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A nonlinear Abelian ergodic theorem

for asymptotically nonexpansive mappings

in a Hilbert space

Abstract. Let C be a closed convex subset of a real Hilbert space and let T
be an asymptotically nonexpansive nonlinear self–mapping of C. We prove

a nonlinear Abelian ergodic theorem which deals with the weak convergence
of the Abelian averages Ar[T ]x, 0 < r < 1, of the iterates {T nx} for each x

in C.

1. Introduction. Throughout this paper H will denote a Hilbert space
over the real number field. Let C be a nonempty closed convex subset of H
and let T be a mapping of C into itself. If the inequality ‖Tx−Ty‖ ≤ ‖x−y‖
holds for all x, y in C, the mapping T is called nonexpansive on C. More
generally, the mapping T is said to be {αn}-asymptotically nonexpansive on
C if the inequality ‖Tnx− Tny‖ ≤ (1 + αn)‖x− y‖ holds for all x, y in C,
where {αn} is a sequence of real numbers such that lim

n→∞
αn = 0. The
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latter notion was introduced by Goebel and Kirk [4]. The object of this
investigation is the so–called Abelian average Ar[T ]x of the iterates {Tnx}
for each x in C, which is defined by

Ar[T ]x = (1− r)
∞∑

n=0

rnTnx = (1− r)(I − rT )−1
x , 0 < r < 1

whenever (I − rT )−1
x exists. If a norm–bounded sequence {wn : n ∈ N} is

given in C, we define

Γm(x) = sup{‖x− wk‖ : k ≥ m} , x ∈ C ,

Γ(x) = inf{Γm(x) : m ∈ N} , x ∈ C ,

Γ = inf{Γ(x) : x ∈ C} .

For the numbers Γ(x) and Γ so defined, the set AC({wn}) = {x ∈ C :
Γ(x) = Γ} (the number Γ) is called the asymptotic center (asymptotic
radius) of {wn : n ∈ N} in C. This definition is due to Lim [7]. It is well
known (cf. [2], [3], [4], [7]) that a unique point x exists in C such that the
asymptotic center AC({wn}) is a single–element set {x} which satisfies the
equality

lim sup
n→∞

‖x− wn‖ = inf{lim sup
n→∞

‖y − wn‖ : y ∈ C} .

The study of the Abel limit seems to be particularly appropriate and
interesting. If we set λ = 1/r then Ar[T ]x = (λ − 1)R(λ;T )x, where
R(λ;T )x =

∑∞
n=0 λ−n−1Tnx. In general, R(λ;T )x does not satisfy the

resolvent equation unless T is linear. Nevertheless, an interesting relation
exists between the Cesàro (C, 1)-limit and the Abel limit which reminds us
of the equivalence relation concerning Abelian ergodic theorem for asymp-
totically nonexpansive nonlinear mappings. And then we shall clarify the
relation between the Cesàro (C, 1) and the Abel limits just mentioned in
the nonlinear case. Some related topics are also discussed.

2. The main results.

Theorem 1. Let C be a nonempty closed convex subset of H and let T be
an asymptotically nonexpansive self–mapping of C. Suppose that for each x
in C, {Ar[T ]x} is norm–bounded and there exists an integer m0 ≥ 1 such
that s−limr→1−0 (I − Tm) Ar[T ]x = 0 for each m ≥ m0. Then for each x
in C, Ar[T ]x converges weakly to a fixed point of T as r → 1− 0.

The method of proof is based upon the Opial property of Hilbert space
and the role of the asymptotic center defined by Lim [7].
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Lemma 1 [9, Lemma 1]. If {xn} is a sequence in H which converges
weakly to a point x0 in H, then for any x in H with x 6= x0

lim inf
n→∞

‖xn − x0‖ < lim inf
n→∞

‖xn − x‖.

Lemma 2. If a norm–bounded sequence {wn} in C converges strongly to a
point x0 in C, then

AC ({wn}) ∩

(⋂
n

co{wk : k ≥ n}

)
= {x0}.

Proof. It is clear that x0 belongs to AC({wn})∩(
⋂
n

co{wk : k ≥ n}). On

the contrary, suppose that AC({wn})∩ (
⋂
n

co{wk : k ≥ n}) contains a point

u different from the point x0. Then, by Lemma 1

lim sup
n→∞

‖wn − x0‖ = lim inf
n→∞

‖wn − x0‖

< lim inf
n→∞

‖wn − u‖ ≤ lim sup
n→∞

‖wn − u‖ .

Here, if we define E = {z ∈ H : ‖z−x0‖ ≤ ‖z−u‖} then E is a closed convex
subset of H. Hence there is an integer k0 ≥ 1 such that {wk : k ≥ k0} ⊂ E,
so that co{wk : k ≥ k0} ⊂ E. Since u is obviously not in E, u does not
belong to co{wk : k ≥ k0}. This is, however, impossible and the lemma
follows. �

Lemma 3 [6, Lemma 3]. Let C be a nonempty closed convex subset of
H and let T be an asymptotically nonexpansive self–mapping of C. Suppose
that {Tnx} is norm–bounded for each x in C. Then for each x in C the
asymptotic center of {Tnx} is a fixed point of T .

Proof of Theorem 1. We may assume that T is αn-asymptotically non-
expansive. Let x be arbitrarily fixed in C. Since {Ar[T ]x} is weakly se-
quentially compact, there exists a subsequence {Ari [T ]x} ( lim

i→∞
ri = 1) of

{Ar[T ]x} which converges weakly to a point x0 in C.
We wish to show that x0 is a fixed point of T . To show this, it suffices

to prove that {Tnx0} converges strongly to x0. On the contrary, suppose
that {Tnx0} does not converge strongly to x0. Then there exists a number
ε0 = ε0(x0) > 0 and a subsequence{T kix0} of {Tnx0} such that

‖T kix0 − x0‖ > ε0 for all i ≥ 1 .
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Now as in [6] put p(x0) = lim inf
i→∞

‖Ari
[T ]x − x0‖ and choose a number δ =

δ(x, x0, ε0)> 0 such that

{p(x0) + δ}2 − {p(x0)}2 <
ε2
0

4
.

We can find a subsequence {si} of {ri} for which p(x0)= lim
i→∞

‖Asi
[T ]x−x0‖,

so that there exists an integer i0 = i0(x, x0, δ) such that

‖Asi
[T ]x− x0‖ < p(x0) +

δ

3
for all i ≥ i0 .

Furthermore, it follows from Lemma 1 that for any ξ in H with ξ 6= x0

lim inf
i→∞

‖Asi
[T ]x− x0‖ < lim inf

i→∞
‖Asi

[T ]x− ξ‖ .

Noting that lim
n→∞

αn = 0, we choose an integer n0 = n0(x, x0, δ) such that

αn

{
p(x0) +

δ

3

}
≤ δ

3
for all n ≥ n0 .

Let m0 be the integer given in the assumption of the theorem and take m
to be an integer such that m ≥ max(n0,m0) and ‖tmx0 − x0‖ > ε0 . Then
there exists by assumption a number r0 = r0(x,m, δ), 0 < r0 < 1, such that

‖Ar[T ]x− TmAr[T ]x‖ <
δ

3
for r0 < r < 1 .

Fixing such an integer m and choosing an integer i1 = i1(x,m, δ) so that
r0 < si < 1 for all i ≥ i1, we have for all i ≥ max(i0, i1)

‖Asi
[T ]x− Tmx0‖ ≤ ‖Asi

[T ]x− TmAsi
[T ]x‖+ ‖TmAsi

[T ]x− Tmx0‖
≤ ‖Asi

[T ]x− TmAsi
[T ]x‖+ (1 + αm)‖Asi

[T ]x− x0‖

≤ δ

3
+ (1 + αm)

{
p(x0) +

δ

3

}
< p(x0) + δ

and hence∥∥∥∥Asi [T ]x− 1
2
(Tmx0 + x0)

∥∥∥∥2

= 2
∥∥∥∥1

2
(Asi

[T ]x− Tmx0)
∥∥∥∥2

+ 2
∥∥∥∥1

2
(Asi

[T ]x−x0)
∥∥∥∥2

−
∥∥∥∥1

2
(Tmx0−x0)

∥∥∥∥2

<
1
2
{p(x0) + δ}2 +

1
2
{p(x0) +

δ

3
}
2

− ε2
0

4
< {p(x0)}2 .
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Consequently, taking ξ = (Tmx0 + x0) /2 yields

lim inf
i→∞

‖Asi
[T ]x− ξ‖ < lim inf

i→∞
‖Asi

[T ]x− x0‖ .

This is a contradiction which asserts that Tx0 = x0. We conclude that
the orbit {Tnx} is norm–bounded for each x in C. Therefore, taking into
account that every closed bounded convex subset of H is weakly compact,
we deduce from Lemma 2 that

AC({Tnx0}) ∩

(⋂
n

co{T kx : k ≥ n}

)
= {x0} .

In addition, we see by means of Lemma 3 that

AC({Tnx0}) = AC({Tnx}) = {x0} .

This shows that Ar[T ]x converges weakly to the point x0 as r → 1− 0 and
the proof of Theorem 1 is complete. �

Now it seems to be somewhat interesting to ask whether the weak conver-
gence of the Abelian averages Ar[T ]x implies the norm–boundedness of the
orbit {Tnx}. In particular, when T is nonexpansive on C being a nonempty
closed convex subset of H, the weak convergence of the Cesàro (C, 1) ave-
rages Cn[T ]x (= [x + Tx + · · · + Tn−1x]/n , n ≥ 1) for each x in C is
known to imply the norm–boundedness of the orbit {Tnx} ([6], Theorem
2). In connection with this question we have the following theorem which
is characteristic of asymptotically nonexpansive mappings. In what follows,
F (T ) stands for the set of fixed points of T .

Theorem 2. Let C be a nonempty closed convex subset of H and let T be
a {αn}-asymptotically nonexpansive self mapping of C. Let x be arbitrarily
fixed in C. Then the following conditions are equivalent:

(1) The set F (T ) is not empty.

(2) The orbit {Tnx} is norm–bounded.

(3) The set {Ar[T ]x} is norm–bounded and for any ε > 0 there exists
an integer m0 = m0(ε) ≥ 1 such that for each m ≥ m0 there is a
number r0 = r0(ε, m) , 0 < r0 < 1, satisfying

‖Ar[T ]x− TmAr[T ]x‖2 < εM(x) for r0 < r < 1 ,

where M(x) is a positive constant depending only on x.
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Proof. Implication (1)⇒(2) is obvious. Implication (3)⇒(1) is a direct
consequence of Theorem 1. We now prove implication (2)⇒(3). In general,
for any ξ in H

‖Ar[T ]x− ξ‖2 = (1− r)2
∞∑

n=0

∞∑
k=0

rn+k < Tnx− ξ, T kx− ξ >

and

2 < Tnx− ξ, T kx− ξ >= ‖Tnx− ξ‖2 + ‖T kx− ξ‖2 − ‖Tnx− T kx‖2 .

After replacing ξ with Ar[T ]x, one gets

(1− r)2
∞∑

n=0

∞∑
k=0

rn+k‖Tnx− T kx‖2 = 2(1− r)
∞∑

n=0

rn‖Tnx−Ar[T ]x‖2 ,

so that

‖Ar[T ]x− ξ‖2 = (1−r)
∞∑

n=0

rn‖Tnx− ξ‖2−(1−r)
∞∑

n=0

rn‖Tnx−Ar[T ]x‖2 .

Again, on taking ξ = TmAr[T ]x for m ≥ 1, we have

‖Ar[T ]x− TmAr[T ]x‖2 = (1− r)
∞∑

n=0

rn‖Tnx− TmAr[T ]x‖2

− (1− r)
∞∑

n=0

rn‖Tnx−Ar[T ]x‖2

≤ (1− r)
m−1∑
n=0

rn‖Tnx− TmAr[T ]x‖2

+ (1− r)(1 + αm)2
∞∑

n=0

rn+m‖Tnx−Ar[T ]x‖2

− (1− r)
∞∑

n=0

rn‖Tnx−Ar[T ]x‖2 .

Let ε > 0 be arbitrarily small. Since lim
n→∞

αn = 0, one can choose an integer

m0 = m0(ε) ≥ 1 such that

(1 + αm)2 − 1 < ε for all m ≥ m0
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and such that for each m ≥ m0 there is a number r0 = r0(ε, m) , 0 < r0 < 1,
satisfying

max{|rm − 1|,m(1− r)(1 + αm)2} < ε for r0 < r < 1 .

Hence, observing that

sup
n

sup
r
‖Tnx−Ar[T ]x‖2 ≤ 4{sup

n
‖Tnx‖}2

and

sup
n

sup
r
‖Tnx− TmAr[T ]x‖2 ≤ 16(1 + αm)2{sup

n
‖Tnx‖}2 ,

we have for each m ≥ m0 and each r with r0 < r < 1

‖Ar[T ]x− TmAr[T ]x‖2 ≤ 4{4m(1− r)(1 + αm)2

+ |rm(1 + αm)2 − 1|}{sup
n
‖Tnx‖}2

≤ 4{4m(1− r)(1 + αm)2

+ (1 + αm)2 − 1 + |rm − 1|}{sup
n
‖Tnx‖}2

< εM(x) ,

where M(x) = 24{sup
n
‖Tnx‖}2 + 1, and the theorem is proved. �

We next consider the case of the mapping T nonexpansive on C. If we
take αn = 0 , n = 1, 2, . . . , this is just the case. Then Theorem 1 becomes

Theorem 3 (cf. [11], Theorem 2.6.1). Let C be a nonempty closed convex
subset of H and let T be a nonexpansive self–mapping of C. Suppose that for
each x in C, {Ar[T ]x} is norm–bounded and s−limr→1−0(I−T )Ar[T ]x = 0.
Then for each x in C, Ar[T ]x converges weakly to a fixed point of T as
r → 1− 0.

Theorem 2 becomes

Theorem 4. Let C be a nonempty closed convex subset of H and let T
be a nonexpansive self–mapping of C. Let x be an arbitrary element in C.
Then the following conditions are equivalent:

(1) The set F (T ) is not empty.

(2) The orbit {Tnx} is norm–bounded.

(3) The set {Ar[T ]x} is norm–bounded and s− lim
r→1−0

(I − T )Ar[T ]x=0.
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Theorem 5. Let C be a nonempty closed convex subset of H and let T
be a nonexpansive self–mapping of C. Then the following conditions are
equivalent:

(1) Range (I − T ) contains 0.

(2) For each x in C, Ar[T ]x−Ar[T ]Tx converges weakly to 0 as r→1−0.

(3) For each x in C, Ar[T ]x−Ar[T ]Tx converges strongly to 0 as r→
1− 0.

Proof. We first prove implication (1)⇒(3). Let x be in C and let ε > 0
be arbitrarily small. Put Sn[x] = x + Tx + · · · + Tn−1x for n ≥ 1, and so
Cn[T ]x = Sn[x]/n. Since 0 ∈ Range (I − T ), there exists by Lemma 4 of [6]
an integer n0 = n0(x, ε) ≥ 1 such that

‖Cn[T ]x− Cn[T ]Tx‖ < ε for all n ≥ n0 .

For arbitrary integers p, q with p ≥ n0 , q ≥ 1, one has

p+q∑
n=p

rnTnx =
p+q∑
n=p

rn(x + Sn[Tx]− Sn[x])

=
p+q∑
n=p

rnx +
p+q∑
n=p

nrn{Cn[T ]Tx− Cn[T ]x}

and thus

‖
p+q∑
n=p

rnTnx‖ ≤
p+q∑
n=p

rn‖x‖+ ε

p+q∑
n=p

(n + 1)rn .

Hence

lim
p→∞
q→∞

‖
p+q∑
n=p

rnTnx‖ = 0 ,

and Ar[T ]x is well defined for 0 < r < 1. Now we have

Ar[T ]x−Ar[T ]Tx = (1− r)2
∞∑

n=0

(n + 1)rn{Cn+1[T ]x− Cn+1[T ]Tx} .

Therefore

‖Ar[T ]x−Ar[T ]Tx‖ ≤(1− r)2
n0−1∑
n=0

(n + 1)rn‖Cn+1[T ]x− Cn+1[T ]Tx‖

+ ε(1− r)2
∞∑

n=n0

(n + 1)rn ,
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which implies
lim sup
r→1−0

‖Ar[T ]x−Ar[T ]Tx‖ ≤ ε .

Since ε is arbitrary, condition (3) holds. We next prove implication (3)⇒(1).
When using the equality

Ar[T ]x−Ar[T ]Tx = (1− r)
∞∑

n=0

rn(I − T )Tnx ,

condition (3) asserts that 0 is contained in co Range (I − T ). However,
according to Lemmas 4 and 5 of [10], Range (I − T ) is convex and Range (I−
T ) has the minimum property. Therefore 0 is contained in Range (I − T ).
Implications (3)⇒(2) and (2)⇒(1) are obvious. This completes the proof
of Theorem 5. �

In [6], Hirano and Takahashi obtained a generalization of Baillon’s the-
orem to more general asymptotically nonexpansive mappings. They in fact
proved that if C is a nonempty closed convex subset of H and if T is an
asymptotically nonexpansive self–mapping of C such that for each x in
C the orbit {Tnx} is norm–bounded, then for each x in C, Cn[T ]x con-
verges weakly to a fixed point of T . We remark that the weak convergence
of {Cn[T ]x} remains true even if the norm–boundedness of {Tnx} is re-
placed by the norm–boundedness of {Cn[T ]x} and the existence of an in-
teger m0 ≥ 1 such that s−limn→∞(I − Tm)Cn[T ]x = 0 for each m ≥ m0.
Taking this fact into account, we have the following theorem pertaining to
the relation between the Cesàro (C, 1) limit and the Abel limit.

Theorem 6. Let C be a nonempty closed convex subset of H and let T be a
asymptotically nonexpansive self–mapping of C. Suppose that for each x in
C there exists an integer m0 ≥ 1 such that s−limn→∞(I − Tm)Cn[T ]x = 0
and s− limr→1−0(I − Tm)Ar[T ]x = 0 for each m ≥ m0. Then for each x
in C, Cn[T ]x converges weakly to a point x0 in C as n →∞ if and only if
Ar[T ]x converges weakly to x0 as r → 1− 0.
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