On the size of the ideal boundary of a finite Riemann surface

Abstract

The ideal boundary of a non-compact Riemann surface R_{0} becomes visible if R_{0} is embedded into some compact surface R which naturally should have the same genus g as R_{0}. All these compactifications of R_{0} can be compared in a certain quotient space of \mathbb{C}^{g}. With respect to the canonical metric in this space the diameters of all models of the ideal boundary of R_{0} are known to be bounded (cf. [4]) by a number depending only on R_{0}.

In this paper we prove that the diameter of each component has either a positive lower bound, depending only of R_{0}, or this component appears to be a single point in any compactification R.

Introduction. There are several definitions of the ideal boundary of Riemann surfaces (cf. [2]). In this article we consider a finitely connected, non-compact Riemann surface R_{0} of finite genus g. If $\iota: R_{0} \rightarrow R$ is a conformal embedding of R_{0} into some compact surface R of genus g, then we call the boundary $\partial \iota\left(R_{0}\right) \subset R$ the ideal boundary of R_{0} with respect to the compactification (R, ι) of R_{0}. We will ask for properties of this ideal boundary which are independent of (R, ι) and such characteristics of R_{0}. As in [4] we use a suitable Jacobian manifold, a quotient space of \mathbb{C}^{g}, in

[^0]which each embedding $\iota\left(R_{0}\right) \subset R$ can again be embedded. On the Jacobian manifold we have a natural metric, induced by the euclidean metric on \mathbb{C}^{g}. With respect to this metric we may compare the diameter of the ideal boundaries which we obtain for all the different embeddings in any surfaces R as described above. In [4] is proved that there is some uniform bound for all these diameters.

The ideal boundary, realized as a portion of a compact surface R, consists of components. Because R_{0} is provided as a finitely connected surface we have only finitely many components of the ideal boundary. It is easy to verify that there is a one-to-one correspondence of these components if we consider two or more different embeddings $\iota_{1}: R_{0} \rightarrow R_{1}, \iota_{2}: R_{0} \rightarrow R_{2}$. In this sense we understand the components of the ideal boundary of R_{0}. The purpose of this article is to show that for each such component we have (besides the supremum obtained in [4]) also a non trivial infimum for the diameter of the corresponding subset of the Jacobian manifold, which is valid for all such compactifications R of R_{0}. If the infimum is 0 , then the component in view is always (i.e. on each such R) a singleton.

1. Notations and Definitions. Let, as before, R_{0} denote some finitely connected non-compact Riemann surface of finite genus $g>0$. Then we can fix g pairs of piecewise smooth curves a_{j}^{0}, b_{j}^{0} such $\chi_{0}=\left\{a_{j}^{0}, b_{j}^{0}\right\}_{j=1}^{g}$ represents a canonical homology basis modulo dividing cycles on R_{0} (cf. [1]). Now we consider some compact Riemann surface R of genus g together with some conformal embedding $\iota: R_{0} \rightarrow R$ and define

$$
\iota\left(a_{j}^{0}\right)=: a_{j} \text { and } \iota\left(b_{j}^{0}\right)=: b_{j}(1 \leq j \leq g)
$$

It can be easily seen that the g pairs of curves $\chi=\left\{a_{j}, b_{j}\right\}_{j=1}^{g}$ represent a canonical homology basis for R.
We say that the triple $\mathcal{R}=(R, \chi, \iota)$ gives a conformal compactification of the (marked) Riemann surface $\left(R_{0}, \chi_{0}\right)$.
Remark: For each $j, 1 \leq j \leq g$ there is one and only one closed holomorphic differential $\phi^{(j)}$ on R with

$$
\begin{equation*}
\int_{a_{k}} \phi^{(j)}=\delta_{j k}, \quad \int_{b_{k}} \phi^{(j)}=: \tau_{j k} \quad(j, k=1,2, \cdots, g), \tag{1}
\end{equation*}
$$

where $\delta_{j k}$ denotes the Kronecker symbol(cf. [3] III.2.8).
We write $\tau_{k}(R, \chi)$ resp. ϵ_{k} for the k th column of the matrix $\left(\tau_{j k}\right)$ resp. $\left(\delta_{j k}\right)$.
Let Π stand for the linear span with integer coefficients of the $2 g$ vectors

$$
\tau_{1}, \tau_{2}, \cdots, \tau_{g}, \epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{g}
$$

and we call

$$
\operatorname{Jac}(R, \chi):=\mathbb{C}^{g} / \Pi
$$

the Jacobian manifold of the marked Riemann surface (R, χ). We have the canonical projection $\pi: \mathbb{C}^{g} \rightarrow \operatorname{Jac}(R, \chi)$.

Now we fix some point p^{0} on R and take for each $p \in R$ a piecewise smooth curve γ_{p} on R with initial point p^{0} and endpoint p. This defines a $\operatorname{map} \tilde{\Phi}_{\mathcal{R}}: R \rightarrow \mathbb{C}^{g}$ via

$$
\tilde{\Phi}_{\mathcal{R}}(p)=\left(\int_{\gamma_{p}} \phi^{(1)}, \int_{\gamma_{p}} \phi^{(2)}, \cdots, \int_{\gamma_{p}} \phi^{(g)}\right)
$$

Note that the image $\tilde{\Phi}_{\mathcal{R}}(p)$ depends on p and on the contour γ_{p}. However, the composition map $\Phi_{\mathcal{R}}:=\pi \circ \tilde{\Phi}_{\mathcal{R}}: R \rightarrow \operatorname{Jac}(R, \chi)$ turns out to be independent of the special choice of γ_{p}.
Relating to the conformal compactification $\mathcal{R}=(R, \chi, \iota)$ of $\left(R_{0}, \chi_{0}\right)$ we define the ideal boundary of R_{0} as the topological boundary of the set $\iota\left(R_{0}\right) \subset R$, i.e.

$$
\partial_{\mathcal{R}} R_{0}:=\overline{\iota\left(R_{0}\right)} \backslash \iota\left(R_{0}\right)
$$

The set $R \backslash \iota\left(R_{0}\right)$ consists, by the assumption on R_{0} and the compactness of R, of finitely many components $B_{R}^{1}, \ldots, B_{R}^{n}$. Now we consider another conformal compactification S instead of R, which gives the components $B_{S}^{1}, \ldots, B_{S}^{n}$. Then, by means of pairwise disjoint, simple closed curves on R_{0} whose images under ι_{R} resp. ι_{S} separate the components B_{R}^{j} on R as well as B_{S}^{j} on S, we get a one-to-one correspondence of the sets B_{R}^{j} and B_{S}^{j} for $j=1, \ldots, n$. In this sense we can speak of the n components B^{1}, \ldots, B^{n} (with respect to some fixed denumeration) of the ideal boundary $\partial_{\mathcal{R}} R_{0}$ independently of R. Moreover, let

$$
\Delta_{\mathcal{R}} R_{0}:=\Phi_{\mathcal{R}}\left(\partial_{\mathcal{R}} R_{0}\right) \text { as well as } \Delta_{\mathcal{R}}^{j} R_{0}:=\Phi_{\mathcal{R}}\left(\partial B_{R}^{j}\right) \quad(j=1, \ldots, n)
$$

We denote by $d_{\mathcal{R}}(M)$ the diameter of a subset M of $\operatorname{Jac}(R, \chi)$ with respect to the canonically induced metric of \mathbb{C}^{g}.

2. Universal bounds.

Theorem 1. Let $\left(R_{0}, \chi_{0}\right)$ denote a non compact, finitely connected, marked Riemann surface of finite genus $g>0$ with the ideal boundary components B^{1}, \ldots, B^{n} (defined as above). Then there exist numbers $c_{j}, C_{j}(j=$ $1, \ldots, n)$ such that

$$
c_{j} \leq d_{\mathcal{R}}\left(\Delta_{\mathcal{R}}^{j} R_{0}\right) \leq C_{j} \quad(j=1, \ldots, n)
$$

for all conformal compactifications $\mathcal{R}=(R, \chi, \iota)$ of $\left(R_{0}, \chi_{0}\right)$. Each lower bound c_{j} can be taken strictly positive except for the case where $B_{R}^{j} \subset R$ is a singleton for some (and thus for all) conformal compactification of $\left(R_{0}, \chi_{0}\right)$.

In the proof we will need the following

Lemma. Let Ω denote a doubly connected domain in the complex plane, bounded by the piecewise smooth Jordan curves Γ_{1}, Γ_{2}. For each $m \in \mathbb{N}$ let some complex-valued function f_{m}, continuous on $\bar{\Omega}$ and holomorphic on Ω be given. We assume that the sequence f_{m} is uniformly bounded on Ω and tends to some constant c uniformly on Γ_{2}.
Let f denote the limit function of some locally convergent subsequence of f_{m} on Ω. Then $f \equiv c$ on Ω or Γ_{2} consists of a single point.

Proof. We assume that the cycle $\Gamma:=\Gamma_{1}-\Gamma_{2}$ represents a positively oriented parametrization of $\partial \Omega$, where the boundary of the unbounded component C_{1} of $\mathbb{C} \backslash \Omega=C_{1} \cup C_{2}$ is given by Γ_{1}. By Cauchy's formula we have for $m \in \mathbb{N}, z \in \Omega$

$$
\begin{aligned}
f_{m}(z) & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{f_{m}(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{\Gamma_{1}} \frac{f_{m}(\zeta)}{\zeta-z} d \zeta-\frac{1}{2 \pi i} \int_{\Gamma_{2}} \frac{f_{m}(\zeta)}{\zeta-z} d \zeta \\
& =: g_{m}^{1}(z)-g_{m}^{2}(z) .
\end{aligned}
$$

Each function g_{m}^{1} admits an analytic continuation on $I\left(\Gamma_{1}\right):=\Omega \cup C_{2}$. Because Γ_{1} has winding number 1 with respect to the points on Γ_{2} and $f_{m} \rightarrow c$ uniformly on Γ_{2} we have $g_{m}^{1} \rightarrow c$ as $m \rightarrow \infty$ on this this contour.
The functions g_{m}^{1} are uniformly bounded on $I\left(\Gamma_{1}\right)$. By Montel's theorem we may assume that the sequence g_{m}^{1} is locally uniformly convergent on $I\left(\Gamma_{1}\right)$. The limit function g is obviously an analytic continuation of $f=\lim f_{m}$ on $I\left(\Gamma_{1}\right)$. But we have just proved $g \equiv c$ on Γ_{2}. So, if Γ_{2} is a continuum, we conclude $g \equiv c$ on $I\left(\Gamma_{1}\right)$, and thus $f \equiv c$ on Ω.
Now we are ready to give the proof of Theorem 1.
According to [4, Satz 2] there exists some C with $d_{\mathcal{R}}\left(\Delta_{\mathcal{R}} R_{0}\right) \leq C$ simultaneously for all conformal compactifications $\mathcal{R}=(R, \chi, \iota)$ of $\left(R_{0}, \chi_{0}\right)$.
Since $\Delta_{\mathcal{R}}^{j} R_{0} \subset \Delta_{\mathcal{R}} R_{0}(j=1, \ldots, n)$, we get the existence of the upper bounds C_{j} already by the mentioned result in [4].
Now we fix some $j \in\{1, \ldots, n\}$ and assume that there is no strictly positive lower bound c_{j}. This means, there exists some sequence of conformal compactifications $\mathcal{R}_{m}=\left(R_{m}, \chi_{m}, \iota_{m}\right)$ of (R_{0}, χ_{0}) in the described sense with the property

$$
\begin{equation*}
\left.d_{\mathcal{R}_{m}}\left(\Delta_{\mathcal{R}_{m}}^{j} R_{0}\right)\right) \rightarrow 0 \text { as } m \rightarrow \infty . \tag{2}
\end{equation*}
$$

On the Riemann surface $R_{m}^{j}:=R_{m} \backslash B_{R_{m}}^{j}$ we can find some domain Λ_{m}^{0} with the following properties:
(i) Λ_{m}^{0} has genus g,
(ii) $B_{R_{m}}^{\mu} \subset \Lambda_{m}^{0}$ for $\mu=1, \ldots, j-1, j+1, \ldots, n$,
(iii) $\partial \Lambda_{m}^{0}$ can be parametrized as a Jordan curve ω_{m}^{0} on R_{m}^{j}.

In $R_{m}^{j} \backslash \overline{\Lambda_{m}^{0}}$ we fix another Jordan curve ω_{m}^{1}, homotopic to ω_{m}^{0} on R_{m}^{j}. By A_{m} we denote the domain bounded by these curves and let $\Lambda_{m}^{1}:=\overline{\Lambda_{m}^{0}} \cup A_{m}$. As proved (with slight modifications) in [4], p.42, the following estimate is valid:

$$
\begin{equation*}
d_{R_{m}}\left(\Phi_{\mathcal{R}_{m}}\left(R_{m} \backslash \Lambda_{m}^{1}\right) \leq B,\right. \tag{3}
\end{equation*}
$$

where B depends only on A_{m} and the periods $\tau_{\nu \nu}$. Note that we can give the conformal annulus A_{m} via ι_{m} by the curves $C_{0}:=\iota^{-1}\left(\omega_{m}^{0}\right)$ and $C_{1}:=$ $\iota^{-1}\left(\omega_{m}^{1}\right)$ on R_{0} as well as on R_{m}. Thus B is determined by considerations purely on the Riemann surface R_{0} and we may assume that the boundary curves C_{0}, C_{1} are the same for all $m \in \mathbb{N}$.
Note that (3) can also be expressed as:

$$
\begin{align*}
& \text { The variation of } \tilde{\Phi}_{\mathcal{R}_{m}} \circ \iota_{m}(m \in \mathbb{N}) \text { on } M_{m}:=R_{m} \backslash \Lambda_{m}^{1} \tag{4}\\
& \text { is uniformly bounded. }
\end{align*}
$$

The set M_{m} is, for each $m \in \mathbb{N}$, a simply connected domain. We may assume that for all m the starting point p_{m}^{0} of the contours in the definition of $\tilde{\Phi}_{\mathcal{R}_{m}}$ belongs to M_{m} and also that for each $p \in M_{m}$ the contour γ_{p} is a curve in M_{m}. Moreover, we take $p_{m}^{0}=\iota_{m}\left(p_{0}\right)$ where p_{0} is some fixed point on R_{0}. By the monodromy theorem the value $\tilde{\Phi}_{\mathcal{R}_{m}}(p)$ for $p \in M_{m}$ comes out to be independent of the special choice of the contours γ_{p}.
The set $H:=\iota_{m}^{-1}\left(M_{m} \cap \iota_{m}\left(R_{0}\right)\right)$ is a planar domain on R_{0} and does not depend on m.

Let $G \subset \mathbb{C}$ be a domain bounded by Jordan curves which admits a conformal map θ of G onto H. It follows from our construction that the boundary of G consists of two components. One of them, which we denote by Γ_{1}, corresponds under θ to the Jordan curve C_{1} on R_{0}, the other one, Γ_{2}, to the ideal boundary component B^{j} of R_{0}.
The functions $f_{m}:=\tilde{\Phi}_{\mathcal{R}_{m}} \circ \iota_{m} \circ \theta$ map G holomorphically in \mathbb{C}^{g} and have a continuous extension on Γ_{1} and Γ_{2}. From (2) we know that the sequence f_{m} tends on Γ_{2} uniformly to some constant. The functions f_{m} are uniformly bounded on G, as follows from (4) and the normalization

$$
f_{m}\left(\theta^{-1}\left(p_{0}\right)\right)=\tilde{\Phi}_{\mathcal{R}_{m}}\left(\iota_{m}\left(p_{0}\right)\right)=\tilde{\Phi}_{\mathcal{R}_{m}}\left(p_{m}^{0}\right)=0 .
$$

We apply Montel's theorem to the coordinate functions of f_{m} and may assume that the sequence f_{m} itself is locally convergent on G. By our Lemma we see that the limit function f is constant, or Γ_{2} consists of a single point.
But the first case cannot happen: the canonical lifting of the function f_{m} on $H \subset R_{0}$ is given by $F_{m}:=\tilde{\Phi}_{\mathcal{R}_{m}} \circ \iota_{m}$ and has an unrestricted analytic
continuation on R_{0} along every curve on R_{0} starting in H. This defines an analytic element $\tilde{F_{m}}$ on R_{0}. On the universal covering surface Σ_{0} of R_{0} this element $\tilde{F_{m}}$ appears as a holomorphic function $F_{m}^{*}: \Sigma_{0} \rightarrow \mathbb{C}^{g}$. Let this be done for all $m \in \mathbb{N}$. By (4) and the definition of the functions $\tilde{\Phi}_{\mathcal{R}_{m}}$ we see that the functions F_{m}^{*} are uniformly bounded on every compact subset of Σ_{0}. This shows that the sequence F_{m}^{*} tends, locally uniformly on Σ_{0}, to a constant as $m \rightarrow \infty$ if the sequence f_{m} does the same on G. But this contradicts (cf.(1))

$$
\int_{a_{k}} \phi^{(k)}=1 \quad(k=1, \ldots, g) .
$$

Thus Γ_{2} is a constant curve. By elementary considerations we see that in this case $B_{R}^{j} \subset R$ must be a singleton for all conformal compactifications of R_{0} in the described sense.

References

[1] Ahlfors, L. V., Normalintegrale auf nichtkompakten Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. A-I 35, 1947, pp. 24.
[2] Constantinescu, C., A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, Berlin-Göttingen-Heidelberg, 1963.
[3] Farkas, H.M., I. Kra, Riemann Surfaces, Springer, New York-Heidelberg-Berlin, 1980.
[4] Schmieder, G., M. Shiba, Realisierungen des idealen Randes einer Riemannschen Fläche unter konformen Abschließungen, Arch. Math. 68 (1997), 36-44.

Fachbereich Mathematik
received October 2, 1998
Universität Oldenburg
Postfach 2503
D-26111 Oldenburg, Bundesrepublik Deutschland
e-mail: schmieder@mathematik.uni-oldenburg.de
Applied Mathematics Institute
Hiroshima University
Higashi-Hiroshima 724, Japan
e-mail: shiba@puramis.amath.hiroshima-u.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 30F25, Secondary 30F20.
 Key words and phrases. Ideal boundary, finite Riemann surface, Jacobian manifold.

