ANNALES

UNIVERSITATIS MARIAECURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVI, 2
SECTIO A 2002

DIETER GAIER and REINER KÜHNAU

On the modulus of continuity for starlike mappings

Dedicated to our friend Jan Krzyż

Abstract

For a conformal mapping of the unit disk onto a starlike domain with boundary in a given annulus we derive an estimate for the modulus of continuity of the boundary correspondence function. The result is in some sense asymptotically sharp.

1. Introduction and results. Let Γ be a Jordan curve starshaped w.r. to $w=0$ and lying in $\{w: 1 \leq|w| \leq R\}$ for some $R>1$, let $G:=\operatorname{int} \Gamma$, and let f be a conformal map of the unit disk \mathbb{D} in the z-plane onto G with $f(0)=0$, extended continuously to $\overline{\mathbb{D}}$. Finally let $\arg f\left(e^{i \tau}\right)=\vartheta(\tau)$ which increases continuously with τ. We are interested in the modulus of continuity of this function:

$$
\begin{equation*}
\omega_{\Gamma}(\delta):=\max \{|\vartheta(\tau)-\vartheta(\sigma)|:|\tau-\sigma| \leq \delta\} \quad(\delta>0) \tag{1.1}
\end{equation*}
$$

which was recently investigated by Stylianopoulos and Wegert [4]. They have shown that

$$
\begin{equation*}
\omega_{\Gamma}(\delta) \leq(6+\pi \log R) \frac{1}{|\log \delta|} \quad \text { if } \quad 0<\delta<\frac{1}{4} \tag{1.2}
\end{equation*}
$$

[^0]We shall complement this estimate by a two-sided estimate which shows that we can omit " 6 " in (1.2) if " 1 " is replaced by " $1+\varepsilon$ ", provided that δ is sufficiently small.

To state our result we introduce

$$
\begin{equation*}
\omega(\delta):=\sup \left\{\omega_{\Gamma}(\delta): \Gamma \text { as above }\right\} \quad \text { for } \delta>0 \tag{1.3}
\end{equation*}
$$

This quantity can be expressed by a certain harmonic measure, and this will give the following two-sided estimate for $\omega(\delta)$.

Theorem. For given $R>1$ and given $\varepsilon>0$ there is $\delta_{0}=\delta_{0}(R, \varepsilon)>0$ such that for $\delta<\delta_{0}$

$$
\begin{equation*}
\frac{\pi \log R}{|\log \delta|}\left[1+\frac{1-\varepsilon}{|\log \delta|} \log |\log \delta|\right]<\omega(\delta)<\frac{\pi \log R}{|\log \delta|}\left[1+\frac{\pi+\varepsilon}{|\log \delta|} \log |\log \delta|\right] . \tag{1.4}
\end{equation*}
$$

Corollary. Under the conditions of this theorem, we have

$$
\begin{equation*}
\frac{\pi \log R}{|\log \delta|}<\omega(\delta)<\frac{\pi \log R}{|\log \delta|}(1+\varepsilon) \quad \text { for } \quad \delta<\delta_{1}(R, \varepsilon) \tag{1.5}
\end{equation*}
$$

Our proof gives, in principle, the possibility to derive a concrete $\delta_{0}(R, \varepsilon)$ and $\delta_{1}(R, \varepsilon)$. But we will omit the lengthy calculations.

Remarks. 1. For every fixed $\varepsilon>0$ there is no $R_{0}(\varepsilon)>1$ such that the right-hand side of (1.4), (1.5) holds for all $R<R_{0}(\varepsilon)$ and all sufficiently small $\delta>0$.
2. The theorem can immediately be generalized to quasiconformal mappings. We only have to write such a mapping as the composition of a quasiconformal mapping of the unit disk onto itself (with the well-known Hölder continuity) and a conformal mapping.
2. Reduction of the problem. For a given curve Γ we take σ, τ with $|\tau-\sigma| \leq \delta$ and try to estimate $|\vartheta(\tau)-\vartheta(\sigma)|$. Obviously, we can assume without loss of generality that

$$
\sigma=0, \quad 0<\tau \leq \delta \quad \text { and } \quad \vartheta(0)=0, \text { i.e. } \arg f(1)=0,
$$

so that we have to estimate $\vartheta(\tau)$. Since $\vartheta(\tau)$ increases with τ, it suffices to estimate $\vartheta(\delta)$. Let Γ_{δ} be the subarc of Γ with $0 \leq \vartheta \leq \vartheta(\delta)$ which is the image of $\gamma_{\delta}:=\left\{z=e^{i \varphi}: 0 \leq \varphi \leq \delta\right\}$ under the mapping f.

Fig. 1
Because of its conformal invariance, the harmonic measure of Γ_{δ} with respect to $w=0$ is

$$
\begin{equation*}
\frac{\delta}{2 \pi}=\omega\left(0, \Gamma_{\delta}, G\right) . \tag{2.1}
\end{equation*}
$$

We now replace G by

$$
\begin{equation*}
G^{\prime}:=\mathbb{D} \cup\{w:|w|<R, 0<\arg w<\vartheta(\delta)\} \tag{2.2}
\end{equation*}
$$

and Γ_{δ} by the circular arc Γ_{δ}^{\prime} (Fig. 2). Now ∂G^{\prime} consists of Γ_{δ}^{\prime}, of a part of the unit circle, and both are connected by two radial line segments. In other words, we push Γ_{δ} outwards to the circle $\{w:|w|=R\}$ to get Γ_{δ}^{\prime}, while we push $\Gamma \backslash \Gamma_{\delta}$ inwards to the unit circle.

Fig. 2
Now it is readily seen that the functions $\omega\left(w, \Gamma_{\delta}, G\right)$ and $\omega\left(w, \Gamma_{\delta}^{\prime}, G^{\prime}\right)$ are harmonic in $g:=G \cap G^{\prime}$ and that

$$
\omega\left(w, \Gamma_{\delta}, G\right) \geq \omega\left(w, \Gamma_{\delta}^{\prime}, G^{\prime}\right) \quad \text { for } \quad w \in \partial g .
$$

By the maximum principle this holds also for $w=0$, and (2.1) gives

$$
\begin{equation*}
\frac{\delta}{2 \pi}=\omega\left(0, \Gamma_{\delta}, G\right) \geq \omega\left(0, \Gamma_{\delta}^{\prime}, G^{\prime}\right) \tag{2.3}
\end{equation*}
$$

with equality if and only if $\Gamma_{\delta}=\Gamma_{\delta}^{\prime}$ and $G=G^{\prime}$. The right-hand side depends only on $\vartheta(\delta)$ and no longer on the shape of Γ_{δ}, and we get from (2.3)

$$
\begin{equation*}
\delta \geq 2 \pi \omega\left(0, \Gamma_{\delta}^{\prime}, G^{\prime}\right)=: h(\vartheta(\delta)) \quad \text { for all } \delta \text { with } 0<\delta<2 \pi \tag{2.4}
\end{equation*}
$$

Notice that $h(\vartheta)$ increases with ϑ, so that (2.4) implies $\vartheta(\delta) \leq h^{-1}(\delta)$. This gives our upper estimate of the desired type

$$
\begin{equation*}
\omega_{\Gamma}(\delta) \leq h^{-1}(\delta) \quad \text { for all } \delta \text { with } 0<\delta<2 \pi . \tag{2.5}
\end{equation*}
$$

Although $\partial G^{\prime}=: \Gamma^{\prime}$ is not starshaped w.r. to $w=0$, we can approximate Γ^{\prime} arbitrarily close by bending the straight line pieces of Γ^{\prime} slightly to get a starshaped Jordan curve which has modulus of continuity near that of Γ^{\prime}. This argument shows that the upper bound in (2.5) is best possible, i.e. cannot be decreased. In other words

$$
\begin{equation*}
\omega(\delta)=\sup \left\{\omega_{\Gamma}(\delta): \Gamma\right\}=h^{-1}(\delta) . \tag{2.6}
\end{equation*}
$$

3. A lemma for harmonic measure. We now have to estimate in (2.4) the harmonic measure $h(\vartheta(\delta))$. For simplicity we write in what follows $h(\vartheta)$ instead of $h(\vartheta(\delta))$. The main tool for estimating $h(\vartheta)$ is a connection with a conformal module for which we then can use known estimates.
a. For this purpose we use the following scheme.

With the square root transformation \sqrt{w} we obtain from the two-sheeted G^{\prime} a quadrilateral in the plane \sqrt{w} which is symmetric with respect to 0 whose opposite sides are circular arcs $\sqrt{R} \cdots \sqrt{R} e^{i \vartheta / 2}$ and $-\sqrt{R} \cdots-$ $\sqrt{R} e^{i \vartheta / 2}$.

With the in the scheme prescribed Riemann mapping $W=W(w)$ our harmonic measure obviously satisfies

$$
\begin{equation*}
h(\vartheta)=\frac{\theta}{\pi}, \tag{3.1}
\end{equation*}
$$

where $e^{2 i \theta}$ is the image of $R e^{i \vartheta}$.

Fig. 3
Now the relation between the conformal module \mathfrak{M} of the quadrilateral in the plane \sqrt{w} (resp. the image in the plane \sqrt{W}) and the harmonic measure $h(\vartheta)=\theta / \pi$ is given in the following lemma; see also [3], Theorem 2.75 .

Lemma. With the usual notation $\mu(\ldots)$ of the module of Grötzsch's extremal domain (see [2], p. 53) we have

$$
\begin{equation*}
\mathfrak{M}=\frac{\pi}{2 \mu\left(\sin \frac{\theta}{2}\right)}=\frac{K\left(\sin \frac{\theta}{2}\right)}{K\left(\cos \frac{\theta}{2}\right)} \tag{3.2}
\end{equation*}
$$

($K=$ elliptic integral of the first kind).
Proof. Under the Möbius transformation $\zeta(\mathfrak{w})$ defined by

$$
\zeta=-i \frac{1-\mathfrak{w}}{1+\mathfrak{w}}
$$

the unit disk in the $\mathfrak{w}=\sqrt{ } W$-plane is mapped on the lower ζ-halfplane with

$$
1 \rightarrow 0,-1 \rightarrow \infty, e^{i \theta} \rightarrow-\operatorname{tg} \frac{\theta}{2},-e^{i \theta} \rightarrow \operatorname{ctg} \frac{\theta}{2} .
$$

We now consider the ζ-plane with cuts along the segment $-\operatorname{tg} \frac{\theta}{2} \cdots 0$ and the ray $\operatorname{ctg} \frac{\theta}{2} \cdots+\infty$ as a Teichmüller extremal domain (see [2], p. 55). The corresponding module M (= logarithm of the quotient > 1 of the radii of a conformally equivalent annulus) satisfies

$$
M=2 \mu\left(\sin \frac{\theta}{2}\right) .
$$

Because of conformal invariance \mathfrak{M} is also the conformal module of the lower half of our Teichmüller extremal domain, considered as a quadrilateral with obvious opposite sides. This yields

$$
\mathfrak{M}=\frac{\pi}{M}=\frac{\pi}{2 \mu\left(\sin \frac{\theta}{2}\right)} .
$$

The lemma is proved.
b. The inequality

$$
\begin{equation*}
\log \frac{\left(1+\sqrt{1-r^{2}}\right)^{2}}{r}<\mu(r)<\log \frac{4}{r} \tag{3.3}
\end{equation*}
$$

(see [2], p. 61, in our case $r=\sin \frac{\theta}{2}$) gives us with (3.2)

$$
\frac{\pi / 2}{\log \frac{4}{\sin \frac{\theta}{2}}}<\mathfrak{M}<\frac{\pi / 2}{\log \frac{\left(1+\cos \frac{\theta}{2}\right)^{2}}{\sin \frac{\theta}{2}}},
$$

or with $\sin \frac{\theta}{2}>\frac{\theta}{2}\left(1-\frac{\theta^{2}}{24}\right)$ and $\sin \frac{\theta}{2}<\frac{\theta}{2}, \cos \frac{\theta}{2}>1-\frac{\theta}{\pi}$

$$
\begin{equation*}
\frac{\pi / 2}{\log \frac{8}{\theta\left(1-\frac{\theta^{2}}{24}\right)}}<\mathfrak{M}<\frac{\pi / 2}{\log \frac{2\left(2-\frac{\theta}{\pi}\right)^{2}}{\theta}} . \tag{3.4}
\end{equation*}
$$

4. Proof of (1.4) (left-hand side). Our aim is the connection between ϑ and the harmonic measure $h=\frac{\theta}{\pi}$. Because we have by the lemma a connection between \mathfrak{M} and θ, we need only a connection between ϑ and \mathfrak{M}. So we have to consider \mathfrak{M} as a function of ϑ.

After a conformal mapping of the plane \sqrt{w} under the logarithm we can reduce this problem with the Schwarz-Christoffel formula to the discussion of an elliptic integral (for this reason it is enough to study a quarter of the domain in the plane \sqrt{w} which is a pentagon).

But we prefer to estimate \mathfrak{M} in what follows in both directions using module estimates.

An upper estimate follows easily by using classical inequalities for the comparison of modules. We introduce three quadrilaterals $\mathfrak{V}_{1}, \mathfrak{V}_{2}, \mathfrak{V}_{3}$ with modules $\bmod \mathfrak{V}_{k}$ as parts of our whole quadrilateral with the module \mathfrak{M}.

Fig. 4
Namely, define the quadrilaterals \mathfrak{V}_{k} as follows
\mathfrak{V}_{1} : opposite sides $=$ segments $-\sqrt{R} \cdots-1$ and $-\sqrt{R} e^{i \vartheta / 2} \cdots-e^{i \vartheta / 2}$ other sides $=$ circular arcs with radii 1 and \sqrt{R} (see Fig. 4),
\mathfrak{V}_{2} : opposite sides $=$ segments $1 \cdots \sqrt{R}$ and $e^{i \vartheta / 2} \cdots \sqrt{R} e^{i \vartheta / 2}$ other sides $=$ circular arcs with radii 1 and \sqrt{R},
$\mathfrak{V}_{3}:$ opposite sides $=\operatorname{arcs}-1 \cdots e^{i \vartheta / 2}$ and $-e^{i \vartheta / 2} \cdots 1$ on the unit circle, other sides $=$ remaining arcs on the unit circle.
Then we have immediately

$$
\begin{equation*}
\sum_{k=1}^{3} \bmod \mathfrak{V}_{k} \leq \frac{1}{\mathfrak{M}} \tag{4.1}
\end{equation*}
$$

Here we have

$$
\bmod \mathfrak{V}_{1}=\quad \bmod \mathfrak{V}_{2}=\frac{\log R}{\vartheta}
$$

Further we obtain from (3.2) (replacing θ by $\vartheta / 2$ and \mathfrak{M} by $1 / \bmod \mathfrak{V}_{3}$)

$$
\bmod \mathfrak{V}_{3}=\frac{2}{\pi} \mu\left(\sin \frac{\vartheta}{4}\right)
$$

The resulting inequality

$$
\frac{2 \log R}{\vartheta}+\frac{2}{\pi} \mu\left(\sin \frac{\vartheta}{4}\right) \leq \frac{1}{\mathfrak{M}}
$$

leaves us because of (3.3) with

$$
\begin{gathered}
\frac{2 \log R}{\vartheta}+\frac{2}{\pi} \log \frac{\left(1+\cos \frac{\vartheta}{4}\right)^{2}}{\sin \frac{\vartheta}{4}} \leq \frac{1}{\mathfrak{M}} \\
\frac{2 \log R}{\vartheta}\left[1+\frac{\vartheta}{\pi \log R}\left(\log \frac{16}{\vartheta}-\frac{\vartheta^{2}}{3}+\ldots\right)\right] \leq \frac{1}{\mathfrak{M}}
\end{gathered}
$$

(... even powers of ϑ starting with ϑ^{4}),

$$
\vartheta \geq 2 \mathfrak{M} \log R \cdot\left[1+\frac{\vartheta}{\pi \log R}\left(\log \frac{16}{\vartheta}-\frac{\vartheta^{2}}{3}+\ldots\right)\right]
$$

especially $\vartheta \geq 2 \mathfrak{M} \log R($ for small $\vartheta)$, therefore

$$
\begin{equation*}
\vartheta \geq 2 \mathfrak{M} \log R\left[1+\frac{2}{\pi} \mathfrak{M}\left(\log \frac{8}{\mathfrak{M} \log R}-\frac{1}{3}(2 \mathfrak{M} \log R)^{2}+\ldots\right)\right] \tag{4.2}
\end{equation*}
$$

because the function $\vartheta\left(\log \frac{16}{\vartheta}-\frac{\vartheta^{2}}{3}+\ldots\right)$ is monotonically increasing (for small ϑ).

Now we combine this with

$$
\begin{equation*}
\mathfrak{M} \geq \frac{\pi / 2}{\left(\log \frac{8}{\theta}\right)\left[1+\frac{\theta^{2}+\cdots \theta^{4}+\ldots}{24 \log \frac{8}{\theta}}\right]} \tag{4.3}
\end{equation*}
$$

(see (3.4)). Because of

$$
\log \frac{8}{\theta}=\left(\log \frac{1}{2 \theta}\right)\left[1+\frac{\log 16}{\log \frac{1}{2 \theta}}\right]
$$

this finally yields

$$
\begin{equation*}
\vartheta \geq \frac{\pi \log R}{|\log 2 \theta|}\left[1+\frac{1}{|\log 2 \theta|} \log |\log 2 \theta|+\mathcal{O}\left(\frac{1}{|\log 2 \theta|}\right)\right] \tag{4.4}
\end{equation*}
$$

Because we have considered the extremal situation, (4.4) gives us after replacing ϑ by ω and θ by $\frac{\delta}{2}$ the left-hand side of (1.4).

To prove the remark after (1.5), take a fixed small $\theta=\frac{\delta}{2}$ and consider $R \rightarrow 1$. Because of (3.2) \mathfrak{M} is also fixed, and therefore

$$
\mathfrak{M} \cdot \log \frac{8}{\mathfrak{M} \log R} \rightarrow+\infty \quad \text { for } R \rightarrow 1
$$

So the remark follows from (4.2).
5. Proof of (1.4) (right-hand side). We use a continuous analogue of the classical Grötzsch module estimate for families of curves which depend on a parameter (see [1]):

$$
\begin{equation*}
\mathfrak{M} \geq \int \frac{d t}{\int_{\mathfrak{C}(t)} \frac{d s}{a}} \tag{5.1}
\end{equation*}
$$

Here $\mathfrak{C}(t)$ are sufficiently smooth arcs in the quadrilateral with module \mathfrak{M}, which connect the opposite sides. For different values of parameter t the corresponding $\mathfrak{C}(t)$ are disjoint, and the dependence on the parameter t is also sufficiently smooth. It is not necessary that the arcs $\mathfrak{C}(t)$ fill the quadrilateral completely. Moreover, s is the arc-length on the corresponding $\mathfrak{C}(t)$, and $a d t$ is the infinitesimal distance between the $\operatorname{arcs} \mathfrak{C}(t)$ and $\mathfrak{C}(t+d t)$. In this way a function a is defined at all points situated on a curve $\mathfrak{C}(t)$.

In our case we use the following concrete family of $\operatorname{arcs} \mathfrak{C}(t)$.
Instead of the quadrilateral of Fig. 3 in the plane \sqrt{w} we use the following quadrilateral of Fig. 5 which has the same module \mathfrak{M} because of symmetry. Every $\mathfrak{C}(t)$ consists of three segments $\mathfrak{C}_{1}(t), \mathfrak{C}_{2}(t), \mathfrak{C}_{3}(t)$ as shown in Fig. 5 with the given endpoints. The parameter t is defined by the endpoints $e^{i t}$ of $\mathfrak{C}_{1}(t), 0<t<\vartheta / 4$. In this way we have for points with the same t a linear correspondence in the arc-length between: a.) the points of the $\operatorname{arc} 1 \cdots e^{i \vartheta / 4}$ of the unit circle, b.) the points of the $\operatorname{arc} \sqrt{R} \cdots \sqrt{R} e^{i \vartheta / 4}$ of the circle with center 0 and radius \sqrt{R}, c.) the points of the segment $\cos \frac{\vartheta}{4} \cdots e^{i \vartheta / 4}$, and d.) the points of the segment $0 \cdots i$.

To get an estimate of the right hand side of (5.1) we start with

$$
\begin{equation*}
\int_{\mathfrak{C}_{1}(t)} \frac{d s}{a}=\int_{1}^{\sqrt{R}} \frac{d s}{s}=\log \sqrt{R} \tag{5.2}
\end{equation*}
$$

For the corresponding part of $\mathfrak{C}_{2}(t)$ it is enough to have a rough estimate. An elementary geometric consideration of $\mathfrak{C}_{2}(t)$ gives us the boundedness of the angle γ between $\mathfrak{C}_{2}(t)$ and the real axis. This means

$$
\begin{equation*}
\cos \gamma \geq c \tag{5.3}
\end{equation*}
$$

with a universal constant $c>0$ (for example $c=0.6$). Because a attains its extremal values on $\mathfrak{C}_{2}(t)$ at the endpoints, it is enough to estimate this quantity there. At the left-hand endpoint we have

$$
a \geq \frac{4}{\vartheta} \sin \frac{\vartheta}{4} \cos \gamma
$$

Fig. 5
because $\frac{4}{\vartheta} \sin \frac{\vartheta}{4} d t$ is the orthogonal infinitesimal distance there (in the direction of the imaginary axis) between $\mathfrak{C}(t)$ and $\mathfrak{C}(t+d t)$. Mutatis mutandis we have at the right-hand endpoint

$$
a \geq \cos \gamma \cdot \frac{d}{d t} \sin t=\cos \gamma \cos t \geq \cos \frac{\vartheta}{4} \cdot \cos \gamma
$$

Therefore we have on the whole segment $\mathfrak{C}_{2}(t)$:

$$
a \geq \cos \frac{\vartheta}{4} \cos \gamma \geq c \cdot \cos \frac{\vartheta}{4}
$$

Moreover, the length of $\mathfrak{C}_{2}(t)$ is less than $\frac{1}{c}\left(1-\cos \frac{\vartheta}{4}\right)$. Therefore

$$
\begin{equation*}
\int_{\mathfrak{C}_{2}(t)} \frac{d s}{a} \leq \frac{1}{c \cdot \cos \frac{\vartheta}{4}} \cdot \frac{1}{c}\left(1-\cos \frac{\vartheta}{4}\right) \leq \frac{1}{c^{2}} \frac{\frac{1}{2}\left(\frac{\vartheta}{4}\right)^{2}}{\cos \frac{\vartheta}{4}}=\frac{\vartheta^{2}}{32 c^{2} \cdot \cos \frac{\vartheta}{4}} \tag{5.4}
\end{equation*}
$$

For the last part $\int_{\mathfrak{C}_{3}(t)}$ in (5.1) let us denote by $a^{\prime} d t$ the orthogonal distance (in the direction of the imaginary axis) between $\mathfrak{C}(t)$ and $\mathfrak{C}(t+d t)$ at the corresponding point. Then obviously $a \geq a^{\prime} / \sqrt{2}$. Let us further
denote by $d \sigma$ the orthogonal projection of every element $d s$ of $\mathfrak{C}_{3}(t)$ on the real axis. Then $\frac{d s}{d \sigma}<\sqrt{2}$. Because a^{\prime} is a linear function of σ, we have

$$
\begin{equation*}
a^{\prime}=\frac{\sigma}{d} \cdot \frac{4}{\vartheta} \sin \frac{\vartheta}{4} \quad \text { with } \quad d=\frac{\cos \frac{\vartheta}{4} \sin \frac{\vartheta}{4}}{1-\sin \frac{\vartheta}{4}} \tag{5.5}
\end{equation*}
$$

if we set $\sigma=0$ for the common real point of intersection

$$
r=\frac{\cos \frac{\vartheta}{4}}{1-\sin \frac{\vartheta}{4}}
$$

(see Fig. 5) of the prolongations of the $\mathfrak{C}_{3}(t)$. The value (5.5) for a^{\prime} follows because we have for $\sigma=d$ (corresponding to the right-hand endpoint of $\left.\mathfrak{C}_{3}(t)\right)$ the value $a^{\prime}=\frac{4}{\vartheta} \sin \frac{\vartheta}{4}$.

This altogether yields

$$
\begin{align*}
\int_{\mathfrak{C}_{3}(t)} \frac{d s}{a} & \leq \sqrt{2} \int_{\mathfrak{C}_{3}(t)} \frac{d s}{a^{\prime}}=\sqrt{2} \int_{d}^{r} \frac{d s}{d \sigma} \frac{d \sigma}{a^{\prime}} \leq 2 \int_{d}^{r} \frac{d \sigma}{a^{\prime}}=2 d \frac{\vartheta}{4} \frac{1}{\sin \frac{\vartheta}{4}} \int_{d}^{r} \frac{d \sigma}{\sigma} \tag{5.6}\\
& <\frac{\vartheta / 2}{1-\sin \frac{\vartheta}{4}} \cdot\left|\log \sin \frac{\vartheta}{4}\right|
\end{align*}
$$

(If we use instead of the $\operatorname{arcs} \mathfrak{C}_{3}(t)$ a "better" curve family which fills the space under the unit circle, we get with much more lengthy calculations in the result (1.4) a smaller constant than $\pi+\varepsilon$.)

Collecting (5.2), (5.4), (5.6) we obtain from (5.1)

$$
\begin{equation*}
\mathfrak{M} \geq \frac{\vartheta}{4}\left[\log \sqrt{R}+\frac{\vartheta^{2}}{32 c^{2} \cos \frac{\vartheta}{4}}+\frac{\vartheta / 2}{1-\sin \frac{\vartheta}{4}}\left|\log \sin \frac{\vartheta}{4}\right|\right]^{-1} \tag{5.7}
\end{equation*}
$$

To obtain now an estimate of ϑ with \mathfrak{M} from above we write (5.7) in the form

$$
\begin{equation*}
\vartheta \leq 2 \mathfrak{M}\left[\log R+\frac{\vartheta^{2}}{16 c^{2} \cos \frac{\vartheta}{4}}+\frac{\vartheta}{1-\sin \frac{\vartheta}{4}}\left|\log \sin \frac{\vartheta}{4}\right|\right] \tag{5.8}
\end{equation*}
$$

If we compare the module \mathfrak{M} of our quadrilateral in Fig. 5 with the module of the rectangle with corners $0, \sqrt{R}, i \sin \frac{\vartheta}{4}, \sqrt{R}+i \sin \frac{\vartheta}{4}$, we obtain additionally

$$
\mathfrak{M} \geq \frac{\sin \frac{\vartheta}{4}}{\sqrt{R}} \geq \frac{\vartheta}{2 \pi \sqrt{R}}, \quad \text { or } \quad \vartheta \leq 2 \pi \sqrt{R} \mathfrak{M}
$$

Inserting this in the right-hand side of (5.8) we get

$$
\vartheta \leq 2 \mathfrak{M}\left[\log R+\mathcal{O}\left(\mathfrak{M} \log \frac{1}{\mathfrak{M}}\right)\right] .
$$

And inserting this now in the right-hand side of (5.8) we arrive at

$$
\begin{equation*}
\vartheta \leq 2 \mathfrak{M}\left[\log R+2(\log R) \mathfrak{M} \log \frac{1}{\mathfrak{M}}+\mathcal{O}(\mathfrak{M})\right] \tag{5.9}
\end{equation*}
$$

Now we have to combine this with the inequality

$$
\begin{equation*}
\mathfrak{M} \leq \frac{\pi / 2}{|\log 2 \theta|}\left[1+\mathcal{O}\left(\frac{1}{|\log 2 \theta|}\right)\right], \tag{5.10}
\end{equation*}
$$

which follows from (3.4). This leaves us with

$$
\begin{equation*}
\vartheta \leq \frac{\pi \log R}{|\log 2 \theta|}\left[1+\frac{\pi}{|\log 2 \theta|} \log |\log 2 \theta|\left(1+\mathcal{O}\left(\frac{1}{\log |\log 2 \theta|}\right)\right)\right] . \tag{5.11}
\end{equation*}
$$

Because we have considered the extremal situation, (5.11) gives us finally the right-hand side of (1.4) after replacing ϑ by ω and 2θ by δ.

References

[1] Kühnau, R., Der konforme Modul von Vierecken, Analysis and Topology (Stoïlow Festschrift), World Scientific Publ. Comp., Singapore etc., 1998, pp. 483-495.
[2] Lehto, O., K.I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[3] Ohtsuka, M., Dirichlet problem, extremal length and prime ends, Van Nostrand Reinhold Comp., New York etc., 1970.
[4] Stylianopoulos, N.S., E. Wegert, A uniform estimate for the modulus of continuity of starlike mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A. 56 (2002), 97-103.

Mathematisches Institut
received November 30, 2001 der Universität Gießen
Arndtstraße 2
D-35392 Gießen, Germany
e-mail: dieter.gaier@math.uni-giessen.de
FB Mathematik
Martin-Luther-Universität
Halle-Wittenberg
D-06099 Halle (Saale), Germany
e-mail: kuehnau@cantor.mathematik.uni-halle.de

[^0]: 1991 Mathematics Subject Classification. 30C45, 30C35.
 Key words and phrases. Conformal mapping, starlike domains, modulus of continuity, boundary correspondence function.

