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On the boundary behaviour of functions
of several complex variables

ABSTRACT. In this paper we study the boundary behaviour of holomorphic
functions defined in either the unit ball, or in the unit polydisk.

I. Functions in the unit ball. Let C" denote the n-dimensional complex
space of all ordered n-tuples z = (z1, 22, ... , 2,) of complex numbers with
the inner product (z,w) = zywy + ... + 2,W,. For z € C" let z = (21, 2/),
where 2/ = (z2,...,2,) € C""1. The unit ball B” of C" is the set of all
z € C" with ||z = ((2,2))2 < 1. For e > 0 let B” = ¢B" and let B,
denote BL. Let S be the unit sphere. To every fixed a € B" corresponds an
automorphism ¢, of B" that interchanges a and O = (0,...,0). Let P, be
the orthogonal projection of C" onto the subspace [a] = {Aa : A € C}, i.e.

P oL éi:iia, a#0
¢ 0, a=0Q,

and let Q, = I —P, be the projection onto the orthogonal complement of
[a]. For s, = (1 — ||a]|?)2 write

a—Puz—5,Q,%
1—(z,a)
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Now, let us fix a = (r,0,...,0) € B” and €, 0 < € < 1. Then the image of
the ball B? under ¢, is an ellipsoid

|21 — | t2
1.1 1
(1.1) £2p2 - £2p
where ¢ = a(1 —&2)/(1 —&%r?), p= (1 —r2) /(1 — 2r?), t = ||2']|2.

For a > 0 and ¢ € S let a Kordnyi-Stein wedge QS (see [Ru]) be the set
of all z € B™ such that

2@ -z

‘1_ <27C>‘ < 9

For a < 1, Q5 = 0, and for a — oo the regions €, fill up B™ for ev-
ery fixed ¢ € S. In the paper [GS1] the authors obtained results on
the boundary behaviour of functions holomorphic in the unit disk. If
¢ = e = (1,0,...,0) € C™ then the Kordnyi-Stein wedge is given by
the inequality

(1.2) 1-zl<g S = lal = 1121

Then set 2, = Qg!. Put @, = U,¢(0,1)¢a(BL). We shall need the following
result.

Lemma 1.1. Leta>1 and 0 <e < 1.
1° If (}—fi)z < a, then ®. C Q, in a sufficiently small neighbourhood of e;.

2° Ifmin{l+¢2 ,/1+ (1+52)2)} > «, then Qn C ®. in a sufficiently small

neighbourhood of e;.

Proof.
1° Let us fix ||2’||?> = t. Note that the inequalities (1.1) and (1.2) can be
written in the following form

(1.17) |21 — | < &2p* — pt?
and
(1.2%) 11— 2] < 2(1—|z1|2—t)

respectively. Denote by ®.(t) and Q,(t) the sets of z; € C such that (1.1)
and (1.2°) hold, respectively. We show that the region () is convex in
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the direction of the imaginary axis. Let 23 = x + iy, y> = 7. Then (1.2’)
can be written in the form
a? 2 4

1 (1—-t—2%)?2< %[72—27(1—15—962)—7?].

(1.3) (1 —x)?
One can show that the right-hand side expression in (1.3) decreases with
respect to 7. Thus, if (1.3) holds for some 7p, then the same is true for
0 < 7 < 79. This means that ,(¢) is convex in the direction of the
imaginary axis.

Note that for the rest of the proof it suffices to prove that for every
sufficiently small ¢ the region Q,(t) contains all the disks (1.1") in a small
neighbourhood of z; = 1. From (1.1) it follows that in (1.1’) we have
t < e2p. Since ¢ — 1 and p — 0 for » — 1=, we show that for r close to 1
the disks (1.17) are contained in /().

Since there is A such that ¢ = e?p), we have p = (1 — r) 12z + o(1 — 1),

1—c=(1 —r)%%—o(l—r), t = fi’;(l—r)—i—o(l—r), A € [0,1], for
r — 17. Since ,(t) is a simply connected region (because of its convexity
in the direction of the imaginary axis), it suffices to show that the boundaries

of the disks (1.17) lie in Q,(¢). We show that

Qu(t) 3 21 = c+e¥4/e2p2 — pt
(1.4) 14 e2 0 261 — A

=1- 1-
1—52( )+ 1—¢£2

(I—=7)4+o0(1—-1),

for 6 € [0,2x]. Let us insert (1.4) into (1.2’). Then

‘1—52 _ei92<€\/1—)\

1—52(1_T) 1—¢g2

(I—=7r)+o0(1—r)

« 14 &2 2ev/1 — )\
< — — — — PR —
<3 [1 (1 . —52(1 ) + cos 0 [ (1 r)>

or equivalently

1+e2\?  _2ev/1—A(1+¢2) 4e2(1 — N)
(1—7’)\/<1_52> —2 (1_52)2 COSQ"‘W"‘O(].—T)
al 142 4ev/1 — A 2e2\
< = S D S A [ _ _
=35 [21_82(1 r) [ (1 —=7)cosf 1—52(1 T)

The last inequality is a consequence of the following one:
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\/(1 +e2)24+4e(1+e2)vV1—A+4e2(1— N) +o(1)
(1.5)
<

| Q

[2(1 +e?) —4ev/1 — Acosf — 2%\ .

It is sufficient to show that (1.5) is true with cosé = 1:

(1.6) \/(1 +e2)2 4+ 4e(1+2)V1 — A +42(1 - )) < a(l —evV1 = N2

The left-hand side expression in (1.6) increases and the right-hand side
decreases with respect to v = v/1 — A. Therefore it suffices to prove (1.6)
for A = 0. Then we have

VI +e2)244e(1+e2)+4e2 = (1+e)? < a(l —e)?,

which is equivalent to (££)? < a. For such an € we have Q, C ®. in a
sufficiently small neighbourhood of e;.

2° Let us fix ||2’||? =t and = Rez;. We show that
Vi={y:z=x+iyeQ.)} CYo:={y:z=a+iy € D.(t)}.

Let M. := {(z,t) e R?: 3y I’ ||Z/||> =¢t, (x+iy,2') € ®.} and N, :=
{(z,t) e R2 : Fy > 03 ||| =¢t, (z+iy,7') € Qu}. Since x — 1 in
an arbitrary way, we may assume that t =c=1— (1 —r) ifi +o(l —r),

(r — 17) is the centre of the disc (1,1’). Note that we have to prove that

(1.7) N, C M.

in a neighbourhood of (1,0) € R?. Let M.(x) := {t : (x,t) € M.} and
No(z) = {t : (z,t) € No}. We shall show that N,(x) C M.(x) for x
close to 1. The right-hand side expression in (1.3) decreases with respect

to 7. Thus the supremum of ¢, from N, (x) fulfills the following equation:
(1—2x2)%— 02‘72(1 - th— 2%)? = 0, or equivalently ¢, =1 —z? — 2(1 — x)2 =
(1-r)[21t5 — 22 4 o(1—7), for r — 1 (that is for = 1— (1—r) 15 +
o(1 —r) — 1). Note that the supremum of ¢ from M_(z) is greater or equal

tot) = e2p = (1 — )= + o(1 — ). (Note that from (1.1’) and (1.2") it

follows that the sets M. and N, are convex in the direction of ¢t-axis.) The
inclusion N, (z) C M.(x) will be shown if ¢, < ¢/, for x sufficiently small
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— 1), that is if 12_522 > Q}fiz (1-— é) or equivalently o < 14 €. Thus

(r
(1.7) holds. Now, we will show that Y C Ys forr — 1 (z =c=c¢(r) — 1,
t=t(r) — 0 and p = p(r) — 0). From (1.1’) we have

sup Yo = V/ER gt = (1= ) O SR ol - ),

NI

We have to show that

4e2(1 = )\)

o 2 2

(18) Vy € Yl T = (Squ]_) < (1 — 'I") m

From (1.2’) we see that 7 is a solution of the equation
@ 2

(1.9) (1—0)24-’7':5(1—6 — T —t),

for fixed x = ¢ = ¢(r) close to 1. Evidently 7 = 7(r) = (1 —r)K + (1 —

r)2L+0((1—7)?) for r — 1, where K, L are constants. And now we express
(1.9) in r-terms.

1—¢2

\/(1—7")2 <1+€2> +(1—-r)K+(1—7)2L+o((1—1)?)

2\
-2

o 1+¢&? 9
= —12(1— —(1—-—rK—(1- L—-2
R R (R L SRR TR

(I—=r)| +o(1—r).

From the above it follows that X = 0 and

1+e2\° Ae?(1+ €2) a?) et
—2a? + .
1—¢? (1—e2)2 (1 —e2)2

L=(a*-1) (
For r — 1 the inequality (1.8) is equivalent to the following one:
(0 —1)(1 +€2)? —4e? < N2 + A(202e%(1 + £2) — 4e?).

Minimum with respect to A € [0,1] of the right-hand side in the last in-
equality is attained for A = 0 or A = 1. Thus let us consider two cases:
(i) A= 0. Then (a?® — 1)(1 4+ &2)? — 42 < 0, or equivalently

4e2
1.1 2 — 4.
(1.10) @ = (1+¢£2)2 +

(i1) A=1. Then o < 1 + £2.
Now note that 1+ 2 is less than the right-hand side of (1.10). O
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Theorem 1.2. Let f be a function holomorphic in B™, co, ... ,c, be real
integers, ¢ € C and let Q,, be a Kordnyi-Stein wedge at ey. If

n

li )(1— =A
N e I e

then there exists a; < « such that

lim Of(= ) - Cl“ H z = Ac;y

Qo Dz—er 82’1

and

lim 91(z) (1 —2) H 2hy = —Acq, 1=2,...,n.

Qal Sz—eq 82[ P

Proof. Let us consider the function

n

h(z) = f(¢a(2))(1 = ¢ (2 H ®) (4

The automorphism ¢,, with a = (r,0,...,0) and r close to 1, maps every
ball B’;(a)_ s> with ¢ sufficiently small, into a Koranyi-Stein wedge €2, = Qg!.
Therefore, if there exists limg 5., A(z) = A € C, then f(p.(2))(1 —
o (2)) [Ths(e $)(2))e tends uniformly in B” to A for r — 1. Note

that for the above a we have ¢, (z) = (npgl)(z), e ,cp((zn)(z)), with go((zl)(z) =
== andcp()() =VI-rzn L =2 ... .n

1—rz? 1—rzy
Then
oh af 1472 o
8721(2) = [&0(1)((‘0@(2))(1_7;1)2(1 (1) +1 H (k)
- e To®) —14r 1
erflea( = T s | T
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and this uniformly tends to 0, as r — 1 in B].
Now, let us observe that

r?—1 1 o 1+r
(1 =rz1)?1 = oV (z) (1+2z1)(1 —rz)

and that the last term is bounded for r close to 1. Moreover, each term
under the sign of sum 22;2 has the following form
(1.11)

of
o, 0 wchHwkwa 1—“11611_[“%@1 m

1—rz
Lemma 1.1 one can see that for ¢ sufficiently small (1.11) tends to 0 as
w — e in Pg.

Moreover, from the definition of h we get

where the expression is bounded for r close to 1. Therefore, using

Oh of —V1—=r? 1 -
877(2) 8z1< (Z))W( oM (2 H Pz

n

(a2~ 6D () [[P ) as — 0

2
k=2 !

uniformly, as » — 1 in B?. Then

of Vi-ria S0 (2 ﬁ ®)(

'l Yo A
o (pale) (1 - —a
k=1
uniformly, as 7 — 1 in B?. Thus
: of yer
égélwnlel 821( wl H wk v = _CZA'

The proof is complete. [
Corollary 1.3. Let f be a function holomorphic in B™. If lim  f(z) =

QadDz—eq
A # oo, then there exists a; < a such that in Q,, we have gz(z) = o |ljz1\)
and 3f(z) 0(‘2 I) for z — ey and everyl =2,... ,n.

In the next theorem we give results concerning the behaviour of 82 ,

which is essentially different from that presented in Theorem 1.2.
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Theorem 1.4. Let f be a function holomorphic in B™, ¢ € C and let
be a Kordnyi-Stein wedge at e1. Assume that there exists the limit

lim  f(z)(1—2f—...—22)*=A€C.

Qal Sz—eq

Then
i) for everyl =2,... ,n the expression U@ (1 _p2  —22)*3 s bounded
0z 1 n

01 (2) (1—22—... - z2)c+%

in Qq, for z — e1, but the limit  lim -

Qo Dz—eq 21
does not exist with ¢ # 0.
(ii) there exists aq < o such that

. 8f(z) 2 2
1 1—22— .. =22t =92¢cA.
Qu Drer 2, (1= 2n) ¢

Proof. Let us consider an automorphism

r—z1 MZQ mzn
Pa(2) = < - —) ;

1—rzy.  1—rzg 77 1—rzn

with @ = (r,0,...,0). Then p(B?) C ®. C Qq, (1££)% < a. Write

h(z) = fpa(2))(1 = (pV(2))" = ... = (0" (2))?)",

and w; = gol(lj)(z). From the assumption we have lim h(z) = A.

Br>z—e;

First we prove (i).

For every j =2,... ,n we get (after some calculations)
Oh(z) _ Of 1) 2 (n) 2\1c+1 L—rz
=5 1— — . —(p €
e = iy WA ) DN e
(1) ()2 (n) [ \\21¢ 2z;
—fw)e[l = (pa ()" = .. = (¢a ()1 7= 5
—zi—...—22

which tends to 0 uniformly for z € B? and » — 1. From the above we see
that

oh(z)  of ) pveps (L—wi—. . —w?)3(1—rz)
0z 8wj(w)<1 Wi ) V1I—r2(1—22—...—22)
2 27c 2z,
—fw)e[l —wi — ... —w;] 5

a2 2
1—2f—...— 22
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. . — - 2_..._ 2
tends to 0 uniformly for z € B! and » — 1. Since 4/ 11_’;’22 S VA “n

1—rz
and /1 — 27 — ... — 22 are bounded in B?,
of 1 2z;
a—u}j(w)(l—w%—...—wi)c"’2 —|—f(w)c[1—w%—...—wi]c1 — —?..—z%

tends to 0 uniformly for z € B? and » — 1. Therefore

of(2) e+l
9 (1—22 —... —22)ct2
is bounded in €, for z — ey and j =2,... ,n.

We will show that the expression

agilz) 122 ... Z2)c+%

1 . e n

with ¢ # 0, has no limit for ., > 2 — e;. In the case n = 2 let us consider

the function )
1= 22— 22

f(z)

Note that  lim  f(2)(1 — 2% — 23) = 1, with ¢ =1 and A = 1. Then

Qo dz—e

0f(z)

lim (1 — 2] — z%)H% =2 lim =2

Qo Dz—e 0zo Qo 3z—er /1 — z% — 2 '

We will prove that the last limit does not exist. By the definition of the
Koranyi-Stein wedge in C? we have

(0%
1= 2| < (1= |aa]* = |22,

2

Then for 21 = 1—7 we get |23]> < r(2(1—1)—r). Note that for r sufficiently
small we may take 2 = r(1 — 1)¢, where ¢ € [0,1]. Then

1\ 2
\1—28—22= 2r—r2<1+(1—) t2>
a

z f1-1
lim 2 = «t.
Qa192—>81 val —Z% _25 2

and therefore
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z
The last expression depends on ¢, so that  lim —— 2 does not
Qaydz—er /1 — 22 — 23

exist. For n > 2 one may consider the function

1
fz) = 1—22— .. =22
Now we prove (ii).
Put w = ¢,(z). Then
Oh(z) _ | of r? 2 24c
021 [8101 w) (1 —1rz)? (1 —wi - —wn)
2 _
+ ef(w)(1 —wi — ... —w2)? <—2w1(1r_m1)2>} 1
= 0
-3 [(8;;(@(1 Wi )
k=2
JI =2
—2cf(w)(1 —w? —...— wi)c_lwk> 7“(11_%;)2;]

tends to 0 uniformly for z € B and r — 17

. 1 Z Z
Since (1 —w? — ... —w2)z = VI—ppYlmE e , we get

1—rz

f —w? - 2\c 1 1- rzZ1
+ — w2 2\c¢ (1 _7'Zl>2k rmzk
ettt e ) V1—7r2(1 - 22)> (1—rz)2"

From the first part of the proof we have

0 o )
811];(“’)(11”%'“1”3) 3= —cf(w )(17w§,m7w721)c\/%+0(1)
Therefore
1
sty

T2 1

V1—221—12

+ef(w)(1—wi —... —w?)° =o(1)
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tends to 0 uniformly for z € BZ and » — 1. Moreover

0 -1
[...]1= au]:l(w)(l —w? 7'.'7w’21)c+11_7zz
—i—cf(w)(l—w%—_wi)c 2 r—2z

1—221—rz
Thus from the above considerations we get

lim 0f(2)

Qo dz—er 021

(1—27— ... =22 =2cA. O

Rudin obtained the following result ([Ru], Lemma 6.4.6).

Theorem R. If f is a function holomorphic in B™, ¢ > 0, and
<@ —]zl)"¢ for zeB",
then foril=2,... ,n,0<r <1,

of(rey)

<A (1—r)cz,
&l!_ (1—7)

Note that Theorem R is interesting in the case when |f(re;)| — oo as
r — 17. The following corollary describing the behaviour of functions, in

the case of existence of a finite limit o lim  f(z), may be concluded from
a; DZ—el

the proof of Theorem 1.4.

Corollary 1.5. If there exists a finite limit  lim  f(z) then for every
alBZHel

[=2,...,n

lim 0f(2)

QqqD2z—er 82’1

(1—2:%—...—22)%:0.

From the proof of Theorem 1.4 also the next corollary follows.

Corollary 1.6. If there exists o lim  f(2)(1—2% —...—=22)° = A, then
a132*>61
for everyl=2,... ,n
0 0 0
im0 )(1 —2})t2 =0
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Corollary 1.7. Let f be a function holomorphic in B™. If there exists a
finite limit  lim  f(z), then

Qadz—e;
o) 1
0znn \1=—z—...—22)

for z — ey in Q.

II. Functions in the unit polydisk. Let A be the unit disk in the plane.
For e = (e, ... e®) and n = (n1,... ,m,) let us consider Stolz domains
at e ie. the domains

Wi (%) = {21 € At [arg(1 — ze~%)| <},
where n, € (0,7/2], p>0, k=1,... ,n. Let
Wi(€) = Wy, () x ... x Wy, ()
be the Stolz domain.

In this part of the paper we solve some problems concerning the behaviour
of functions holomorphic in the polydisk near ”the vertex” of a Stolz domain.

Theorem 2.1. Let AcC, c=(c1,...,¢,) € C" and let

2.1 li 1 — zpe”0r)en = A,
(2.1) Wnalg o (2) [ (@ = ze
k=1
Then
1° for every e, € (0,m;), k=1,... ,n and eachl=1,... ,n
lim H (1-— zke*la’f)c’l = Acje

Wy_edz—et? 8zl

2° if A # 0 and if the limit (2.1) exists for every W, with the vertex at 1,

then
n C
1 k
lim f(pa(2)) _ H + 2k :
a—1 f(a) 1— 2z
k=1
where pq(z) = (%ewl, . ,%ﬁ;ﬂew ) is an automorphism of A™.
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Proof.

1° For 6 > 0 sufficiently small and I = 1,... ,n, put K,,(6) = {2 : || <
ry, — 0} and K, (6) = K, (0) x ... x K, (). Then for a = (a1,...,ay) €
(0,1)™ we have

n
flwy,...,w Hl—wkc’“ — A

uniformly in K, (d), as a — 1 where wy, = ﬁjﬁ Now for fixed [ we get

af : _ Ck 291 1 — al2
8,2;( )g(l w ) € (1—{—(1121)2
: Ck 1 — al2 Cy 1
— f(w) H (1 —wy) (1+al2l)201(1—wl) — 0

un(iiformly in Kn((s), as a — 1. Note that m = (1 — wl)(l—&-allzt%
aln

ﬁ Ck 101(1_wl)

82
L=

- 1+a
(1 —wg)%*q — 0
];[ k (1 + alzl)(l — Zl)

uniformly in K, (d), as a — 1. Therefore

(2.2)
8f n n
(1 — wre™ Ork)ereif(1 — e~ — (1 —wre %) e, — 0
8zl 1:[ ) ( ! ]_:[ k !
as w = (wq,...,w,) — 1 in a domain Q, which is the image of K, (0)
under the map (fjr:al e lzn+a" e%n). In the same way as in the case
121 +anz

n = 1 ([GS1]) one can show that W,_. C €, for every ¢ = (e1,...,&y)
with sufficiently small ||¢||. Thus from (2.2) we obtain

8f - —i0k \c 0 —if
w, 161191}0_&8—% )E(l—wke F)Re (1 —we” ) = Aq.

c 2 cp—2
2° Note that for g(z) = (IJ(rfl)zll)cl E}fi";cn there exists the limit

1) g

w321 g(2)

(2.3)
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where ¢ = 2n = >"}_, ¢;. In particular, W,,hslc?—d ggz; = A - 29 Similarly
as in the proof of 1° one can rewrite (2.3) in the following form
(2.4) lim  LPaEDol@)
Wy3a—1 g(pa(2))f(a)
9(#a(2))

where the convergence is uniform in A™. Since g(z) = ST, (ranz )
c=1

from (2.4) we get

lim f((pa(z))—g(z)H(1+zk)2—H<1+Zk> O

Wyp3a—1 f(Z)

Corollary 2.2. Let ¢ = Q. If the limit lim  f(z) is finite then for

nDz—elf

every l =1,... ,n and every € = (e1,... ,&p) g—zfl(z) = o(ﬁ) forz —1

in Wy_.. Moreover Mw(z) = 0((m)m), wherem = ki+...+ky,
and on the right-hand side of the last equality it is not possible to put a
number less than m.

The proof of Theorem 2.1 implies a modification of Hardy-Littlewood
theorem ([Du], [Rul; also cf. [GS2]).

Theorem 2.3. Let f be a function holomorphic in W, with the vertex
at 1, where n is sufficiently small and suppose that for fixved ¢ € C™ the

limit Wliam lf(z) [T (1 —2)* = A € C does exist. Then for every
l=1,. .n. N

. Of . c

lim 5= (r) I}:[l(1 — ) (1 — 1) = Aq,
where v = (r1,...,ry) € (0,1)".

Theorem 2.4. Let c= (c1,...,¢,) €C", u= (u1,-..,4un) € C". If

thagl—df(z) H ((1 — zk)c"’ <]0g 1 _1Zk) > =AeC,

. - c
(or Wnl;rzn_)lf(z) H expr_—_— = Ae C) ,

k=1 k

then for every e = (e1,... ,en), 0 <ep <nr and everyl=1,... ,n

li (lf( )ﬁ (1 —wp)™ |1 Ly (1—wy)=A
Wyoi3em1 02 R R =

k=1
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of & Ck
lim <L . S
w, My e 0 [ e =0 = —4a

The proof of this theorem is similar to that of Theorem 2.1.

The authors wish to express their gratitude to Maria Nowak for many sti-
mulating conversations.
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