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On the modulus of continuity for starlike mappings

Dedicated to our friend Jan Krzyż

Abstract. For a conformal mapping of the unit disk onto a starlike domain
with boundary in a given annulus we derive an estimate for the modulus of

continuity of the boundary correspondence function. The result is in some

sense asymptotically sharp.

1. Introduction and results. Let Γ be a Jordan curve starshaped w.r.
to w = 0 and lying in {w : 1 ≤ |w| ≤ R} for some R > 1, let G := int Γ,
and let f be a conformal map of the unit disk D in the z-plane onto G
with f(0) = 0, extended continuously to D. Finally let arg f(eiτ ) = ϑ(τ)
which increases continuously with τ . We are interested in the modulus of
continuity of this function:

(1.1) ωΓ(δ) := max{|ϑ(τ)− ϑ(σ)| : |τ − σ| ≤ δ} (δ > 0),

which was recently investigated by Stylianopoulos and Wegert [4]. They
have shown that

(1.2) ωΓ(δ) ≤ (6 + π log R)
1

| log δ|
if 0 < δ < 1

4 .
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We shall complement this estimate by a two-sided estimate which shows
that we can omit ”6” in (1.2) if ”1” is replaced by ”1 + ε”, provided that δ
is sufficiently small.

To state our result we introduce

(1.3) ω(δ) := sup{ωΓ(δ) : Γ as above} for δ > 0.

This quantity can be expressed by a certain harmonic measure, and this
will give the following two-sided estimate for ω(δ).

Theorem. For given R > 1 and given ε > 0 there is δ0 = δ0(R, ε) > 0
such that for δ < δ0

(1.4)
π log R

| log δ|

[
1 +

1− ε

| log δ|
log | log δ|

]
< ω(δ) <

π log R

| log δ|

[
1 +

π + ε

| log δ|
log | log δ|

]
.

Corollary. Under the conditions of this theorem, we have

(1.5)
π log R

| log δ|
< ω(δ) <

π log R

| log δ|
(1 + ε) for δ < δ1(R, ε).

Our proof gives, in principle, the possibility to derive a concrete δ0(R, ε)
and δ1(R, ε). But we will omit the lengthy calculations.

Remarks. 1. For every fixed ε > 0 there is no R0(ε) > 1 such that the
right–hand side of (1.4), (1.5) holds for all R < R0(ε) and all sufficiently
small δ > 0.
2. The theorem can immediately be generalized to quasiconformal map-
pings. We only have to write such a mapping as the composition of a
quasiconformal mapping of the unit disk onto itself (with the well-known
Hölder continuity) and a conformal mapping.

2. Reduction of the problem. For a given curve Γ we take σ, τ with
|τ − σ| ≤ δ and try to estimate |ϑ(τ) − ϑ(σ)|. Obviously, we can assume
without loss of generality that

σ = 0, 0 < τ ≤ δ and ϑ(0) = 0, i.e. arg f(1) = 0,

so that we have to estimate ϑ(τ). Since ϑ(τ) increases with τ , it suffices to
estimate ϑ(δ). Let Γδ be the subarc of Γ with 0 ≤ ϑ ≤ ϑ(δ) which is the
image of γδ := {z = eiϕ : 0 ≤ ϕ ≤ δ} under the mapping f .
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Fig. 1

Because of its conformal invariance, the harmonic measure of Γδ with re-
spect to w = 0 is

(2.1)
δ

2π
= ω(0,Γδ, G).

We now replace G by

(2.2) G′ := D ∪ {w : |w| < R, 0 < argw < ϑ(δ)}

and Γδ by the circular arc Γ′δ (Fig. 2). Now ∂G′ consists of Γ′δ, of a part
of the unit circle, and both are connected by two radial line segments. In
other words, we push Γδ outwards to the circle {w : |w| = R} to get Γ′δ,
while we push Γ \ Γδ inwards to the unit circle.

Fig. 2

Now it is readily seen that the functions ω(w,Γδ, G) and ω(w,Γ′δ, G
′) are

harmonic in g := G ∩G′ and that

ω(w,Γδ, G) ≥ ω(w,Γ′δ, G
′) for w ∈ ∂g.
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By the maximum principle this holds also for w = 0, and (2.1) gives

(2.3)
δ

2π
= ω(0,Γδ, G) ≥ ω(0,Γ′δ, G

′),

with equality if and only if Γδ = Γ′δ and G = G′. The right–hand side
depends only on ϑ(δ) and no longer on the shape of Γδ, and we get from
(2.3)

(2.4) δ ≥ 2π ω(0,Γ′δ, G
′) =: h(ϑ(δ)) for all δ with 0 < δ < 2π.

Notice that h(ϑ) increases with ϑ, so that (2.4) implies ϑ(δ) ≤ h−1(δ). This
gives our upper estimate of the desired type

(2.5) ωΓ(δ) ≤ h−1(δ) for all δ with 0 < δ < 2π.

Although ∂G′ =: Γ′ is not starshaped w.r. to w = 0, we can approximate
Γ′ arbitrarily close by bending the straight line pieces of Γ′ slightly to get
a starshaped Jordan curve which has modulus of continuity near that of
Γ′. This argument shows that the upper bound in (2.5) is best possible, i.e.
cannot be decreased. In other words

(2.6) ω(δ) = sup{ωΓ(δ) : Γ} = h−1(δ).

3. A lemma for harmonic measure. We now have to estimate in (2.4)
the harmonic measure h(ϑ(δ)). For simplicity we write in what follows h(ϑ)
instead of h(ϑ(δ)). The main tool for estimating h(ϑ) is a connection with
a conformal module for which we then can use known estimates.

a. For this purpose we use the following scheme.
With the square root transformation

√
w we obtain from the two–sheeted

G′ a quadrilateral in the plane
√

w which is symmetric with respect to
0 whose opposite sides are circular arcs

√
R · · ·

√
Reiϑ/2 and −

√
R · · · −√

Reiϑ/2.
With the in the scheme prescribed Riemann mapping W = W (w) our

harmonic measure obviously satisfies

(3.1) h(ϑ) =
θ

π
,

where e2iθ is the image of Reiϑ.
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Fig. 3

Now the relation between the conformal module M of the quadrilateral
in the plane

√
w (resp. the image in the plane

√
W ) and the harmonic

measure h(ϑ) = θ/π is given in the following lemma; see also [3], Theorem
2.75.

Lemma. With the usual notation µ(...) of the module of Grötzsch’s ex-
tremal domain (see [2], p. 53) we have

(3.2) M =
π

2µ(sin θ
2 )

=
K(sin θ

2 )
K(cos θ

2 )

(K = elliptic integral of the first kind).

Proof. Under the Möbius transformation ζ(w) defined by

ζ = −i
1−w

1 + w

the unit disk in the w =
√

W -plane is mapped on the lower ζ-halfplane with

1 → 0, −1 →∞, eiθ → −tg
θ

2
, −eiθ → ctg

θ

2
.
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We now consider the ζ-plane with cuts along the segment −tg θ
2 · · · 0 and

the ray ctg θ
2 · · · + ∞ as a Teichmüller extremal domain (see [2], p. 55).

The corresponding module M (= logarithm of the quotient > 1 of the radii
of a conformally equivalent annulus) satisfies

M = 2µ
(

sin
θ

2

)
.

Because of conformal invariance M is also the conformal module of the lower
half of our Teichmüller extremal domain, considered as a quadrilateral with
obvious opposite sides. This yields

M =
π

M
=

π

2µ(sin θ
2 )

.

The lemma is proved. �

b. The inequality

(3.3) log
(1 +

√
1− r2)2

r
< µ(r) < log

4
r

(see [2], p. 61, in our case r = sin θ
2 ) gives us with (3.2)

π/2

log
4

sin θ
2

< M <
π/2

log
(1 + cos θ

2 )2

sin θ
2

,

or with sin θ
2 > θ

2

(
1− θ2

24

)
and sin θ

2 < θ
2 , cos θ

2 > 1− θ
π

(3.4)
π/2

log
8

θ
(
1− θ2

24

) < M <
π/2

log
2

(
2− θ

π

)2

θ

.

4. Proof of (1.4) (left–hand side). Our aim is the connection between
ϑ and the harmonic measure h = θ

π . Because we have by the lemma a
connection between M and θ, we need only a connection between ϑ and M.
So we have to consider M as a function of ϑ.

After a conformal mapping of the plane
√

w under the logarithm we can
reduce this problem with the Schwarz-Christoffel formula to the discussion
of an elliptic integral (for this reason it is enough to study a quarter of the
domain in the plane

√
w which is a pentagon).
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But we prefer to estimate M in what follows in both directions using
module estimates.

An upper estimate follows easily by using classical inequalities for the
comparison of modules. We introduce three quadrilaterals V1, V2, V3 with
modules mod Vk as parts of our whole quadrilateral with the module M.

Fig. 4

Namely, define the quadrilaterals Vk as follows
V1: opposite sides = segments −

√
R · · · − 1 and −

√
Reiϑ/2 · · · − eiϑ/2

other sides = circular arcs with radii 1 and
√

R (see Fig. 4),
V2: opposite sides = segments 1 · · ·

√
R and eiϑ/2 · · ·

√
Reiϑ/2 other

sides = circular arcs with radii 1 and
√

R,
V3: opposite sides = arcs −1 · · · eiϑ/2 and −eiϑ/2 · · · 1 on the unit circle,

other sides = remaining arcs on the unit circle.
Then we have immediately

(4.1)
3∑

k=1

mod Vk ≤
1
M

.

Here we have
mod V1 = mod V2 =

log R

ϑ
.

Further we obtain from (3.2) (replacing θ by ϑ/2 and M by 1/modV3)

mod V3 =
2
π

µ(sin
ϑ

4
).

The resulting inequality

2 log R

ϑ
+

2
π

µ(sin
ϑ

4
) ≤ 1

M
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leaves us because of (3.3) with

2 log R

ϑ
+

2
π

log

(
1 + cos ϑ

4

)2

sin ϑ
4

≤ 1
M

,

2 log R

ϑ

[
1 +

ϑ

π log R

(
log

16
ϑ
− ϑ2

3
+ ...

)]
≤ 1

M

(... even powers of ϑ starting with ϑ4),

ϑ ≥ 2 M log R ·
[
1 +

ϑ

π log R

(
log

16
ϑ
− ϑ2

3
+ ...

)]
,

especially ϑ ≥ 2 M log R (for small ϑ), therefore

(4.2) ϑ ≥ 2 M log R

[
1 +

2
π

M
(

log
8

M log R
− 1

3
(2 M log R)2 + ...

)]
,

because the function ϑ
(
log 16

ϑ − ϑ2

3 + ...
)

is monotonically increasing (for
small ϑ).

Now we combine this with

(4.3) M ≥ π/2(
log

8
θ

) [
1 +

θ2 + · · θ4 + ...

24 log 8
θ

]
(see (3.4)). Because of

log
8
θ

=
(

log
1
2θ

) [
1 +

log 16
log 1

2θ

]
this finally yields

(4.4) ϑ ≥ π log R

| log 2θ|

[
1 +

1
| log 2θ|

log | log 2θ|+O
(

1
| log 2θ|

) ]
.

Because we have considered the extremal situation, (4.4) gives us after re-
placing ϑ by ω and θ by δ

2 the left–hand side of (1.4).
To prove the remark after (1.5), take a fixed small θ = δ

2 and consider
R → 1. Because of (3.2) M is also fixed, and therefore

M · log
8

M log R
→ +∞ for R → 1.
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So the remark follows from (4.2).

5. Proof of (1.4) (right–hand side). We use a continuous analogue of
the classical Grötzsch module estimate for families of curves which depend
on a parameter (see [1]):

(5.1) M ≥
∫

dt∫
C(t)

ds
a

.

Here C(t) are sufficiently smooth arcs in the quadrilateral with module M,
which connect the opposite sides. For different values of parameter t the
corresponding C(t) are disjoint, and the dependence on the parameter t
is also sufficiently smooth. It is not necessary that the arcs C(t) fill the
quadrilateral completely. Moreover, s is the arc–length on the corresponding
C(t), and a dt is the infinitesimal distance between the arcs C(t) and C(t+dt).
In this way a function a is defined at all points situated on a curve C(t).

In our case we use the following concrete family of arcs C(t).
Instead of the quadrilateral of Fig. 3 in the plane

√
w we use the following

quadrilateral of Fig. 5 which has the same module M because of symmetry.
Every C(t) consists of three segments C1(t), C2(t), C3(t) as shown in Fig.
5 with the given endpoints. The parameter t is defined by the endpoints
eit of C1(t), 0 < t < ϑ/4. In this way we have for points with the same t
a linear correspondence in the arc–length between: a.) the points of the
arc 1 · · · eiϑ/4 of the unit circle, b.) the points of the arc

√
R · · ·

√
Reiϑ/4

of the circle with center 0 and radius
√

R, c.) the points of the segment
cos ϑ

4 · · · eiϑ/4, and d.) the points of the segment 0 · · · i.
To get an estimate of the right hand side of (5.1) we start with

(5.2)
∫

C1(t)

ds

a
=

√
R∫

1

ds

s
= log

√
R .

For the corresponding part of C2(t) it is enough to have a rough estimate.
An elementary geometric consideration of C2(t) gives us the boundedness
of the angle γ between C2(t) and the real axis. This means

(5.3) cos γ ≥ c

with a universal constant c > 0 (for example c = 0.6). Because a attains
its extremal values on C2(t) at the endpoints, it is enough to estimate this
quantity there. At the left–hand endpoint we have

a ≥ 4
ϑ

sin
ϑ

4
cos γ ,
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Fig. 5

because 4
ϑ sin ϑ

4 dt is the orthogonal infinitesimal distance there (in the di-
rection of the imaginary axis) between C(t) and C(t+dt). Mutatis mutandis
we have at the right–hand endpoint

a ≥ cos γ · d

dt
sin t = cos γ cos t ≥ cos

ϑ

4
· cos γ.

Therefore we have on the whole segment C2(t):

a ≥ cos
ϑ

4
cos γ ≥ c · cos

ϑ

4
.

Moreover, the length of C2(t) is less than 1
c (1− cos ϑ

4 ). Therefore

(5.4)
∫

C2(t)

ds

a
≤ 1

c · cos ϑ
4

· 1
c

(
1− cos

ϑ

4

)
≤ 1

c2

1
2

(
ϑ
4

)2

cos ϑ
4

=
ϑ2

32c2 · cos ϑ
4

.

For the last part
∫

C3(t)
in (5.1) let us denote by a′ dt the orthogonal

distance (in the direction of the imaginary axis) between C(t) and C(t + dt)
at the corresponding point. Then obviously a ≥ a′/

√
2. Let us further
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denote by dσ the orthogonal projection of every element ds of C3(t) on the
real axis. Then ds

dσ <
√

2. Because a′ is a linear function of σ, we have

(5.5) a′ =
σ

d
· 4
ϑ

sin
ϑ

4
with d =

cos ϑ
4 sin ϑ

4

1− sin ϑ
4

,

if we set σ = 0 for the common real point of intersection

r =
cos ϑ

4

1− sin ϑ
4

(see Fig. 5) of the prolongations of the C3(t). The value (5.5) for a′ follows
because we have for σ = d (corresponding to the right–hand endpoint of
C3(t)) the value a′ = 4

ϑ sin ϑ
4 .

This altogether yields

(5.6)

∫
C3(t)

ds

a
≤
√

2
∫

C3(t)

ds

a′
=
√

2

r∫
d

ds

dσ

dσ

a′
≤ 2

r∫
d

dσ

a′
= 2d

ϑ

4
1

sin ϑ
4

r∫
d

dσ

σ

<
ϑ/2

1− sin ϑ
4

·
∣∣∣ log sin

ϑ

4

∣∣∣ .

(If we use instead of the arcs C3(t) a ”better” curve family which fills the
space under the unit circle, we get with much more lengthy calculations in
the result (1.4) a smaller constant than π + ε.)

Collecting (5.2), (5.4), (5.6) we obtain from (5.1)

(5.7) M ≥ ϑ

4

[
log

√
R +

ϑ2

32c2 cos ϑ
4

+
ϑ/2

1− sin ϑ
4

∣∣∣ log sin
ϑ

4

∣∣∣]−1

.

To obtain now an estimate of ϑ with M from above we write (5.7) in the
form

(5.8) ϑ ≤ 2 M
[
log R +

ϑ2

16c2 cos ϑ
4

+
ϑ

1− sin ϑ
4

∣∣∣ log sin
ϑ

4

∣∣∣] .

If we compare the module M of our quadrilateral in Fig. 5 with the
module of the rectangle with corners 0,

√
R, i sin ϑ

4 ,
√

R+ i sin ϑ
4 , we obtain

additionally

M ≥
sin ϑ

4√
R

≥ ϑ

2π
√

R
, or ϑ ≤ 2π

√
R M .
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Inserting this in the right–hand side of (5.8) we get

ϑ ≤ 2 M
[
log R +O

(
M log

1
M

) ]
.

And inserting this now in the right–hand side of (5.8) we arrive at

(5.9) ϑ ≤ 2 M
[
log R + 2(log R) M log

1
M

+O(M)
]
.

Now we have to combine this with the inequality

(5.10) M ≤ π/2
| log 2θ|

[
1 +O

(
1

| log 2θ|

) ]
,

which follows from (3.4). This leaves us with

(5.11) ϑ ≤ π log R

| log 2θ|

[
1 +

π

| log 2θ|
log | log 2θ|

(
1 +O

(
1

log | log 2θ|

) )]
.

Because we have considered the extremal situation, (5.11) gives us finally
the right–hand side of (1.4) after replacing ϑ by ω and 2θ by δ.
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