,2 + νu3,(0),1,2

for every u = (u1, u2, u3) ∈ Rn × (Jr(Λ2T ∗))∗0R
n × (Jr(Λ2T ∗))∗0R

n, where
u1 = (u1

1, ..., u
n
1 ) ∈ Rn, uτ,α,i,j is the coefficient of uτ ∈ (Jr(Λ2T ∗))∗0R

n on
(jr

0(xαdxi ∧ dxj))∗, τ = 2, 3, (0) = (0, ..., 0) ∈ (N ∪ {0})n.

Proof of Lemma 1. By the naturality of A with respect to the homotheties
at = (t1x1, ..., tnxn) for t = (t1, ..., tn) ∈ Rn

+,

〈A(T (Jr(Λ2T ∗))∗(at)(u)), jr
0(dx1 ∧ dx2)〉 = t1t2〈A(u), jr

0(dx1 ∧ dx2)〉

for any t = (t1, ..., tn) ∈ Rn
+. For t ∈ Rn, i, j = 1, ..., n, i < j and α ∈ (N ∪

{0})n we have T (Jr(Λ2T ∗))∗(at)((jr
0(xαdxi∧dxj))∗) = tα+ei+ej (jr

0(xαdxi∧
dxj))∗. Then the lemma follows from the homogeneous function theorem,
[4]. �
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Lemma 2. We have λ = µ = ν = 0.

Proof of Lemma 2. Since 〈A(u1, u2, u3), jr
0(dx1∧dx2)〉 is linear in (u1, u3)

for u2, we have λ = µ = 0. Then (in particular) we have

(2) 〈A(∂C
1 |w), jr

0(dx1 ∧ dx2)〉 = 〈A(e1, w, 0), jr
0(dx1 ∧ dx2)〉 = 0

for w ∈ (Jr(Λ2T ∗))∗0R
n, where ( )C is the complete lift.

To prove ν = 0 it is sufficient to show that

〈A(0, 0, (jr
0(dx1 ∧ dx2))∗), jr

0(dx1 ∧ dx2)〉 = 0.

But we have

(3)

0 = 〈A(((x1)r+1∂1)C
|w), jr

0(dx1 ∧ dx2)〉

= (r + 1)〈A(0, w, (jr
0(dx1 ∧ dx2))∗ + ... ), jr

0(dx1 ∧ dx2)〉
= (r + 1)〈A(0, 0, (jr

0(dx1 ∧ dx2))∗), jr
0(dx1 ∧ dx2)〉 ,

where w = (jr
0((x1)rdx1 ∧ dx2))∗ and the dots mean the linear combination

of the (jr
0(xαdxi ∧ dxj))∗ with (jr

0(xαdxi ∧ dxj))∗ 6= (jr
0(dx1 ∧ dx2))∗.

Let us explain (3).
Let ϕt be the flow of (x1)r+1∂1. We have

〈((x1)r+1∂1)C
|w, jr

0(dx1 ∧ dx2)〉

= 〈 d

dt |t=0
(Jr(Λ2T ∗))∗0(ϕt)(w), jr

0(dx1 ∧ dx2)〉

=
d

dt |t=0
〈(Jr(Λ2T ∗))∗0(ϕt)(w), jr

0(dx1 ∧ dx2)〉

=
d

dt |t=0
〈w, jr

0((ϕ−t)∗(dx1 ∧ dx2))〉

= 〈w, jr
0(

d

dt |t=0
(ϕ−t)∗(dx1 ∧ dx2))〉

= 〈w, jr
0(L(x1)r+1∂1(dx1 ∧ dx2))〉

= (r + 1)〈w, jr
0((x1)rdx1 ∧ dx2)〉 = r + 1 .

Then ((x1)r+1∂1)C
|w = (r + 1)(jr

0(dx1 ∧ dx2))∗ + ... under the canonical
isomorphism Vw((Jr(Λ2T ∗))∗Rn)=̃(Jr(Λ2T ∗))∗0R

n, i.e. 〈A(((x1)r+1∂1)C
|w),

jr
0(dx1 ∧ dx2)〉 = (r + 1)〈A(0, w, (jr

0(dx1 ∧ dx2))∗ + ... ), jr
0(dx1 ∧ dx2)〉.

The equality (r + 1)〈A(0, w, (jr
0(dx1 ∧ dx2))∗ + ... ), jr

0(dx1 ∧ dx2)〉 =
(r + 1)〈A(0, 0, (jr

0(dx1 ∧ dx2))∗), jr
0(dx1 ∧ dx2)〉 is clear because of (1) and

µ = 0.
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We can prove the equality 0 = 〈A(((x1)r+1∂1)C
|w), jr

0(dx1 ∧ dx2)〉 as fol-
lows. Vector fields ∂1+(x1)r+1∂1 and ∂1 have the same r-jets at 0. Then by
[11], there exists a diffeomorphism ϕ : Rn → Rn such that jr+1

0 ϕ = id and
ϕ∗∂1 = ∂1 +(x1)r+1∂1 near 0. Clearly, ϕ preserves jr

0(dx1∧dx2) because of
the jet argument. Then, by the naturality of A with respect to ϕ, it follows
from (2) that

〈A((∂1 + (x1)r+1∂1)C
|w), jr

0(dx1 ∧ dx2)〉 = 0

for any w ∈ (Jr(Λ2T ∗))∗0R
n. Now, applying the linearity of A, we end the

proof of the equality. �

Now, we study the values 〈A(u), jr
0(x3dx1 ∧ dx2)〉 = 0.

Lemma 3. There exist the numbers a, b, c, e, f, g ∈ R such that

(4)
〈A(u), jr

0(x3dx1 ∧ dx2)〉 = au1
1u2,(0),2,3 + bu2

1u2,(0),1,3

+ cu3
1u2,(0),1,2 + eu3,e1,2,3 + fu3,e2,1,3 + gu3,e3,1,2

for any u = (u1, u2, u3), where u1 = (u1
1, ..., u

n
1 ) ∈ Rn, u2, u3 ∈ (Jr(T ∗ ∧

T ∗))∗0R
n, uτ,α,i,j is as in Lemma 1 and ei = (0, ..., 1, 0, ..., 0) ∈ (N∪ {0})n,

1 in i-position.

Proof of Lemma 3. The proof is similar to the proof of Lemma 1. We ap-
ply the naturality of A with respect to the homotheties at = (t1x1, ..., tnxn)
for t = (t1, ..., tn) ∈ Rn

+, the homogeneous function theorem and the linear-
ity of A. �

To prove g = f = e = a = b = c = 0 we shall use the following

Lemma 4. For every u ∈ (T (Jr(Λ2T ∗))∗Rn)0 we have

(5) 〈A(u), jr
0(x3dx1 ∧ dx2)〉 = 〈A(u′), jr

0(x3dx1 ∧ dx2)〉 ,

where u′ is the image of u by (x2, x3, x1)× idRn−3 .

Proof of Lemma 4. We consider u ∈ (T (Jr(Λ2T ∗))∗Rn)0. Let ũ be the
image of u by (x1 + x1x3, x2, ..., xn). By Lemma 2 we have λ = µ = ν =
0, i.e. 〈A(ũ), jr

0(dx1 ∧ dx2)〉 = 〈A(u), jr
0(dx1 ∧ dx2)〉 = 0. Then by the

invariance of A with respect to (x1 + x1x3, x2, ..., xn)−1 we get

0 = 〈A(u), jr
0(dx1∧dx2)〉+〈A(u), jr

0(x3dx1∧dx2)〉−〈A(u), jr
0(x1dx2∧dx3)〉

as (x1+x1x3, x2, ..., xn)−1 sends jr
0(dx1∧dx2) into jr

0(dx1∧dx2)+jr
0(x3dx1∧

dx2)− jr
0(x1dx2 ∧ dx3). Hence 〈A(u), jr

0(x3dx1 ∧ dx2)〉 = 〈A(u), jr
0(x1dx2 ∧

dx3)〉. Therefore we have (5) because (x2, x3, x1)× idRn−3 sends jr
0(x1dx2∧

dx3) into jr
0(x3dx1 ∧ dx2). �
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Lemma 5. We have g = f = e = 0.

Proof of Lemma 5. We have to show

〈A(0, 0, (jr
0(x3dx1 ∧ dx2))∗), jr

0(x3dx1 ∧ dx2)〉
= 〈A(0, 0,−(jr

0(x2dx1 ∧ dx3))∗), jr
0(x3dx1 ∧ dx2)〉

= 〈A(0, 0, (jr
0(x1dx2 ∧ dx3))∗), jr

0(x3dx1 ∧ dx2)〉 = 0.

We see that (x2, x3, x1)×idRn−3 sends (jr
0(x3dx1∧dx2))∗ into −(jr

0(x2dx1

∧dx3))∗ and −(jr
0(x2dx1 ∧ dx3))∗ into (jr

0(x1dx2 ∧ dx3))∗. Then due to (5)
it suffices to verify that 〈A(0, 0, (jr

0(x3dx1 ∧ dx2))∗), jr
0(x3dx1 ∧ dx2)〉 = 0.

But we have

(6)

0 = 〈A(((x1)r∂1)C
|w), jr

0(x3dx1 ∧ dx2)〉

= r〈A(0, w, (jr
0(x3dx1 ∧ dx2))∗), jr

0(x3dx1 ∧ dx2)〉
= r〈A(0, 0, (jr

0(x3dx1 ∧ dx2))∗), jr
0(x3dx1 ∧ dx2)〉 ,

where w = (jr
0(x3(x1)r−1dx1 ∧ dx2))∗ ∈ (Jr(Λ2T ∗))∗0R

n.
Let us explain (6).
That 〈A(0, w, (jr

0(x3dx1 ∧ dx2))∗), jr
0(x3dx1 ∧ dx2)〉 = 〈A(0, 0, (jr

0(x3dx1

∧dx2))∗), jr
0(x3dx1 ∧ dx2)〉 is clear, see (4).

We can prove 0 = 〈A(((x1)r∂1)C
|w), jr

0(x3dx1 ∧ dx2)〉 as follows. Vector
fields ∂1 + (x1)r∂1 and ∂1 have the same r−1-jets at 0. Then by [11] there
exists a diffeomorphism ϕ = ϕ1 × idRn−1 : Rn = R × Rn−1 → Rn =
R × Rn−1 such that ϕ1 : R → R, jr

0ϕ = id and ϕ∗∂1 = ∂1 + (x1)r∂1

near 0. Let ϕ−1 send w into w̃. Then w̃ is the linear combination of the
(jr

0(xαdxi∧dxj))∗ ∈ (Jr(Λ2T ∗))∗0R
n for |α| ≥ 1 and i, j = 1, ..., n with i < j.

(For, 〈w̃, jr
0(dxi ∧ dxj)〉 = 〈w, jr

0(d(xi ◦ ϕ−1) ∧ d(xj ◦ ϕ−1))〉 = 0.) Then,
by (4), 〈A(∂C

1 |w̃), jr
0(x3dx1 ∧ dx2)〉 = 〈A(e1, w̃, 0), jr

0(x3dx1 ∧ dx2)〉 = 0.
Clearly, ϕ preserves jr

0(x3dx1 ∧ dx2). Then, using the naturality of A with
respect to ϕ we get 〈A((∂1 + (x1)r∂1)C

|w), jr
0(x3dx1 ∧ dx2)〉 = 0. Now,

applying the linearity of A, we end the proof of equality.
Using the flow argument one can prove 〈A(((x1)r∂1)C

|w), jr
0(x3dx1∧dx2)〉=

r〈A(0, w, (jr
0(x3dx1 ∧ dx2))∗), jr

0(x3dx1 ∧ dx2)〉 as follows. For any α ∈
(N ∪ {0})n with |α| ≤ r and any i, j = 1, ..., n with i < j we have

〈((x1)r∂1)C
|w, jr

0(xαdxi ∧ dxj)〉 = 〈w, jr
0(L(x1)r∂1x

αdxi ∧ dxj)〉
= 〈w,α1j

r
0((x1)r−1xαdxi ∧ dxj)〉

+ 〈w, jr
0(xαδi

1r(x
1)r−1dx1 ∧ dxj)〉 .

Since w = (jr
0(x3(x1)r−1dx1 ∧ dx2))∗, the sum is equal to r if α = e3 and

(i, j) = (1, 2) and equal to 0 in the other cases. Hence ((x1)r∂1)C
|w =

r(jr
0(x3dx1 ∧ dx2))∗ ∈ Vw(Jr(Λ2T ∗))∗Rn. This ends the proof of 〈A(((x1)r

∂1)C
|w), jr

0(x3dx1∧dx2)〉= r〈A(0, w, (jr
0(x3dx1∧dx2))∗), jr

0(x3dx1∧dx2)〉. �
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Lemma 6. We have a = b = c = 0.

Proof of Lemma 6. By (5), similarly as for e = f = g = 0, it is sufficient
to prove that c = 0, i.e. 〈A(∂C

3 |(jr
0 (dx1∧dx2))∗), jr

0(x3dx1∧dx2)〉 = 0. But we
have

(7)

0 = 〈A(∂C
3 |(jr

0 ((x1)rdx1∧dx2))∗), jr
0(x3dx1 ∧ dx2)〉

= 〈A(∂C
3 |(jr

0 (dx1∧dx2))∗+...), jr
0(x3dx1 ∧ dx2)〉

= 〈A(∂C
3 |(jr

0 (dx1∧dx2))∗), jr
0(x3dx1 ∧ dx2)〉 ,

where the dots denote the linear combination of the (jr
0(xαdxi ∧ dxj))∗ 6=

(jr
0(dx1 ∧ dx2))∗ for |α| ≤ r and i, j = 1, ..., n, i < j.
Let us explain (7).
The equality 0 = 〈A(∂C

3 |(jr
0 ((x1)rdx1∧dx2))∗), jr

0(x3dx1∧dx2)〉 follows from
(4). Similarly, from (4) we obtain 〈A(∂C

3 |(jr
0 (dx1∧dx2))∗+...), jr

0(x3dx1∧dx2)〉=
〈A(∂C

3 |(jr
0 (dx1∧dx2))∗), jr

0(x3dx1 ∧ dx2)〉.
We consider the local diffeomorphism ϕ = (x1+ 1

r+1 (x1)r+1, x2, ..., xn)−1.
We see that ϕ−1 preserves jr

0(x3dx1 ∧ dx2) and ∂3. Moreover, we see that
ϕ−1 sends (jr

0((x1)rdx1∧dx2))∗ into (jr
0(dx1∧dx2))∗+..., where the dots are

as above, because of 〈(jr
0((x1)rdx1 ∧ dx2))∗, jr

0(ϕ∗(dx1 ∧ dx2))〉 = 1. Now,
by the invariance of A with respect to ϕ−1 we get 〈A(∂C

3 |(jr
0 ((x1)rdx1∧dx2))∗),

jr
0(x3dx1 ∧ dx2)〉 = 〈A(∂C

3 |(jr
0 (dx1∧dx2))∗+...), jr

0(x3dx1 ∧ dx2)〉. �

The proof of Proposition 1 is complete. �

2. The tangent map Tπ : T (Jr(Λ2T ∗))∗M → TM of the bundle pro-
jection π : (Jr(Λ2T ∗))∗M → M defines a linear natural transformation
Tπ : T (Jr(Λ2T ∗))∗ → T over n-manifolds. (The definition of linear natural
transformations T (Jr(Λ2T ∗))∗ → T over n-manifolds is similar to the one
of Section 1.)

Proposition 2. If r and n ≥ 2 are natural numbers, then every linear natu-
ral transformation B : T (Jr(Λ2T ∗))∗ → T over n-manifolds is proportional
to Tπ.

Proof. Due to similar arguments as in the proof of Proposition 1, B is
uniquely determined by the values 〈B(u), d0x

1〉 for u∈ (T (Jr(Λ2T ∗))∗Rn)0
=̃Rn × (Jr(Λ2T ∗))∗0R

n × (Jr(Λ2T ∗))∗0R
n.

By the naturality of B with respect to the homotheties (t1x1, ..., tnxn) for
t ∈ Rn

+ and the homogeneous function theorem we deduce that 〈B(.), dx1〉 =
x1 ◦ p1, where p1 : Rn × (Jr(Λ2T ∗))∗0R

n × (Jr(Λ2T ∗))∗0R
n → Rn is the

canonical projection.
Then the vector space of all B as above is 1-dimensional. �
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3. The main result of this paper is the following theorem.

Theorem 1. If n ≥ 3 and r are natural numbers, then every natural affinor
Q on (Jr(Λ2T ∗))∗ over n-manifolds is a constant multiple of id.

Proof. Let Q : T (Jr(Λ2T ∗))∗M → T (Jr(Λ2T ∗))∗M be a natural affinor
on (Jr(Λ2T ∗))∗ over n-manifolds. Then B = Tπ ◦ Q : T (Jr(Λ2T ∗))∗ → T
is a linear natural transformation. By Proposition 2, B = Tπ◦Q = λTπ for
some λ. Clearly, Tπ ◦ id = Tπ. Then Q− λid is an affinor of vertical type.
Now, applying Proposition 1 we deduce that Q−λid is the zero affinor. �

From Theorem 1 we obtain immediately

Corollary 1. If n ≥ 3 and r are natural numbers, then there is no natural
connection on (Jr(Λ2T ∗))∗ over n-manifolds.
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