ANNALES

UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVI, 3

On the boundary behaviour of functions of several complex variables

Abstract

In this paper we study the boundary behaviour of holomorphic functions defined in either the unit ball, or in the unit polydisk.

I. Functions in the unit ball. Let \mathbb{C}^{n} denote the n-dimensional complex space of all ordered n-tuples $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ of complex numbers with the inner product $\langle z, w\rangle=z_{1} \bar{w}_{1}+\ldots+z_{n} \bar{w}_{n}$. For $z \in \mathbb{C}^{n}$ let $z=\left(z_{1}, z^{\prime}\right)$, where $z^{\prime}=\left(z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n-1}$. The unit ball \mathbf{B}^{n} of \mathbb{C}^{n} is the set of all $z \in \mathbb{C}^{n}$ with $\|z\|=(\langle z, z\rangle)^{\frac{1}{2}}<1$. For $\varepsilon>0$ let $\mathbf{B}_{\varepsilon}^{n}=\varepsilon \mathbf{B}^{n}$ and let \mathbf{B}_{ε} denote $\mathbf{B}_{\varepsilon}^{1}$. Let \mathbf{S} be the unit sphere. To every fixed $a \in \mathbf{B}^{n}$ corresponds an automorphism φ_{a} of \mathbf{B}^{n} that interchanges a and $\mathbb{O}=(0, \ldots, 0)$. Let P_{a} be the orthogonal projection of \mathbb{C}^{n} onto the subspace $[a]=\{\lambda a: \lambda \in \mathbb{C}\}$, i.e.

$$
\mathrm{P}_{a} z= \begin{cases}\frac{\langle z, a\rangle}{\langle a, a\rangle} a, & a \neq \mathbb{O} \\ 0, & a=\mathbb{O},\end{cases}
$$

and let $\mathrm{Q}_{a}=\mathrm{I}-\mathrm{P}_{a}$ be the projection onto the orthogonal complement of $[a]$. For $s_{a}=\left(1-\|a\|^{2}\right)^{\frac{1}{2}}$ write

$$
\varphi_{a}(z)=\frac{a-\mathrm{P}_{a} z-s_{a} \mathrm{Q}_{a} z}{1-\langle z, a\rangle}
$$

[^0]Now, let us fix $a=(r, 0, \ldots, 0) \in \mathbf{B}^{n}$ and $\varepsilon, 0<\varepsilon<1$. Then the image of the ball $\mathbf{B}_{\varepsilon}^{n}$ under φ_{a} is an ellipsoid

$$
\begin{equation*}
\frac{\left|z_{1}-c\right|^{2}}{\varepsilon^{2} \rho^{2}}+\frac{t^{2}}{\varepsilon^{2} \rho}<1 \tag{1.1}
\end{equation*}
$$

where $c=a\left(1-\varepsilon^{2}\right) /\left(1-\varepsilon^{2} r^{2}\right), \rho=\left(1-r^{2}\right) /\left(1-\varepsilon^{2} r^{2}\right), t=\left\|z^{\prime}\right\|^{2}$.
For $\alpha>0$ and $\zeta \in \mathbf{S}$ let a Korányi-Stein wedge Ω_{α}^{ζ} (see $[\mathrm{Ru}]$) be the set of all $z \in \mathbf{B}^{n}$ such that

$$
|1-\langle z, \zeta\rangle|<\frac{\alpha}{2}\left(1-\|z\|^{2}\right)
$$

For $\alpha \leq 1, \Omega_{\alpha}^{\zeta}=\emptyset$, and for $\alpha \rightarrow \infty$ the regions Ω_{α}^{ζ} fill up \mathbf{B}^{n} for every fixed $\zeta \in \mathbf{S}$. In the paper [GS1] the authors obtained results on the boundary behaviour of functions holomorphic in the unit disk. If $\zeta=e_{1}:=(1,0, \ldots, 0) \in \mathbb{C}^{n}$ then the Korányi-Stein wedge is given by the inequality

$$
\begin{equation*}
\left|1-z_{1}\right|<\frac{\alpha}{2}\left(1-\left|z_{1}\right|^{2}-\left\|z^{\prime}\right\|^{2}\right) \tag{1.2}
\end{equation*}
$$

Then set $\Omega_{\alpha}=\Omega_{\alpha}^{e_{1}}$. Put $\Phi_{\varepsilon}=\cup_{r \in(0,1)} \varphi_{a}\left(\mathbf{B}_{\varepsilon}^{n}\right)$. We shall need the following result.

Lemma 1.1. Let $\alpha>1$ and $0<\varepsilon<1$.
$\mathbf{1}^{\mathbf{o}}$ If $\left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{2}<\alpha$, then $\Phi_{\varepsilon} \subset \Omega_{\alpha}$ in a sufficiently small neighbourhood of e_{1}.
$\mathbf{2}^{\text {o }}$ If $\min \left\{1+\varepsilon^{2}, \sqrt{\left.1+\frac{4 \varepsilon^{2}}{\left(1+\varepsilon^{2}\right)^{2}}\right)}\right\}>\alpha$, then $\Omega_{\alpha} \subset \Phi_{\varepsilon}$ in a sufficiently small neighbourhood of e_{1}.

Proof.

$1^{\text {o }}$ Let us fix $\left\|z^{\prime}\right\|^{2}=t$. Note that the inequalities (1.1) and (1.2) can be written in the following form

$$
\begin{equation*}
\left|z_{1}-c\right|^{2}<\varepsilon^{2} \rho^{2}-\rho t^{2} \tag{1.1’}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|1-z_{1}\right|<\frac{\alpha}{2}\left(1-\left|z_{1}\right|^{2}-t\right) \tag{1.2'}
\end{equation*}
$$

respectively. Denote by $\Phi_{\varepsilon}(t)$ and $\Omega_{\alpha}(t)$ the sets of $z_{1} \in \mathbb{C}$ such that (1.1') and (1.2') hold, respectively. We show that the region $\Omega_{\alpha}(t)$ is convex in
the direction of the imaginary axis. Let $z_{1}=x+i y, y^{2}=\tau$. Then (1.2') can be written in the form

$$
\begin{equation*}
(1-x)^{2}-\frac{\alpha^{2}}{4}\left(1-t-x^{2}\right)^{2}<\frac{\alpha^{2}}{4}\left[\tau^{2}-2 \tau\left(1-t-x^{2}\right)-\tau \frac{4}{\alpha^{2}}\right] . \tag{1.3}
\end{equation*}
$$

One can show that the right-hand side expression in (1.3) decreases with respect to τ. Thus, if (1.3) holds for some τ_{0}, then the same is true for $0<\tau \leq \tau_{0}$. This means that $\Omega_{\alpha}(t)$ is convex in the direction of the imaginary axis.

Note that for the rest of the proof it suffices to prove that for every sufficiently small t the region $\Omega_{\alpha}(t)$ contains all the disks (1.1') in a small neighbourhood of $z_{1}=1$. From (1.1) it follows that in (1.1') we have $t \leq \varepsilon^{2} \rho$. Since $c \rightarrow 1$ and $\rho \rightarrow 0$ for $r \rightarrow 1^{-}$, we show that for r close to 1 the disks (1.1') are contained in $\Omega_{\alpha}(t)$.

Since there is λ such that $t=\varepsilon^{2} \rho \lambda$, we have $\rho=(1-r) \frac{2}{1-\varepsilon^{2}}+o(1-r)$, $1-c=(1-r) \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}+o(1-r), t=\frac{2 \varepsilon^{2} \lambda}{1-\varepsilon^{2}}(1-r)+o(1-r), \lambda \in[0,1]$, for $r \rightarrow 1^{-}$. Since $\Omega_{\alpha}(t)$ is a simply connected region (because of its convexity in the direction of the imaginary axis), it suffices to show that the boundaries of the disks (1.1') lie in $\overline{\Omega_{\alpha}(t)}$. We show that

$$
\begin{align*}
\overline{\Omega_{\alpha}(t)} \ni z_{1} & =c+e^{i \theta} \sqrt{\varepsilon^{2} \rho^{2}-\rho t} \\
& =1-\frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}(1-r)+e^{i \theta} \frac{2 \varepsilon \sqrt{1-\lambda}}{1-\varepsilon^{2}}(1-r)+o(1-r), \tag{1.4}
\end{align*}
$$

for $\theta \in[0,2 \pi]$. Let us insert (1.4) into (1.2'). Then

$$
\begin{gathered}
\left|\frac{1-\varepsilon^{2}}{1-\varepsilon^{2}}(1-r)-e^{i \theta} \frac{2 \varepsilon \sqrt{1-\lambda}}{1-\varepsilon^{2}}(1-r)+o(1-r)\right| \\
\leq \frac{\alpha}{2}\left[1-\left(1-\frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}(1-r)+\cos \theta \frac{2 \varepsilon \sqrt{1-\lambda}}{1-\varepsilon^{2}}(1-r)\right)^{2}-\frac{2 \varepsilon^{2} \lambda}{1-\varepsilon^{2}}(1-r)\right]
\end{gathered}
$$

or equivalently

$$
\begin{aligned}
& (1-r) \sqrt{\left(\frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}\right)^{2}-2 \frac{2 \varepsilon \sqrt{1-\lambda}\left(1+\varepsilon^{2}\right)}{\left(1-\varepsilon^{2}\right)^{2}} \cos \theta+\frac{4 \varepsilon^{2}(1-\lambda)}{\left(1-\varepsilon^{2}\right)^{2}}}+o(1-r) \\
& \quad \leq \frac{\alpha}{2}\left[2 \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}(1-r)-\frac{4 \varepsilon \sqrt{1-\lambda}}{1-\varepsilon^{2}}(1-r) \cos \theta-\frac{2 \varepsilon^{2} \lambda}{1-\varepsilon^{2}}(1-r)\right] .
\end{aligned}
$$

The last inequality is a consequence of the following one:

$$
\begin{aligned}
& \sqrt{\left(1+\varepsilon^{2}\right)^{2}+4 \varepsilon\left(1+\varepsilon^{2}\right) \sqrt{1-\lambda}+4 \varepsilon^{2}(1-\lambda)}+o(1) \\
& \leq \frac{\alpha}{2}\left[2\left(1+\varepsilon^{2}\right)-4 \varepsilon \sqrt{1-\lambda} \cos \theta-2 \varepsilon^{2} \lambda\right] .
\end{aligned}
$$

It is sufficient to show that (1.5) is true with $\cos \theta=1$:

$$
\begin{equation*}
\sqrt{\left(1+\varepsilon^{2}\right)^{2}+4 \varepsilon\left(1+\varepsilon^{2}\right) \sqrt{1-\lambda}+4 \varepsilon^{2}(1-\lambda)} \leq \alpha(1-\varepsilon \sqrt{1-\lambda})^{2} \tag{1.6}
\end{equation*}
$$

The left-hand side expression in (1.6) increases and the right-hand side decreases with respect to $v=\sqrt{1-\lambda}$. Therefore it suffices to prove (1.6) for $\lambda=0$. Then we have

$$
\sqrt{\left(1+\varepsilon^{2}\right)^{2}+4 \varepsilon\left(1+\varepsilon^{2}\right)+4 \varepsilon^{2}}=(1+\varepsilon)^{2} \leq \alpha(1-\varepsilon)^{2},
$$

which is equivalent to $\left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{2} \leq \alpha$. For such an ε we have $\Omega_{\alpha} \subset \Phi_{\varepsilon}$ in a sufficiently small neighbourhood of e_{1}.
$\mathbf{2}^{\text {o }}$ Let us fix $\left\|z^{\prime}\right\|^{2}=t$ and $x=\operatorname{Re} z_{1}$. We show that

$$
Y_{1}:=\left\{y: z=x+i y \in \Omega_{\alpha}(t)\right\} \subset Y_{2}:=\left\{y: z=x+i y \in \Phi_{\varepsilon}(t)\right\} .
$$

Let $M_{\varepsilon}:=\left\{(x, t) \in \mathbb{R}^{2}: \exists y \exists z^{\prime}\left\|z^{\prime}\right\|^{2}=t, \quad\left(x+i y, z^{\prime}\right) \in \Phi_{\varepsilon}\right\}$ and $N_{\alpha}:=$ $\left\{(x, t) \in \mathbb{R}^{2}: \exists y \geq 0 \exists z^{\prime}\left\|z^{\prime}\right\|^{2}=t, \quad\left(x+i y, z^{\prime}\right) \in \Omega_{\alpha}\right\}$. Since $x \rightarrow 1$ in an arbitrary way, we may assume that $x=c=1-(1-r) \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}+o(1-r)$, $\left(r \rightarrow 1^{-}\right)$is the centre of the disc $\left(1,1^{\prime}\right)$. Note that we have to prove that

$$
\begin{equation*}
N_{\alpha} \subset M_{\varepsilon} \tag{1.7}
\end{equation*}
$$

in a neighbourhood of $(1,0) \in \mathbb{R}^{2}$. Let $M_{\varepsilon}(x):=\left\{t:(x, t) \in M_{\varepsilon}\right\}$ and $N_{\alpha}(x)=\left\{t:(x, t) \in N_{\alpha}\right\}$. We shall show that $N_{\alpha}(x) \subset M_{\varepsilon}(x)$ for x close to 1. The right-hand side expression in (1.3) decreases with respect to τ. Thus the supremum of t_{x} from $N_{\alpha}(x)$ fulfills the following equation: $(1-x)^{2}-\frac{\alpha^{2}}{4}\left(1-t_{x}-x^{2}\right)^{2}=0$, or equivalently $t_{x}=1-x^{2}-\frac{2}{\alpha}(1-x)=$ $(1-r)\left[2 \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}-\frac{2}{\alpha} \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}\right]+o(1-r)$, for $r \rightarrow 1$ (that is for $x=1-(1-r) \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}+$ $o(1-r) \rightarrow 1)$. Note that the supremum of t from $M_{\varepsilon}(x)$ is greater or equal to $t_{x}^{\prime}=\varepsilon^{2} \rho=(1-r) \frac{2 \varepsilon^{2}}{1-\varepsilon^{2}}+o(1-r)$. (Note that from (1.1') and (1.2') it follows that the sets M_{ε} and N_{α} are convex in the direction of t-axis.) The inclusion $N_{\alpha}(x) \subset M_{\varepsilon}(x)$ will be shown if $t_{x} \leq t_{x}^{\prime}$ for x sufficiently small
$(r \rightarrow 1)$, that is if $\frac{2 \varepsilon^{2}}{1-\varepsilon^{2}} \geq 2 \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}\left(1-\frac{1}{\alpha}\right)$ or equivalently $\alpha \leq 1+\varepsilon^{2}$. Thus (1.7) holds. Now, we will show that $Y_{1} \subset Y_{2}$ for $r \rightarrow 1(x=c=c(r) \rightarrow 1$, $t=t(r) \rightarrow 0$ and $\rho=\rho(r) \rightarrow 0)$. From (1.1') we have

$$
\sup Y_{2} \geq \sqrt{\varepsilon^{2} \rho^{2}-\rho t}=\left[(1-r)^{2} \frac{4 \varepsilon^{2}(1-\lambda)}{\left(1-\varepsilon^{2}\right)^{2}}+o\left(\left(1-r^{2}\right)\right)\right]^{\frac{1}{2}}
$$

We have to show that

$$
\begin{equation*}
\forall y \in Y_{1}: \tau=\left(\sup Y_{1}\right)^{2} \leq(1-r)^{2} \frac{4 \varepsilon^{2}(1-\lambda)}{\left(1-\varepsilon^{2}\right)^{2}}+o\left(\left(1-r^{2}\right)\right) \tag{1.8}
\end{equation*}
$$

From (1.2') we see that τ is a solution of the equation

$$
\begin{equation*}
\sqrt{(1-c)^{2}+\tau}=\frac{\alpha}{2}\left(1-c^{2}-\tau-t\right) \tag{1.9}
\end{equation*}
$$

for fixed $x=c=c(r)$ close to 1 . Evidently $\tau=\tau(r)=(1-r) K+(1-$ $r)^{2} L+o\left((1-r)^{2}\right)$ for $r \rightarrow 1$, where K, L are constants. And now we express (1.9) in r-terms.

$$
\begin{gathered}
\sqrt{(1-r)^{2}\left(\frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}\right)^{2}+(1-r) K+(1-r)^{2} L+o\left((1-r)^{2}\right)} \\
=\frac{\alpha}{2}\left[2(1-r) \frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}-(1-r) K-\left(1-r^{2}\right) L-2 \frac{\varepsilon^{2} \lambda}{1-\varepsilon^{2}}(1-r)\right]+o(1-r) .
\end{gathered}
$$

From the above it follows that $K=0$ and

$$
L=\left(\alpha^{2}-1\right)\left(\frac{1+\varepsilon^{2}}{1-\varepsilon^{2}}\right)^{2}-2 \alpha^{2} \frac{\lambda \varepsilon^{2}\left(1+\varepsilon^{2}\right)}{\left(1-\varepsilon^{2}\right)^{2}}+\frac{\alpha^{2} \lambda^{2} \varepsilon^{4}}{\left(1-\varepsilon^{2}\right)^{2}}
$$

For $r \rightarrow 1$ the inequality (1.8) is equivalent to the following one:

$$
\left(\alpha^{2}-1\right)\left(1+\varepsilon^{2}\right)^{2}-4 \varepsilon^{2} \leq-\lambda^{2} \alpha^{2} \varepsilon^{4}+\lambda\left(2 \alpha^{2} \varepsilon^{2}\left(1+\varepsilon^{2}\right)-4 \varepsilon^{2}\right)
$$

Minimum with respect to $\lambda \in[0,1]$ of the right-hand side in the last inequality is attained for $\lambda=0$ or $\lambda=1$. Thus let us consider two cases:
(i) $\lambda=0$. Then $\left(\alpha^{2}-1\right)\left(1+\varepsilon^{2}\right)^{2}-4 \varepsilon^{2} \leq 0$, or equivalently

$$
\begin{equation*}
\alpha^{2} \leq \frac{4 \varepsilon^{2}}{\left(1+\varepsilon^{2}\right)^{2}}+1 \tag{1.10}
\end{equation*}
$$

(ii) $\lambda=1$. Then $\alpha \leq 1+\varepsilon^{2}$.

Now note that $1+\varepsilon^{2}$ is less than the right-hand side of (1.10).

Theorem 1.2. Let f be a function holomorphic in $\mathbf{B}^{n}, c_{2}, \ldots, c_{n}$ be real integers, $c_{1} \in \mathbb{C}$ and let Ω_{α} be a Korányi-Stein wedge at e_{1}. If

$$
\lim _{\Omega_{\alpha} \ni z \rightarrow e_{1}}\left[f(z)\left(1-z_{1}\right)^{c_{1}} \prod_{k=2}^{n} z_{k}^{c_{k}}\right]=A \neq \infty
$$

then there exists $\alpha_{1}<\alpha$ such that

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{1}}\left(1-z_{1}\right)^{c_{1}+1} \prod_{k=2}^{n} z_{k}^{c_{k}}=A c_{1}
$$

and

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{l}}\left(1-z_{1}\right)^{c_{1}} \prod_{k=2}^{n} z_{k}^{c_{k}} z_{l}=-A c_{l}, \quad l=2, \ldots, n
$$

Proof. Let us consider the function

$$
h(z)=f\left(\varphi_{a}(z)\right)\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}}
$$

The automorphism φ_{a}, with $a=(r, 0, \ldots, 0)$ and r close to 1 , maps every ball $\mathbf{B}_{\varepsilon(\alpha)-\delta}^{n}$, with δ sufficiently small, into a Korányi-Stein wedge $\Omega_{\alpha}=\Omega_{\alpha}^{e_{1}}$. Therefore, if there exists $\lim _{\Omega_{\alpha} \ni z \rightarrow e_{1}} h(z)=A \in \mathbb{C}$, then $f\left(\varphi_{a}(z)\right)(1-$ $\left.\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}}$ tends uniformly in $\mathbf{B}_{\varepsilon}^{n}$ to A for $r \rightarrow 1$. Note that for the above a we have $\varphi_{a}(z)=\left(\varphi_{a}^{(1)}(z), \ldots, \varphi_{a}^{(n)}(z)\right)$, with $\varphi_{a}^{(1)}(z)=$ $\frac{r-z_{1}}{1-r z_{1}}$, and $\varphi_{a}^{(k)}(z)=\frac{-\sqrt{1-r^{2}} z_{k}}{1-r z_{1}}, k=2, \ldots, n$.

Then

$$
\begin{aligned}
\frac{\partial h}{\partial z_{1}}(z) & =\left[\frac{\partial f}{\partial \varphi^{(1)}}\left(\varphi_{a}(z)\right) \frac{-1+r^{2}}{\left(1-r z_{1}\right)^{2}}\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}+1} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}}\right. \\
& \left.-c_{1} f\left(\varphi_{a}(z)\right)\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}} \frac{-1+r^{2}}{\left(1-r z_{1}\right)^{2}}\right] \frac{1}{1-\varphi_{a}^{(1)}(z)} \\
& +\sum_{j=2}^{n}\left[\frac{\partial f}{\partial \varphi^{(j)}}\left(\varphi_{a}(z)\right)\left(\frac{-r \sqrt{1-r^{2}} z_{j}}{\left(1-r z_{1}\right)^{2}}\right)\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}}\right. \\
& \left.+f\left(\varphi_{a}(z)\right)\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}} \frac{c_{j}}{\varphi_{a}^{(j)}(z)} \frac{-r \sqrt{1-r^{2}} z_{j}}{\left(1-r z_{1}\right)^{2}}\right]
\end{aligned}
$$

and this uniformly tends to 0 , as $r \rightarrow 1$ in $\mathbf{B}_{\varepsilon}^{n}$.
Now, let us observe that

$$
\frac{r^{2}-1}{\left(1-r z_{1}\right)^{2}} \frac{1}{1-\varphi_{a}^{(1)}(z)}=-\frac{1+r}{\left(1+z_{1}\right)\left(1-r z_{1}\right)}
$$

and that the last term is bounded for r close to 1 . Moreover, each term under the sign of sum $\sum_{j=2}^{n}$ has the following form

$$
\begin{equation*}
\left[\frac{\partial f}{\partial w_{j}}(w)\left(1-w_{1}\right)^{c_{1}} \prod_{k=2}^{n} w_{k}^{c_{k}} w_{j}+f(w)\left(1-w_{1}\right)^{c_{1}} \prod_{k=2}^{n} w_{k}^{c_{k}} c_{j}\right] \frac{r}{1-r z_{1}}, \tag{1.11}
\end{equation*}
$$

where the expression $\frac{r}{1-r z_{1}}$ is bounded for r close to 1 . Therefore, using Lemma 1.1 one can see that for ε sufficiently small (1.11) tends to 0 as $w \rightarrow e_{1}$ in Φ_{ε}.

Moreover, from the definition of h we get

$$
\begin{aligned}
\frac{\partial h}{\partial z_{l}}(z) & =\frac{\partial f}{\partial z_{l}}\left(\varphi_{a}(z)\right) \frac{-\sqrt{1-r^{2}}}{1-r z_{1}}\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}} \\
& +f\left(\varphi_{a}(z)\right)\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=2}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}} c_{l} \frac{1}{z_{l}} \rightarrow 0
\end{aligned}
$$

uniformly, as $r \rightarrow 1$ in $\mathbf{B}_{\varepsilon}^{n}$. Then

$$
\frac{\partial f}{\partial z_{l}}\left(\varphi_{a}(z)\right) \frac{\sqrt{1-r^{2}} z_{l}}{1-r z_{1}}\left(1-\varphi_{a}^{(1)}(z)\right)^{c_{1}} \prod_{k=1}^{n}\left(\varphi_{a}^{(k)}(z)\right)^{c_{k}} \rightarrow c_{l} A,
$$

uniformly, as $r \rightarrow 1$ in $\mathbf{B}_{\varepsilon}^{n}$. Thus

$$
\lim _{\Phi_{\varepsilon} \ni w \rightarrow e_{1}}\left[\frac{\partial f}{\partial z_{l}}(w)\left(1-w_{1}\right)^{c_{1}} \prod_{k=1}^{n} w_{k}^{c_{k}} w_{l}\right]=-c_{l} A .
$$

The proof is complete.
Corollary 1.3. Let f be a function holomorphic in \mathbf{B}^{n}. If $\lim _{\Omega_{\alpha} \ni z \rightarrow e_{1}} f(z)=$ $A \neq \infty$, then there exists $\alpha_{1}<\alpha$ such that in $\Omega_{\alpha_{1}}$ we have $\frac{\partial f(z)}{\partial z_{1}}=o\left(\frac{1}{\left|1-z_{1}\right|}\right)$ and $\frac{\partial f(z)}{\partial z_{l}}=o\left(\frac{1}{\left|z_{l}\right|}\right)$ for $z \rightarrow e_{1}$ and every $l=2, \ldots, n$.

In the next theorem we give results concerning the behaviour of $\frac{\partial f}{\partial z_{j}}$, which is essentially different from that presented in Theorem 1.2.

Theorem 1.4. Let f be a function holomorphic in $\mathbf{B}^{n}, c \in \mathbb{C}$ and let Ω_{α} be a Korányi-Stein wedge at e_{1}. Assume that there exists the limit

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} f(z)\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c}=A \in \mathbb{C}
$$

Then
(i) for every $l=2, \ldots, n$ the expression $\frac{\partial f(z)}{\partial z_{l}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c+\frac{1}{2}}$ is bounded in $\Omega_{\alpha_{1}}$ for $z \rightarrow e_{1}$, but the limit $\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{l}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c+\frac{1}{2}}$ does not exist with $c \neq 0$.
(ii) there exists $\alpha_{1}<\alpha$ such that

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{1}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c+1}=2 c A
$$

Proof. Let us consider an automorphism

$$
\varphi_{a}(z)=\left(\frac{r-z_{1}}{1-r z_{1}},-\frac{\sqrt{1-r^{2}} z_{2}}{1-r z_{1}}, \ldots,-\frac{\sqrt{1-r^{2}} z_{n}}{1-r z_{1}}\right)
$$

with $a=(r, 0, \ldots, 0)$. Then $\varphi\left(\mathbf{B}_{\varepsilon}^{n}\right) \subset \Phi_{\varepsilon} \subset \Omega_{\alpha},\left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{2}<\alpha$. Write

$$
h(z)=f\left(\varphi_{a}(z)\right)\left(1-\left(\varphi_{a}^{(1)}(z)\right)^{2}-\ldots-\left(\varphi_{a}^{(n)}(z)\right)^{2}\right)^{c}
$$

and $w_{j}=\varphi_{a}^{(j)}(z)$. From the assumption we have $\lim _{\mathbf{B}_{\varepsilon}^{n} \ni z \rightarrow e_{1}} h(z)=A$.
First we prove (i).
For every $j=2, \ldots, n$ we get (after some calculations)

$$
\begin{aligned}
\frac{\partial h(z)}{\partial z_{j}}= & \left.\frac{\partial f}{\partial w_{j}}(w)\left[1-\left(\varphi_{a}^{(1)}(z)\right)^{2}-\ldots-\left(\varphi_{a}^{(n)}(z)\right)^{2}\right)\right]^{c+1} \frac{1-r z_{1}}{\sqrt{1-r^{2}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)} \\
& -f(w) c\left[1-\left(\varphi_{a}^{(1)}(z)\right)^{2}-\ldots-\left(\varphi_{a}^{(n)}(z)\right)^{2}\right]^{c} \frac{2 z_{j}}{1-z_{1}^{2}-\ldots-z_{n}^{2}}
\end{aligned}
$$

which tends to 0 uniformly for $z \in \mathbf{B}_{\varepsilon}^{n}$ and $r \rightarrow 1$. From the above we see that

$$
\begin{gathered}
\frac{\partial h(z)}{\partial z_{j}}=-\frac{\partial f}{\partial w_{j}}(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c+\frac{1}{2}} \frac{\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{\frac{1}{2}}\left(1-r z_{1}\right)}{\sqrt{1-r^{2}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)} \\
-f(w) c\left[1-w_{1}^{2}-\ldots-w_{n}^{2}\right]^{c} \frac{2 z_{j}}{1-z_{1}^{2}-\ldots-z_{n}^{2}}
\end{gathered}
$$

tends to 0 uniformly for $z \in \mathbf{B}_{\varepsilon}^{n}$ and $r \rightarrow 1$. Since $\sqrt{\frac{1-w^{2}}{1-r^{2}}}=\frac{\sqrt{1-z_{1}^{2}-\ldots-z_{n}^{2}}}{1-r z_{1}}$ and $\sqrt{1-z_{1}^{2}-\ldots-z_{n}^{2}}$ are bounded in $\mathbf{B}_{\varepsilon}^{n}$,

$$
\frac{\partial f}{\partial w_{j}}(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c+\frac{1}{2}}+f(w) c\left[1-w_{1}^{2}-\ldots-w_{n}^{2}\right]^{c} \frac{2 z_{j}}{1-z_{1}^{2}-\ldots-z_{n}^{2}}
$$

tends to 0 uniformly for $z \in \mathbf{B}_{\varepsilon}^{n}$ and $r \rightarrow 1$. Therefore

$$
\frac{\partial f(z)}{\partial z_{l}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c+\frac{1}{2}}
$$

is bounded in $\Omega_{\alpha_{1}}$ for $z \rightarrow e_{1}$ and $j=2, \ldots, n$.
We will show that the expression

$$
\frac{\partial f(z)}{\partial z_{l}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c+\frac{1}{2}}
$$

with $c \neq 0$, has no limit for $\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}$. In the case $n=2$ let us consider the function

$$
f(z)=\frac{1}{1-z_{1}^{2}-z_{2}^{2}}
$$

Note that $\lim _{\Omega_{\alpha_{1}} \exists z \rightarrow e_{1}} f(z)\left(1-z_{1}^{2}-z_{2}^{2}\right)=1$, with $c=1$ and $A=1$. Then

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{2}}\left(1-z_{1}^{2}-z_{2}^{2}\right)^{1+\frac{1}{2}}=2 \lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{z_{2}}{\sqrt{1-z_{1}^{2}-z_{2}^{2}}}
$$

We will prove that the last limit does not exist. By the definition of the Korányi-Stein wedge in \mathbb{C}^{2} we have

$$
\left|1-z_{1}\right|<\frac{\alpha}{2}\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right) .
$$

Then for $z_{1}=1-r$ we get $\left|z_{2}\right|^{2} \leq r\left(2\left(1-\frac{1}{\alpha}\right)-r\right)$. Note that for r sufficiently small we may take $z_{2}^{2}=r\left(1-\frac{1}{\alpha}\right) t$, where $t \in[0,1]$. Then

$$
\sqrt{1-z_{1}^{2}-z_{2}^{2}}=\sqrt{2 r-r^{2}\left(1+\left(1-\frac{1}{\alpha}\right)^{2} t^{2}\right)}
$$

and therefore

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{z_{2}}{\sqrt{1-z_{1}^{2}-z_{2}^{2}}}=\sqrt{\frac{1-\frac{1}{\alpha}}{2} t}
$$

The last expression depends on t, so that $\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{z_{2}}{\sqrt{1-z_{1}^{2}-z_{2}^{2}}}$ does not exist. For $n>2$ one may consider the function

$$
f(z)=\frac{1}{1-z_{1}^{2}-\ldots-z_{n}^{2}}
$$

Now we prove (ii).
Put $w=\varphi_{a}(z)$. Then

$$
\begin{aligned}
\frac{\partial h(z)}{\partial z_{1}}= & {\left[\frac{\partial f}{\partial w_{1}}(w) \frac{r^{2}}{\left(1-r z_{1}\right)^{2}}\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c}\right.} \\
+ & \left.c f(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c-1}\left(-2 w_{1} \frac{r^{2}-1}{\left(1-r z_{1}\right)^{2}}\right)\right]_{1} \\
- & \sum_{k=2}^{n}\left[\left(\frac{\partial f}{\partial w_{k}}(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c}\right.\right. \\
& \left.\left.\quad-2 c f(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c-1} w_{k}\right) \frac{r \sqrt{1-r^{2}} z_{k}}{\left(1-r z_{1}\right)^{2}}\right]_{k}
\end{aligned}
$$

tends to 0 uniformly for $z \in \mathbf{B}_{\varepsilon}^{n}$ and $r \rightarrow 1^{-}$.
Since $\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{\frac{1}{2}}=\sqrt{1-r^{2}} \frac{\sqrt{1-z_{1}^{2}-\ldots-z_{n}^{2}}}{1-r z_{1}}$, we get

$$
\begin{aligned}
{[\ldots]_{k}=} & \left(\frac{\partial f}{\partial w_{k}}(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c+\frac{1}{2}} \frac{1-r z_{1}}{\sqrt{1-r^{2}} \sqrt{1-z^{2}}}\right. \\
& \left.+2 c f(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c} \frac{\left(1-r z_{1}\right) z_{k}}{\sqrt{1-r^{2}\left(1-z^{2}\right)}}\right) \frac{r \sqrt{1-r^{2}} z_{k}}{\left(1-r z_{1}\right)^{2}}
\end{aligned}
$$

From the first part of the proof we have

$$
\frac{\partial f}{\partial w_{k}}(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c+\frac{1}{2}}=-c f(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c} \frac{2 z_{k}}{\sqrt{1-z^{2}}}+o(1) .
$$

Therefore

$$
\begin{aligned}
{[\ldots]_{k}=-c f(w) } & \left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c} \frac{r z_{k}}{\sqrt{1-z^{2}}} \frac{1}{1-r z_{1}}+o(1) \\
& +c f(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c} \frac{r z_{k}}{\sqrt{1-z^{2}}} \frac{1}{1-r z_{1}}=o(1)
\end{aligned}
$$

tends to 0 uniformly for $z \in \mathbf{B}_{\varepsilon}^{n}$ and $r \rightarrow 1^{-}$. Moreover

$$
\begin{aligned}
& {[\ldots]_{1}=\frac{\partial f}{\partial w_{1}}(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c+1} \frac{-1}{1-z^{2}} } \\
&+c f(w)\left(1-w_{1}^{2}-\ldots-w_{n}^{2}\right)^{c} \frac{2}{1-z^{2}} \frac{r-z_{1}}{1-r z_{1}} .
\end{aligned}
$$

Thus from the above considerations we get

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{1}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c+1}=2 c A .
$$

Rudin obtained the following result ([Ru], Lemma 6.4.6).
Theorem R. If f is a function holomorphic in $\mathbf{B}^{n}, c \geq 0$, and

$$
|f(z)| \leq(1-\|z\|)^{-c} \quad \text { for } \quad z \in \mathbf{B}^{n}
$$

then for $l=2, \ldots, n, 0<r<1$,

$$
\left|\frac{\partial f\left(r e_{1}\right)}{\partial z_{l}}\right| \leq A_{c}(1-r)^{-c-\frac{1}{2}}
$$

Note that Theorem R is interesting in the case when $\left|f\left(r e_{1}\right)\right| \rightarrow \infty$ as $r \rightarrow 1^{-}$. The following corollary describing the behaviour of functions, in the case of existence of a finite limit $\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} f(z)$, may be concluded from the proof of Theorem 1.4.

Corollary 1.5. If there exists a finite limit $\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} f(z)$ then for every $l=2, \ldots, n$

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f(z)}{\partial z_{l}}\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{\frac{1}{2}}=0 .
$$

From the proof of Theorem 1.4 also the next corollary follows.
Corollary 1.6. If there exists $\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} f(z)\left(1-z_{1}^{2}-\ldots-z_{n}^{2}\right)^{c}=A$, then for every $l=2, \ldots, n$

$$
\lim _{\Omega_{\alpha_{1}} \ni z \rightarrow e_{1}} \frac{\partial f\left(z_{1}, 0, \ldots, 0\right)}{\partial z_{l}}\left(1-z_{1}^{2}\right)^{c+\frac{1}{2}}=0 .
$$

Corollary 1.7. Let f be a function holomorphic in \mathbf{B}^{n}. If there exists a finite limit $\lim _{\Omega_{\alpha} \ni z \rightarrow e_{1}} f(z)$, then

$$
\frac{\partial f(z)}{\partial z_{1}}=o\left(\frac{1}{1-z_{1}^{2}-\ldots-z_{n}^{2}}\right)
$$

for $z \rightarrow e_{1}$ in $\Omega_{\alpha_{1}}$.
II. Functions in the unit polydisk. Let $\boldsymbol{\Delta}$ be the unit disk in the plane. For $e^{i \theta}=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$ and $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right)$ let us consider Stolz domains at $e^{i \theta_{k}}$, i.e. the domains

$$
W_{\eta_{k}}\left(e^{i \theta_{k}}\right)=\left\{z_{k} \in \boldsymbol{\Delta}:\left|\arg \left(1-z_{k} e^{-i \theta_{k}}\right)\right|<\eta_{k}\right\}
$$

where $\eta_{k} \in(0, \pi / 2], \rho>0, k=1, \ldots, n$. Let

$$
W_{\eta}\left(e^{i \theta}\right)=W_{\eta_{1}}\left(e^{i \theta_{1}}\right) \times \ldots \times W_{\eta_{n}}\left(e^{i \theta_{n}}\right)
$$

be the Stolz domain.
In this part of the paper we solve some problems concerning the behaviour of functions holomorphic in the polydisk near "the vertex" of a Stolz domain.

Theorem 2.1. Let $A \in \mathbb{C}, c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}$ and let

$$
\begin{equation*}
\lim _{W_{\eta} \ni z \rightarrow e^{i \theta}} f(z) \prod_{k=1}^{n}\left(1-z_{k} e^{-i \theta_{k}}\right)^{c_{n}}=A \tag{2.1}
\end{equation*}
$$

Then
$\mathbf{1}^{\mathbf{o}}$ for every $\varepsilon_{k} \in\left(0, \eta_{k}\right), k=1, \ldots, n$ and each $l=1, \ldots, n$

$$
\lim _{W_{\eta-\varepsilon} \ni z \rightarrow e^{i \theta}} \frac{\partial f}{\partial z_{l}} \prod_{k=1}^{n}\left(1-z_{k} e^{-i \theta_{k}}\right)^{c_{n}}=A c_{l} e^{-i \theta_{l}}
$$

$\mathbf{2}^{\mathbf{o}}$ if $A \neq 0$ and if the limit (2.1) exists for every W_{η} with the vertex at $\mathbf{1}$, then

$$
\lim _{a \rightarrow \mathbf{1}} \frac{f\left(\varphi_{a}(z)\right)}{f(a)}=\prod_{k=1}^{n}\left(\frac{1+z_{k}}{1-z_{k}}\right)^{c_{k}}
$$

where $\varphi_{a}(z)=\left(\frac{z_{1}+a_{1}}{1+a_{1} z_{1}} e^{i \theta_{1}}, \ldots, \frac{z_{n}+a_{n}}{1+a_{n} z_{n}} e^{i \theta_{n}}\right)$ is an automorphism of $\boldsymbol{\Delta}^{n}$.

Proof.

$\mathbf{1}^{\mathbf{o}}$ For $\delta>0$ sufficiently small and $l=1, \ldots, n$, put $K_{\eta_{l}}(\delta)=\left\{z_{l}:\left|z_{l}\right| \leq\right.$ $\left.r_{\eta_{k}}-\delta\right\}$ and $K_{\eta}(\delta)=K_{\eta_{1}}(\delta) \times \ldots \times K_{\eta_{n}}(\delta)$. Then for $a=\left(a_{1}, \ldots, a_{n}\right) \in$ $(0,1)^{n}$ we have

$$
f\left(w_{1}, \ldots, w_{n}\right) \prod_{k=1}^{n}\left(1-w_{k}\right)^{c_{k}} \rightarrow A
$$

uniformly in $K_{\eta}(\delta)$, as $a \rightarrow \mathbf{1}$ where $w_{k}=\frac{z_{k}+a_{k}}{1+a_{k} z_{k}}$. Now for fixed l we get

$$
\begin{aligned}
\frac{\partial f}{\partial z_{l}}(w) \prod_{k=1}^{n} & \left(1-w_{k}\right)^{c_{k}} e^{i \theta_{l}} \frac{1-a_{l}^{2}}{\left(1+a_{l} z_{l}\right)^{2}} \\
& \quad-f(w) \prod_{k=1, k \neq l}^{n}\left(1-w_{k}\right)^{c_{k}} \frac{1-a_{l}^{2}}{\left(1+a_{l} z_{l}\right)^{2}} c_{l}\left(1-w_{l}\right)^{c_{l}-1} \rightarrow 0
\end{aligned}
$$

uniformly in $K_{\eta}(\delta)$, as $a \rightarrow \mathbf{1}$. Note that $\frac{1-a_{l}^{2}}{\left(1+a_{l} z_{l}\right)^{2}}=\left(1-w_{l}\right) \frac{1+a_{l}}{\left(1+a_{l} z_{l}\right)\left(1-z_{l}\right)}$ and

$$
\begin{aligned}
& {\left[\frac{\partial f}{\partial z_{l}}(w) \prod_{k=1}^{n}\left(1-w_{k}\right)^{c_{k}} e^{i \theta_{l}}\left(1-w_{l}\right)\right.} \\
& \left.\quad-f(w) \prod_{k=1}^{n}\left(1-w_{k}\right)^{c_{k}} c_{l}\right] \frac{1+a_{l}}{\left(1+a_{l} z_{l}\right)\left(1-z_{l}\right)} \rightarrow 0
\end{aligned}
$$

uniformly in $K_{\eta}(\delta)$, as $a \rightarrow \mathbf{1}$. Therefore
(2.2)
$\frac{\partial f}{\partial z_{l}}(w) \prod_{k=1}^{n}\left(1-w_{k} e^{-i \theta_{k}}\right)^{c_{k}} e^{i \theta_{l}}\left(1-w_{l} e^{-i \theta_{l}}\right)-f(w) \prod_{k=1}^{n}\left(1-w_{k} e^{-i \theta_{k}}\right)^{c_{k}} c_{l} \rightarrow 0$
as $w=\left(w_{1}, \ldots, w_{n}\right) \rightarrow \mathbf{1}$ in a domain Ω_{α} which is the image of $K_{\eta}(\delta)$ under the map $\left(\frac{z_{1}+a_{1}}{1+a_{1} z_{1}} e^{i \theta_{1}}, \ldots, \frac{z_{n}+a_{n}}{1+a_{n} z_{n}} e^{i \theta_{n}}\right)$. In the same way as in the case $n=1$ ([GS1]) one can show that $W_{\eta-\varepsilon} \subset \Omega_{\alpha}$ for every $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with sufficiently small $\|\varepsilon\|$. Thus from (2.2) we obtain

$$
\lim _{W_{\eta-\varepsilon} \ni w \rightarrow \mathbf{1}} \frac{\partial f}{\partial z_{l}}(w) \prod_{k=1}^{n}\left(1-w_{k} e^{-i \theta_{k}}\right)^{c_{k}} e^{i \theta_{l}}\left(1-w_{l} e^{-i \theta_{l}}\right)=A c_{l}
$$

$\mathbf{2}^{\mathbf{o}}$ Note that for $g(z)=\frac{\left(1+z_{1}\right)^{c_{1}-2} \ldots\left(1+z_{n}\right)^{c_{n}-2}}{\left(1-z_{1}\right)^{c_{1}} \ldots\left(1-z_{n}\right)^{c_{n}}}$ there exists the limit

$$
\begin{equation*}
\lim _{W_{\eta} \ni z \rightarrow \mathbf{1}} \frac{f(z)}{g(z)}=A \cdot 2^{q}, \tag{2.3}
\end{equation*}
$$

where $q=2 n=\sum_{k=1}^{n} c_{k}$. In particular, $\lim _{W_{\eta} \ni a \rightarrow 1} \frac{f(a)}{g(a)}=A \cdot 2^{q}$. Similarly as in the proof of 1° one can rewrite (2.3) in the following form

$$
\begin{equation*}
\lim _{W_{\eta} \ni a \rightarrow 1} \frac{f\left(\varphi_{a}(z)\right) g(a)}{g\left(\varphi_{a}(z)\right) f(a)}=1, \tag{2.4}
\end{equation*}
$$

where the convergence is uniform in $\boldsymbol{\Delta}^{n}$. Since $g(z)=\frac{g\left(\varphi_{a}(z)\right)}{g(a) \prod_{k=1}^{n}\left(1+a_{k} z_{k}\right)^{2}}$, from (2.4) we get

$$
\lim _{W_{n} \ni a \rightarrow \mathbf{1}} \frac{f\left(\varphi_{a}(z)\right)}{f(z)}=g(z) \prod_{k=1}^{n}\left(1+z_{k}\right)^{2}=\prod_{k=1}^{n}\left(\frac{1+z_{k}}{1-z_{k}}\right)^{c_{k}} .
$$

Corollary 2.2. Let $c=\mathbb{O}$. If the limit $\lim _{W_{\eta} \ni z \rightarrow e^{i \theta}} f(z)$ is finite then for every $l=1, \ldots, n$ and every $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \frac{\partial f}{\partial z_{l}}(z)=o\left(\frac{1}{1-\|z\|}\right)$ for $z \rightarrow \mathbf{1}$ in $W_{\eta-\varepsilon}$. Moreover $\frac{\partial^{m} f}{\partial^{k_{1}} z_{1} \ldots \partial^{k_{n} z_{n}}}(z)=o\left(\left(\frac{1}{1-\|z\|}\right)^{m}\right)$, where $m=k_{1}+\ldots+k_{n}$, and on the right-hand side of the last equality it is not possible to put a number less than m.

The proof of Theorem 2.1 implies a modification of Hardy-Littlewood theorem ([Du], [Ru]; also cf. [GS2]).
Theorem 2.3. Let f be a function holomorphic in W_{η} with the vertex at 1, where η is sufficiently small and suppose that for fixed $c \in \mathbb{C}^{n}$ the limit $\lim _{W_{\eta} \ni z \rightarrow 1} f(z) \prod_{k=1}^{n}\left(1-z_{k}\right)^{c_{k}}=A \in \mathbb{C}$ does exist. Then for every $l=1, \ldots, n$

$$
\lim _{\mathbf{r} \rightarrow 1} \frac{\partial f}{\partial z_{l}}(\mathbf{r}) \prod_{k=1}^{n}\left(1-r_{k}\right)^{c_{k}}\left(1-r_{l}\right)=A c_{l},
$$

where $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right) \in(0,1)^{n}$.
Theorem 2.4. Let $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{C}^{n}, \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{C}^{n}$. If

$$
\begin{gathered}
\lim _{W_{\eta} \ni z \rightarrow 1} f(z) \prod_{k=1}^{n}\left(\left(1-z_{k}\right)^{c_{k}}\left(\log \frac{1}{1-z_{k}}\right)^{\mu_{k}}\right)=A \in \mathbb{C} \\
\left(\text { or } \lim _{W_{\eta} \ni z \rightarrow 1} f(z) \prod_{k=1}^{n} \exp \frac{c_{k}}{1-z_{k}}=A \in \mathbb{C}\right)
\end{gathered}
$$

then for every $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), 0<\varepsilon_{k}<\eta_{k}$ and every $l=1, \ldots, n$

$$
\lim _{W_{n}-\varepsilon \exists z \rightarrow 1} \frac{\partial f}{\partial z_{l}}(w) \prod_{k=1}^{n}\left(\left(1-w_{k}\right)^{c_{k}}\left(\log \frac{1}{1-w_{k}}\right)^{\mu_{k}}\right)\left(1-w_{k}\right)=A c_{l} .
$$

$$
\left(\lim _{W_{\eta-\varepsilon} \ni z \rightarrow \mathbf{1}} \frac{\partial f}{\partial z_{l}}(w) \prod_{k=1}^{n} \exp \frac{c_{k}}{1-w_{k}}=-A c_{l}\right)
$$

The proof of this theorem is similar to that of Theorem 2.1.
The authors wish to express their gratitude to Maria Nowak for many stimulating conversations.

References

[Du] Duren, P., Theory of H^{p}-spaces, Academic Press, New York, 1970.
[GS1] Godula, J., V.V. Starkov, Boundary behaviour in a Stolz angle of analytic functions in the disk, (in Russian), Function Theory and Applications, Kazan State University, Proc. of Summer School, Kazan 13-18 September, 1999 (1999), 67-68.
[GS2] Godula, J., V.V. Starkov, Regularity theorem for linearly invariant families of functions in a polydisk, (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1995), 21-31.
[Ru] Rudin, W., Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.

Institute of Mathematics
received October 14, 2000
Maria Curie-Skłodowska University
20-031 Lublin, Poland
e-mail: godula@golem.umcs.lublin.pl
Department of Mathematics
University of Petrozavodsk
185640 Petrozavodsk, Russia
e-mail: starkov@mainpgu.karelia.ru

[^0]: 1991 Mathematics Subject Classification. 32A40.
 Key words and phrases. Angular limit, radial limit, Stolz angle, Korányi-Stein wedge.

