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On the boundary behaviour of functions

of several complex variables

Abstract. In this paper we study the boundary behaviour of holomorphic

functions defined in either the unit ball, or in the unit polydisk.

I. Functions in the unit ball. Let Cn denote the n-dimensional complex
space of all ordered n-tuples z = (z1, z2, . . . , zn) of complex numbers with
the inner product 〈z, w〉 = z1w̄1 + . . . + znw̄n. For z ∈ Cn let z = (z1, z

′),
where z′ = (z2, . . . , zn) ∈ Cn−1. The unit ball Bn of Cn is the set of all
z ∈ Cn with ‖z‖ = (〈z, z〉) 1

2 < 1. For ε > 0 let Bn
ε = εBn and let Bε

denote B1
ε. Let S be the unit sphere. To every fixed a ∈ Bn corresponds an

automorphism ϕa of Bn that interchanges a and O = (0, . . . , 0). Let Pa be
the orthogonal projection of Cn onto the subspace [a] = {λa : λ ∈ C}, i.e.

Pa z =

{
〈z,a〉
〈a,a〉a, a 6= O
0, a = O,

and let Qa = I−Pa be the projection onto the orthogonal complement of
[a]. For sa = (1− ‖a‖2)

1
2 write

ϕa(z) =
a− Pa z − sa Qa z

1− 〈z, a〉
.
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Now, let us fix a = (r, 0, . . . , 0) ∈ Bn and ε, 0 < ε < 1. Then the image of
the ball Bn

ε under ϕa is an ellipsoid

(1.1)
|z1 − c|2

ε2ρ2
+

t2

ε2ρ
< 1,

where c = a(1− ε2)/(1− ε2r2), ρ = (1− r2)/(1− ε2r2), t = ‖z′‖2.
For α > 0 and ζ ∈ S let a Korányi-Stein wedge Ωζ

α (see [Ru]) be the set
of all z ∈ Bn such that

|1− 〈z, ζ〉| < α

2
(1− ‖z‖2).

For α ≤ 1, Ωζ
α = ∅, and for α → ∞ the regions Ωζ

α fill up Bn for ev-
ery fixed ζ ∈ S. In the paper [GS1] the authors obtained results on
the boundary behaviour of functions holomorphic in the unit disk. If
ζ = e1 := (1, 0, . . . , 0) ∈ Cn then the Korányi-Stein wedge is given by
the inequality

(1.2) |1− z1| <
α

2
(1− |z1|2 − ‖z′‖2).

Then set Ωα = Ωe1
α . Put Φε = ∪r∈(0,1)ϕa(Bn

ε ). We shall need the following
result.

Lemma 1.1. Let α > 1 and 0 < ε < 1.
1o If ( 1+ε

1−ε )2 < α, then Φε ⊂ Ωα in a sufficiently small neighbourhood of e1.

2o If min{1 + ε2,
√

1 + 4ε2

(1+ε2)2 )} > α, then Ωα ⊂ Φε in a sufficiently small
neighbourhood of e1.

Proof.
1o Let us fix ‖z′‖2 = t. Note that the inequalities (1.1) and (1.2) can be

written in the following form

(1.1’) |z1 − c|2 < ε2ρ2 − ρt2

and

(1.2’) |1− z1| <
α

2
(1− |z1|2 − t),

respectively. Denote by Φε(t) and Ωα(t) the sets of z1 ∈ C such that (1.1’)
and (1.2’) hold, respectively. We show that the region Ωα(t) is convex in
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the direction of the imaginary axis. Let z1 = x + iy, y2 = τ . Then (1.2’)
can be written in the form

(1.3) (1− x)2 − α2

4
(1− t− x2)2 <

α2

4
[τ2 − 2τ(1− t− x2)− τ

4
α2

].

One can show that the right–hand side expression in (1.3) decreases with
respect to τ . Thus, if (1.3) holds for some τ0, then the same is true for
0 < τ ≤ τ0. This means that Ωα(t) is convex in the direction of the
imaginary axis.

Note that for the rest of the proof it suffices to prove that for every
sufficiently small t the region Ωα(t) contains all the disks (1.1’) in a small
neighbourhood of z1 = 1. From (1.1) it follows that in (1.1’) we have
t ≤ ε2ρ. Since c → 1 and ρ → 0 for r → 1−, we show that for r close to 1
the disks (1.1’) are contained in Ωα(t).

Since there is λ such that t = ε2ρλ, we have ρ = (1− r) 2
1−ε2 + o(1− r),

1 − c = (1 − r) 1+ε2

1−ε2 + o(1 − r), t = 2ε2λ
1−ε2 (1 − r) + o(1 − r), λ ∈ [0, 1], for

r → 1−. Since Ωα(t) is a simply connected region (because of its convexity
in the direction of the imaginary axis), it suffices to show that the boundaries
of the disks (1.1’) lie in Ωα(t). We show that

(1.4)
Ωα(t) 3 z1 = c + eiθ

√
ε2ρ2 − ρt

= 1− 1 + ε2

1− ε2
(1− r) + eiθ 2ε

√
1− λ

1− ε2
(1− r) + o(1− r),

for θ ∈ [0, 2π]. Let us insert (1.4) into (1.2’). Then∣∣∣∣1− ε2

1− ε2
(1− r)− eiθ 2ε

√
1− λ

1− ε2
(1− r) + o(1− r)

∣∣∣∣
≤ α

2

[
1−

(
1− 1 + ε2

1− ε2
(1− r) + cos θ

2ε
√

1− λ

1− ε2
(1− r)

)2

− 2ε2λ

1− ε2
(1− r)

]
,

or equivalently

(1− r)

√(
1 + ε2

1− ε2

)2

− 2
2ε
√

1− λ(1 + ε2)
(1− ε2)2

cos θ +
4ε2(1− λ)
(1− ε2)2

+ o(1− r)

≤ α

2

[
2

1 + ε2

1− ε2
(1− r)− 4ε

√
1− λ

1− ε2
(1− r) cos θ − 2ε2λ

1− ε2
(1− r)

]
.

The last inequality is a consequence of the following one:
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(1.5)

√
(1 + ε2)2 + 4ε(1 + ε2)

√
1− λ + 4ε2(1− λ) + o(1)

≤ α

2

[
2(1 + ε2)− 4ε

√
1− λ cos θ − 2ε2λ

]
.

It is sufficient to show that (1.5) is true with cos θ = 1:

(1.6)
√

(1 + ε2)2 + 4ε(1 + ε2)
√

1− λ + 4ε2(1− λ) ≤ α(1− ε
√

1− λ)2.

The left–hand side expression in (1.6) increases and the right–hand side
decreases with respect to v =

√
1− λ. Therefore it suffices to prove (1.6)

for λ = 0. Then we have√
(1 + ε2)2 + 4ε(1 + ε2) + 4ε2 = (1 + ε)2 ≤ α(1− ε)2,

which is equivalent to ( 1+ε
1−ε )2 ≤ α. For such an ε we have Ωα ⊂ Φε in a

sufficiently small neighbourhood of e1.

2o Let us fix ‖z′‖2 = t and x = Rez1. We show that

Y1 := {y : z = x + iy ∈ Ωα(t)} ⊂ Y2 := {y : z = x + iy ∈ Φε(t)}.

Let Mε := {(x, t) ∈ R2 : ∃y ∃z′ ‖z′‖2 = t, (x + iy, z′) ∈ Φε} and Nα :=
{(x, t) ∈ R2 : ∃y ≥ 0 ∃z′ ‖z′‖2 = t, (x + iy, z′) ∈ Ωα}. Since x → 1 in
an arbitrary way, we may assume that x = c = 1 − (1 − r) 1+ε2

1−ε2 + o(1 − r),
(r → 1−) is the centre of the disc (1,1’). Note that we have to prove that

(1.7) Nα ⊂ Mε

in a neighbourhood of (1, 0) ∈ R2. Let Mε(x) := {t : (x, t) ∈ Mε} and
Nα(x) = {t : (x, t) ∈ Nα}. We shall show that Nα(x) ⊂ Mε(x) for x
close to 1. The right–hand side expression in (1.3) decreases with respect
to τ . Thus the supremum of tx from Nα(x) fulfills the following equation:
(1 − x)2 − α2

4 (1 − tx − x2)2 = 0, or equivalently tx = 1 − x2 − 2
α (1 − x) =

(1−r)[2 1+ε2

1−ε2 − 2
α

1+ε2

1−ε2 ]+o(1−r), for r → 1 (that is for x = 1−(1−r) 1+ε2

1−ε2 +
o(1− r) → 1). Note that the supremum of t from Mε(x) is greater or equal
to t′x = ε2ρ = (1 − r) 2ε2

1−ε2 + o(1 − r). (Note that from (1.1’) and (1.2’) it
follows that the sets Mε and Nα are convex in the direction of t-axis.) The
inclusion Nα(x) ⊂ Mε(x) will be shown if tx ≤ t′x for x sufficiently small
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(r → 1), that is if 2ε2

1−ε2 ≥ 2 1+ε2

1−ε2 (1 − 1
α ) or equivalently α ≤ 1 + ε2. Thus

(1.7) holds. Now, we will show that Y1 ⊂ Y2 for r → 1 (x = c = c(r) → 1,
t = t(r) → 0 and ρ = ρ(r) → 0). From (1.1’) we have

sup Y2 ≥
√

ε2ρ2 − ρt = [(1− r)2
4ε2(1− λ)
(1− ε2)2

+ o((1− r2))]
1
2 .

We have to show that

(1.8) ∀y ∈ Y1 : τ = (sup Y1)2 ≤ (1− r)2
4ε2(1− λ)
(1− ε2)2

+ o((1− r2)).

From (1.2’) we see that τ is a solution of the equation

(1.9)
√

(1− c)2 + τ =
α

2
(1− c2 − τ − t),

for fixed x = c = c(r) close to 1. Evidently τ = τ(r) = (1 − r)K + (1 −
r)2L+o((1−r)2) for r → 1, where K, L are constants. And now we express
(1.9) in r-terms.√

(1− r)2
(

1 + ε2

1− ε2

)2

+ (1− r)K + (1− r)2L + o((1− r)2)

=
α

2

[
2(1− r)

1 + ε2

1− ε2
− (1− r)K − (1− r2)L− 2

ε2λ

1− ε2
(1− r)

]
+ o(1− r).

From the above it follows that K = 0 and

L = (α2 − 1)
(

1 + ε2

1− ε2

)2

− 2α2 λε2(1 + ε2)
(1− ε2)2

+
α2λ2ε4

(1− ε2)2
.

For r → 1 the inequality (1.8) is equivalent to the following one:

(α2 − 1)(1 + ε2)2 − 4ε2 ≤ −λ2α2ε4 + λ(2α2ε2(1 + ε2)− 4ε2).

Minimum with respect to λ ∈ [0, 1] of the right–hand side in the last in-
equality is attained for λ = 0 or λ = 1. Thus let us consider two cases:

(i) λ = 0. Then (α2 − 1)(1 + ε2)2 − 4ε2 ≤ 0, or equivalently

(1.10) α2 ≤ 4ε2

(1 + ε2)2
+ 1.

(ii) λ = 1. Then α ≤ 1 + ε2.
Now note that 1 + ε2 is less than the right-hand side of (1.10). �
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Theorem 1.2. Let f be a function holomorphic in Bn, c2, . . . , cn be real
integers, c1 ∈ C and let Ωα be a Korányi-Stein wedge at e1. If

lim
Ωα3z→e1

[
f(z)(1− z1)c1

n∏
k=2

zck

k

]
= A 6= ∞,

then there exists α1 < α such that

lim
Ωα13z→e1

∂f(z)
∂z1

(1− z1)c1+1
n∏

k=2

zck

k = Ac1

and

lim
Ωα13z→e1

∂f(z)
∂zl

(1− z1)c1

n∏
k=2

zck

k zl = −Acl, l = 2, . . . , n.

Proof. Let us consider the function

h(z) = f(ϕa(z))(1− ϕ(1)
a (z))c1

n∏
k=2

(ϕ(k)
a (z))ck .

The automorphism ϕa, with a = (r, 0, . . . , 0) and r close to 1, maps every
ball Bn

ε(α)−δ, with δ sufficiently small, into a Korányi-Stein wedge Ωα = Ωe1
α .

Therefore, if there exists limΩα3z→e1 h(z) = A ∈ C, then f(ϕa(z))(1 −
ϕ

(1)
a (z))c1

∏n
k=2(ϕ(k)

a (z))ck tends uniformly in Bn
ε to A for r → 1. Note

that for the above a we have ϕa(z) = (ϕ(1)
a (z), . . . , ϕ

(n)
a (z)), with ϕ

(1)
a (z) =

r−z1
1−rz1

, and ϕ
(k)
a (z) = −

√
1−r2zk

1−rz1
, k = 2, . . . , n.

Then

∂h

∂z1
(z) =

[
∂f

∂ϕ(1)
(ϕa(z))

−1 + r2

(1− rz1)2
(1− ϕ(1)

a (z))c1+1
n∏

k=2

(ϕ(k)
a (z))ck

− c1f(ϕa(z))(1− ϕ(1)
a (z))c1

n∏
k=2

(ϕ(k)
a (z))ck

−1 + r2

(1− rz1)2

]
1

1− ϕ
(1)
a (z)

+
n∑

j=2

[
∂f

∂ϕ(j)
(ϕa(z))

(
−r

√
1− r2zj

(1− rz1)2

)
(1−ϕ(1)

a (z))c1

n∏
k=2

(ϕ(k)
a (z))ck

+ f(ϕa(z))(1− ϕ(1)
a (z))c1

n∏
k=2

(ϕ(k)
a (z))ck

cj

ϕ
(j)
a (z)

−r
√

1− r2zj

(1− rz1)2

]
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and this uniformly tends to 0, as r → 1 in Bn
ε .

Now, let us observe that

r2 − 1
(1− rz1)2

1

1− ϕ
(1)
a (z)

= − 1 + r

(1 + z1)(1− rz1)

and that the last term is bounded for r close to 1. Moreover, each term
under the sign of sum

∑n
j=2 has the following form

(1.11)[
∂f

∂wj
(w)(1− w1)c1

n∏
k=2

wck

k wj + f(w)(1− w1)c1

n∏
k=2

wck

k cj

]
r

1− rz1
,

where the expression r
1−rz1

is bounded for r close to 1. Therefore, using
Lemma 1.1 one can see that for ε sufficiently small (1.11) tends to 0 as
w → e1 in Φε.

Moreover, from the definition of h we get

∂h

∂zl
(z) =

∂f

∂zl
(ϕa(z))

−
√

1− r2

1− rz1
(1− ϕ(1)

a (z))c1

n∏
k=2

(ϕ(k)
a (z))ck

+f(ϕa(z))(1− ϕ(1)
a (z))c1

n∏
k=2

(ϕ(k)
a (z))ckcl

1
zl
→ 0

uniformly, as r → 1 in Bn
ε . Then

∂f

∂zl
(ϕa(z))

√
1− r2zl

1− rz1
(1− ϕ(1)

a (z))c1

n∏
k=1

(ϕ(k)
a (z))ck → clA,

uniformly, as r → 1 in Bn
ε . Thus

lim
Φε3w→e1

[
∂f

∂zl
(w)(1− w1)c1

n∏
k=1

wck

k wl

]
= −clA.

The proof is complete. �

Corollary 1.3. Let f be a function holomorphic in Bn. If lim
Ωα3z→e1

f(z) =

A 6= ∞, then there exists α1 < α such that in Ωα1 we have ∂f(z)
∂z1

= o( 1
|1−z1| )

and ∂f(z)
∂zl

= o( 1
|zl| ) for z → e1 and every l = 2, . . . , n.

In the next theorem we give results concerning the behaviour of ∂f
∂zj

,
which is essentially different from that presented in Theorem 1.2.
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Theorem 1.4. Let f be a function holomorphic in Bn, c ∈ C and let Ωα

be a Korányi-Stein wedge at e1. Assume that there exists the limit

lim
Ωα13z→e1

f(z)(1− z2
1 − . . .− z2

n)c = A ∈ C.

Then
(i) for every l = 2, . . . , n the expression ∂f(z)

∂zl
(1−z2

1−. . .−z2
n)c+ 1

2 is bounded

in Ωα1 for z → e1, but the limit lim
Ωα13z→e1

∂f(z)
∂zl

(1 − z2
1 − . . . − z2

n)c+ 1
2

does not exist with c 6= 0.
(ii) there exists α1 < α such that

lim
Ωα13z→e1

∂f(z)
∂z1

(1− z2
1 − . . .− z2

n)c+1 = 2cA.

Proof. Let us consider an automorphism

ϕa(z) =

(
r − z1

1− rz1
,−

√
1− r2z2

1− rz1
, . . . ,−

√
1− r2zn

1− rz1

)
,

with a = (r, 0, . . . , 0). Then ϕ(Bn
ε ) ⊂ Φε ⊂ Ωα, ( 1+ε

1−ε )2 < α. Write

h(z) = f(ϕa(z))(1− (ϕ(1)
a (z))2 − . . .− (ϕ(n)

a (z))2)c,

and wj = ϕ
(j)
a (z). From the assumption we have lim

Bn
ε3z→e1

h(z) = A.

First we prove (i).
For every j = 2, . . . , n we get (after some calculations)

∂h(z)
∂zj

=
∂f

∂wj
(w)[1−(ϕ(1)

a (z))2−. . .−(ϕ(n)
a (z))2)]c+1 1− rz1√

1−r2(1−z2
1−. . .−z2

n)

−f(w)c[1− (ϕ(1)
a (z))2 − . . .− (ϕ(n)

a (z))2]c
2zj

1− z2
1 − . . .− z2

n

,

which tends to 0 uniformly for z ∈ Bn
ε and r → 1. From the above we see

that

∂h(z)
∂zj

= − ∂f

∂wj
(w)(1− w2

1 − . . .− w2
n)c+ 1

2
(1− w2

1 − . . .− w2
n)

1
2 (1− rz1)√

1− r2(1− z2
1 − . . .− z2

n)

−f(w)c[1− w2
1 − . . .− w2

n]c
2zj

1− z2
1 − . . .− z2

n

,
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tends to 0 uniformly for z ∈ Bn
ε and r → 1. Since

√
1−w2

1−r2 =
√

1−z2
1−...−z2

n

1−rz1

and
√

1− z2
1 − . . .− z2

n are bounded in Bn
ε ,

∂f

∂wj
(w)(1−w2

1 − . . .−w2
n)c+ 1

2 + f(w)c[1−w2
1 − . . .−w2

n]c
2zj

1− z2
1 − . . .− z2

n

tends to 0 uniformly for z ∈ Bn
ε and r → 1. Therefore

∂f(z)
∂zl

(1− z2
1 − . . .− z2

n)c+ 1
2

is bounded in Ωα1 for z → e1 and j = 2, . . . , n.
We will show that the expression

∂f(z)
∂zl

(1− z2
1 − . . .− z2

n)c+ 1
2

with c 6= 0, has no limit for Ωα1 3 z → e1. In the case n = 2 let us consider
the function

f(z) =
1

1− z2
1 − z2

2

.

Note that lim
Ωα13z→e1

f(z)(1− z2
1 − z2

2) = 1, with c = 1 and A = 1. Then

lim
Ωα13z→e1

∂f(z)
∂z2

(1− z2
1 − z2

2)1+
1
2 = 2 lim

Ωα13z→e1

z2√
1− z2

1 − z2
2

.

We will prove that the last limit does not exist. By the definition of the
Korányi-Stein wedge in C2 we have

|1− z1| <
α

2
(1− |z1|2 − |z2|2).

Then for z1 = 1−r we get |z2|2 ≤ r(2(1− 1
α )−r). Note that for r sufficiently

small we may take z2
2 = r(1− 1

α )t, where t ∈ [0, 1]. Then

√
1− z2

1 − z2
2 =

√√√√2r − r2

(
1 +

(
1− 1

α

)2

t2

)

and therefore

lim
Ωα13z→e1

z2√
1− z2

1 − z2
2

=

√
1− 1

α

2
t.



40 J. Godula and V.V. Starkov

The last expression depends on t, so that lim
Ωα13z→e1

z2√
1− z2

1 − z2
2

does not

exist. For n > 2 one may consider the function

f(z) =
1

1− z2
1 − . . .− z2

n

.

Now we prove (ii).
Put w = ϕa(z). Then

∂h(z)
∂z1

=
[

∂f

∂w1
(w)

r2

(1− rz1)2
(1− w2

1 − . . .− w2
n)c

+ cf(w)(1− w2
1 − . . .− w2

n)c−1

(
−2w1

r2 − 1
(1− rz1)2

)]
1

−
n∑

k=2

[(
∂f

∂wk
(w)(1− w2

1 − . . .− w2
n)c

− 2cf(w)(1− w2
1 − . . .− w2

n)c−1wk

)
r
√

1− r2zk

(1− rz1)2

]
k

tends to 0 uniformly for z ∈ Bn
ε and r → 1−.

Since (1− w2
1 − . . .− w2

n)
1
2 =

√
1− r2

√
1−z2

1−...−z2
n

1−rz1
, we get

[. . . ]k =

(
∂f

∂wk
(w)(1− w2

1 − . . .− w2
n)c+ 1

2
1− rz1√

1− r2
√

1− z2

+ 2cf(w)(1− w2
1 − . . .− w2

n)c (1− rz1)zk√
1− r2(1− z2)

)
r
√

1− r2zk

(1− rz1)2
.

From the first part of the proof we have

∂f

∂wk
(w)(1−w2

1− . . .−w2
n)c+ 1

2 = −cf(w)(1−w2
1− . . .−w2

n)c 2zk√
1− z2

+o(1).

Therefore

[. . . ]k = −cf(w)(1− w2
1 − . . .− w2

n)c rzk√
1− z2

1
1− rz1

+ o(1)

+ cf(w)(1− w2
1 − . . .− w2

n)c rzk√
1− z2

1
1− rz1

= o(1)
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tends to 0 uniformly for z ∈ Bn
ε and r → 1−. Moreover

[. . . ]1 =
∂f

∂w1
(w)(1− w2

1 − . . .− w2
n)c+1 −1

1− z2

+ cf(w)(1− w2
1 − . . .− w2

n)c 2
1− z2

r − z1

1− rz1
.

Thus from the above considerations we get

lim
Ωα13z→e1

∂f(z)
∂z1

(1− z2
1 − . . .− z2

n)c+1 = 2cA. �

Rudin obtained the following result ([Ru], Lemma 6.4.6).

Theorem R. If f is a function holomorphic in Bn, c ≥ 0, and

|f(z)| ≤ (1− ‖z‖)−c for z ∈ Bn,

then for l = 2, . . . , n, 0 < r < 1,

|∂f(re1)
∂zl

| ≤ Ac(1− r)−c− 1
2 .

Note that Theorem R is interesting in the case when |f(re1)| → ∞ as
r → 1−. The following corollary describing the behaviour of functions, in
the case of existence of a finite limit lim

Ωα13z→e1
f(z), may be concluded from

the proof of Theorem 1.4.

Corollary 1.5. If there exists a finite limit lim
Ωα13z→e1

f(z) then for every

l = 2, . . . , n

lim
Ωα13z→e1

∂f(z)
∂zl

(1− z2
1 − . . .− z2

n)
1
2 = 0.

From the proof of Theorem 1.4 also the next corollary follows.

Corollary 1.6. If there exists lim
Ωα13z→e1

f(z)(1− z2
1 − . . .− z2

n)c = A, then

for every l = 2, . . . , n

lim
Ωα13z→e1

∂f(z1, 0, . . . , 0)
∂zl

(1− z2
1)c+ 1

2 = 0.
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Corollary 1.7. Let f be a function holomorphic in Bn. If there exists a
finite limit lim

Ωα3z→e1
f(z), then

∂f(z)
∂z1

= o

(
1

1− z2
1 − . . .− z2

n

)
,

for z → e1 in Ωα1 .

II. Functions in the unit polydisk. Let ∆ be the unit disk in the plane.
For eiθ = (eiθ1 , . . . , eiθn) and η = (η1, . . . , ηn) let us consider Stolz domains
at eiθk , i.e. the domains

Wηk
(eiθk) = {zk ∈ ∆ : | arg(1− zke−iθk)| < ηk},

where ηk ∈ (0, π/2], ρ > 0, k = 1, . . . , n. Let

Wη(eiθ) = Wη1(eiθ1)× . . .×Wηn
(eiθn)

be the Stolz domain.
In this part of the paper we solve some problems concerning the behaviour

of functions holomorphic in the polydisk near ”the vertex” of a Stolz domain.

Theorem 2.1. Let A ∈ C, c = (c1, . . . , cn) ∈ Cn and let

(2.1) lim
Wη3z→eiθ

f(z)
n∏

k=1

(1− zke−iθk)cn = A.

Then
1o for every εk ∈ (0, ηk), k = 1, . . . , n and each l = 1, . . . , n

lim
Wη−ε3z→eiθ

∂f

∂zl

n∏
k=1

(1− zke−iθk)cn = Acle
−iθl ;

2o if A 6= 0 and if the limit (2.1) exists for every Wη with the vertex at 1,
then

lim
a→1

f(ϕa(z))
f(a)

=
n∏

k=1

(
1 + zk

1− zk

)ck

,

where ϕa(z) = ( z1+a1
1+a1z1

eiθ1 , . . . , zn+an

1+anzn
eiθn) is an automorphism of ∆n.
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Proof.
1o For δ > 0 sufficiently small and l = 1, . . . , n, put Kηl

(δ) = {zl : |zl| ≤
rηk

− δ} and Kη(δ) = Kη1(δ) × . . . ×Kηn(δ). Then for a = (a1, . . . , an) ∈
(0, 1)n we have

f(w1, . . . , wn)
n∏

k=1

(1− wk)ck → A

uniformly in Kη(δ), as a → 1 where wk = zk+ak

1+akzk
. Now for fixed l we get

∂f

∂zl
(w)

n∏
k=1

(1− wk)ckeiθl
1− a2

l

(1 + alzl)2

− f(w)
n∏

k=1,k 6=l

(1− wk)ck
1− a2

l

(1 + alzl)2
cl(1− wl)cl−1 → 0

uniformly in Kη(δ), as a → 1. Note that 1−a2
l

(1+alzl)2
= (1 − wl) 1+al

(1+alzl)(1−zl)

and[
∂f

∂zl
(w)

n∏
k=1

(1− wk)ckeiθl(1− wl)

− f(w)
n∏

k=1

(1− wk)ckcl

]
1 + al

(1 + alzl)(1− zl)
→ 0

uniformly in Kη(δ), as a → 1. Therefore
(2.2)
∂f

∂zl
(w)

n∏
k=1

(1−wke−iθk)ckeiθl(1−wle
−iθl)− f(w)

n∏
k=1

(1−wke−iθk)ckcl → 0

as w = (w1, . . . , wn) → 1 in a domain Ωα which is the image of Kη(δ)
under the map ( z1+a1

1+a1z1
eiθ1 , . . . , zn+an

1+anzn
eiθn). In the same way as in the case

n = 1 ([GS1]) one can show that Wη−ε ⊂ Ωα for every ε = (ε1, . . . , εn)
with sufficiently small ‖ε‖. Thus from (2.2) we obtain

lim
Wη−ε3w→1

∂f

∂zl
(w)

n∏
k=1

(1− wke−iθk)ckeiθl(1− wle
−iθl) = Acl.

2o Note that for g(z) = (1+z1)
c1−2...(1+zn)cn−2

(1−z1)c1 ...(1−zn)cn there exists the limit

(2.3) lim
Wη3z→1

f(z)
g(z)

= A · 2q,
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where q = 2n =
∑n

k=1 ck. In particular, lim
Wη3a→1

f(a)
g(a)

= A · 2q. Similarly

as in the proof of 1o one can rewrite (2.3) in the following form

(2.4) lim
Wη3a→1

f(ϕa(z))g(a)
g(ϕa(z))f(a)

= 1,

where the convergence is uniform in ∆n. Since g(z) = g(ϕa(z))
g(a)

∏n
k=1(1+akzk)2 ,

from (2.4) we get

lim
Wη3a→1

f(ϕa(z))
f(z)

= g(z)
n∏

k=1

(1 + zk)2 =
n∏

k=1

(
1 + zk

1− zk

)ck

. �

Corollary 2.2. Let c = O. If the limit lim
Wη3z→eiθ

f(z) is finite then for

every l = 1, . . . , n and every ε = (ε1, . . . , εn) ∂f
∂zl

(z) = o( 1
1−‖z‖ ) for z → 1

in Wη−ε. Moreover ∂mf
∂k1z1...∂kn zn

(z) = o(( 1
1−‖z‖ )m), where m = k1+. . .+kn,

and on the right–hand side of the last equality it is not possible to put a
number less than m.

The proof of Theorem 2.1 implies a modification of Hardy-Littlewood
theorem ([Du], [Ru]; also cf. [GS2]).

Theorem 2.3. Let f be a function holomorphic in Wη with the vertex
at 1, where η is sufficiently small and suppose that for fixed c ∈ Cn the
limit lim

Wη3z→1
f(z)

∏n
k=1(1 − zk)ck = A ∈ C does exist. Then for every

l = 1, . . . , n

lim
r→1

∂f

∂zl
(r)

n∏
k=1

(1− rk)ck(1− rl) = Acl,

where r = (r1, . . . , rn) ∈ (0, 1)n.

Theorem 2.4. Let c = (c1, . . . , cn) ∈ Cn, µ = (µ1, . . . , µn) ∈ Cn. If

lim
Wη3z→1

f(z)
n∏

k=1

(
(1− zk)ck

(
log

1
1− zk

)µk
)

= A ∈ C,

(
or lim

Wη3z→1
f(z)

n∏
k=1

exp
ck

1− zk
= A ∈ C

)
,

then for every ε = (ε1, . . . , εn), 0 < εk < ηk and every l = 1, . . . , n

lim
Wη−ε3z→1

∂f

∂zl
(w)

n∏
k=1

(
(1− wk)ck

(
log

1
1− wk

)µk
)

(1− wk) = Acl.
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lim

Wη−ε3z→1

∂f

∂zl
(w)

n∏
k=1

exp
ck

1− wk
= −Acl

)
.

The proof of this theorem is similar to that of Theorem 2.1.

The authors wish to express their gratitude to Maria Nowak for many sti-
mulating conversations.
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