## ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LV, 13

SECTIO A

2001

### GERALD SCHMIEDER and MASAKAZU SHIBA

# On the size of the ideal boundary of a finite Riemann surface

ABSTRACT. The ideal boundary of a non-compact Riemann surface  $R_0$  becomes visible if  $R_0$  is embedded into some compact surface R which naturally should have the same genus g as  $R_0$ . All these compactifications of  $R_0$  can be compared in a certain quotient space of  $\mathbb{C}^g$ . With respect to the canonical metric in this space the diameters of all models of the ideal boundary of  $R_0$  are known to be bounded (cf. [4]) by a number depending only on  $R_0$ .

In this paper we prove that the diameter of each component has either a positive lower bound, depending only of  $R_0$ , or this component appears to be a single point in any compactification R.

**Introduction.** There are several definitions of the ideal boundary of Riemann surfaces (cf. [2]). In this article we consider a finitely connected, non-compact Riemann surface  $R_0$  of finite genus g. If  $\iota : R_0 \to R$  is a conformal embedding of  $R_0$  into some compact surface R of genus g, then we call the boundary  $\partial \iota(R_0) \subset R$  the *ideal boundary* of  $R_0$  with respect to the compactification  $(R, \iota)$  of  $R_0$ . We will ask for properties of this ideal boundary which are independent of  $(R, \iota)$  and such characteristics of  $R_0$ . As in [4] we use a suitable Jacobian manifold, a quotient space of  $\mathbb{C}^g$ , in

<sup>1991</sup> Mathematics Subject Classification. Primary 30F25, Secondary 30F20.

Key words and phrases. Ideal boundary, finite Riemann surface, Jacobian manifold.

which each embedding  $\iota(R_0) \subset R$  can again be embedded. On the Jacobian manifold we have a natural metric, induced by the euclidean metric on  $\mathbb{C}^{g}$ . With respect to this metric we may compare the diameter of the ideal boundaries which we obtain for all the different embeddings in any surfaces R as described above. In [4] is proved that there is some uniform bound for all these diameters.

The ideal boundary, realized as a portion of a compact surface R, consists of components. Because  $R_0$  is provided as a finitely connected surface we have only finitely many components of the ideal boundary. It is easy to verify that there is a one-to-one correspondence of these components if we consider two or more different embeddings  $\iota_1 : R_0 \to R_1, \iota_2 : R_0 \to R_2$ . In this sense we understand the components of the ideal boundary of  $R_0$ . The purpose of this article is to show that for each such component we have (besides the supremum obtained in [4]) also a non trivial infimum for the diameter of the corresponding subset of the Jacobian manifold, which is valid for all such compactifications R of  $R_0$ . If the infimum is 0, then the component in view is always (i.e. on each such R) a singleton.

1. Notations and Definitions. Let, as before,  $R_0$  denote some finitely connected non-compact Riemann surface of finite genus g > 0. Then we can fix g pairs of piecewise smooth curves  $a_j^0, b_j^0 \operatorname{such} \chi_0 = \{a_j^0, b_j^0\}_{j=1}^g$  represents a canonical homology basis modulo dividing cycles on  $R_0$  (cf. [1]). Now we consider some compact Riemann surface R of genus g together with some conformal embedding  $\iota : R_0 \to R$  and define

$$\iota(a_i^0) =: a_j \text{ and } \iota(b_i^0) =: b_j (1 \le j \le g)$$

It can be easily seen that the g pairs of curves  $\chi = \{a_j, b_j\}_{j=1}^g$  represent a canonical homology basis for R.

We say that the triple  $\mathcal{R} = (R, \chi, \iota)$  gives a conformal compactification of the (marked) Riemann surface  $(R_0, \chi_0)$ .

**Remark:** For each  $j, 1 \le j \le g$  there is one and only one closed holomorphic differential  $\phi^{(j)}$  on R with

(1) 
$$\int_{a_k} \phi^{(j)} = \delta_{jk}, \quad \int_{b_k} \phi^{(j)} =: \tau_{jk} \quad (j, k = 1, 2, \cdots, g),$$

where  $\delta_{jk}$  denotes the Kronecker symbol(cf. [3] III.2.8).

We write  $\tau_k(R, \chi)$  resp.  $\epsilon_k$  for the kth column of the matrix  $(\tau_{jk})$  resp.  $(\delta_{jk})$ .

Let  $\Pi$  stand for the linear span with integer coefficients of the 2g vectors

$$\tau_1, \tau_2, \cdots, \tau_q, \epsilon_1, \epsilon_2, \cdots, \epsilon_q$$

and we call

Jac 
$$(R, \chi) := \mathbb{C}^g / \Pi$$

the Jacobian manifold of the marked Riemann surface  $(R, \chi)$ . We have the canonical projection  $\pi : \mathbb{C}^g \to \text{Jac} (R, \chi)$ .

Now we fix some point  $p^0$  on R and take for each  $p \in R$  a piecewise smooth curve  $\gamma_p$  on R with initial point  $p^0$  and endpoint p. This defines a map  $\tilde{\Phi}_{\mathcal{R}} : R \to \mathbb{C}^g$  via

$$ilde{\Phi}_{\mathcal{R}}(p) = \left(\int_{\gamma_p} \phi^{(1)}, \int_{\gamma_p} \phi^{(2)}, \cdots, \int_{\gamma_p} \phi^{(g)}\right).$$

Note that the image  $\tilde{\Phi}_{\mathcal{R}}(p)$  depends on p and on the contour  $\gamma_p$ . However, the composition map  $\Phi_{\mathcal{R}} := \pi \circ \tilde{\Phi}_{\mathcal{R}} : R \to \text{Jac}(R, \chi)$  turns out to be independent of the special choice of  $\gamma_p$ .

Relating to the conformal compactification  $\mathcal{R} = (R, \chi, \iota)$  of  $(R_0, \chi_0)$  we define the ideal boundary of  $R_0$  as the topological boundary of the set  $\iota(R_0) \subset R$ , i.e.

$$\partial_{\mathcal{R}} R_0 := \overline{\iota(R_0)} \setminus \iota(R_0).$$

The set  $R \setminus \iota(R_0)$  consists, by the assumption on  $R_0$  and the compactness of R, of finitely many components  $B_R^1, \ldots, B_R^n$ . Now we consider another conformal compactification S instead of R, which gives the components  $B_S^1, \ldots, B_S^n$ . Then, by means of pairwise disjoint, simple closed curves on  $R_0$  whose images under  $\iota_R$  resp.  $\iota_S$  separate the components  $B_R^j$  on Ras well as  $B_S^j$  on S, we get a one-to-one correspondence of the sets  $B_R^j$ and  $B_S^j$  for  $j = 1, \ldots, n$ . In this sense we can speak of the n components  $B^1, \ldots, B^n$  (with respect to some fixed denumeration) of the ideal boundary  $\partial_R R_0$  independently of R. Moreover, let

 $\Delta_{\mathcal{R}} R_0 := \Phi_{\mathcal{R}}(\partial_{\mathcal{R}} R_0) \text{ as well as } \Delta_{\mathcal{R}}^j R_0 := \Phi_{\mathcal{R}}(\partial B_R^j) \quad (j = 1, \dots, n).$ 

We denote by  $d_{\mathcal{R}}(M)$  the diameter of a subset M of  $\operatorname{Jac}(R,\chi)$  with respect to the canonically induced metric of  $\mathbb{C}^{g}$ .

### 2. Universal bounds.

**Theorem 1.** Let  $(R_0, \chi_0)$  denote a non compact, finitely connected, marked Riemann surface of finite genus g > 0 with the ideal boundary components  $B^1, \ldots, B^n$  (defined as above). Then there exist numbers  $c_j, C_j$   $(j = 1, \ldots, n)$  such that

$$c_j \le d_{\mathcal{R}}(\Delta_{\mathcal{R}}^j R_0) \le C_j \qquad (j = 1, \dots, n)$$

for all conformal compactifications  $\mathcal{R} = (R, \chi, \iota)$  of  $(R_0, \chi_0)$ . Each lower bound  $c_j$  can be taken strictly positive except for the case where  $B_R^j \subset R$  is a singleton for some (and thus for all) conformal compactification of  $(R_0, \chi_0)$ .

In the proof we will need the following

**Lemma.** Let  $\Omega$  denote a doubly connected domain in the complex plane, bounded by the piecewise smooth Jordan curves  $\Gamma_1, \Gamma_2$ . For each  $m \in \mathbb{N}$  let some complex-valued function  $f_m$ , continuous on  $\overline{\Omega}$  and holomorphic on  $\Omega$ be given. We assume that the sequence  $f_m$  is uniformly bounded on  $\Omega$  and tends to some constant c uniformly on  $\Gamma_2$ .

Let f denote the limit function of some locally convergent subsequence of  $f_m$  on  $\Omega$ . Then  $f \equiv c$  on  $\Omega$  or  $\Gamma_2$  consists of a single point.

**Proof.** We assume that the cycle  $\Gamma := \Gamma_1 - \Gamma_2$  represents a positively oriented parametrization of  $\partial\Omega$ , where the boundary of the unbounded component  $C_1$  of  $\mathbb{C} \setminus \Omega = C_1 \cup C_2$  is given by  $\Gamma_1$ . By Cauchy's formula we have for  $m \in \mathbb{N}, z \in \Omega$ 

$$f_m(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f_m(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f_m(\zeta)}{\zeta - z} \, d\zeta - \frac{1}{2\pi i} \int_{\Gamma_2} \frac{f_m(\zeta)}{\zeta - z} \, d\zeta$$
  
=:  $g_m^1(z) - g_m^2(z)$ .

Each function  $g_m^1$  admits an analytic continuation on  $I(\Gamma_1) := \Omega \cup C_2$ . Because  $\Gamma_1$  has winding number 1 with respect to the points on  $\Gamma_2$  and  $f_m \to c$  uniformly on  $\Gamma_2$  we have  $g_m^1 \to c$  as  $m \to \infty$  on this this contour. The functions  $g_m^1$  are uniformly bounded on  $I(\Gamma_1)$ . By Montel's theorem we may assume that the sequence  $g_m^1$  is locally uniformly convergent on  $I(\Gamma_1)$ . The limit function g is obviously an analytic continuation of  $f = \lim f_m$  on  $I(\Gamma_1)$ . But we have just proved  $g \equiv c$  on  $\Gamma_2$ . So, if  $\Gamma_2$  is a continuum, we conclude  $g \equiv c$  on  $I(\Gamma_1)$ , and thus  $f \equiv c$  on  $\Omega$ .  $\Box$ 

Now we are ready to give the proof of Theorem 1.

According to [4, Satz 2] there exists some C with  $d_{\mathcal{R}}(\Delta_{\mathcal{R}}R_0) \leq C$  simultaneously for all conformal compactifications  $\mathcal{R} = (R, \chi, \iota)$  of  $(R_0, \chi_0)$ .

Since  $\Delta_{\mathcal{R}}^{j} R_{0} \subset \Delta_{\mathcal{R}} R_{0} (j = 1, ..., n)$ , we get the existence of the upper bounds  $C_{j}$  already by the mentioned result in [4].

Now we fix some  $j \in \{1, \ldots, n\}$  and assume that there is no strictly positive lower bound  $c_j$ . This means, there exists some sequence of conformal compactifications  $\mathcal{R}_m = (R_m, \chi_m, \iota_m)$  of  $(R_0, \chi_0)$  in the described sense with the property

(2) 
$$d_{\mathcal{R}_m}(\Delta^j_{\mathcal{R}_m}R_0)) \to 0 \text{ as } m \to \infty.$$

On the Riemann surface  $R_m^j := R_m \setminus B_{R_m}^j$  we can find some domain  $\Lambda_m^0$  with the following properties:

- (i)  $\Lambda_m^0$  has genus g,
- (ii)  $B^{\mu}_{R_m} \subset \Lambda^0_m$  for  $\mu = 1, \dots, j 1, j + 1, \dots, n$ ,
- (iii)  $\partial \Lambda_m^0$  can be parametrized as a Jordan curve  $\omega_m^0$  on  $R_m^j$ .

In  $R_m^j \setminus \overline{\Lambda_m^0}$  we fix another Jordan curve  $\omega_m^1$ , homotopic to  $\omega_m^0$  on  $R_m^j$ . By  $A_m$  we denote the domain bounded by these curves and let  $\Lambda_m^1 := \overline{\Lambda_m^0} \cup A_m$ . As proved (with slight modifications) in [4], p.42, the following estimate is valid:

(3) 
$$d_{R_m}(\Phi_{\mathcal{R}_m}(R_m \setminus \Lambda_m^1) \le B,$$

where *B* depends only on  $A_m$  and the periods  $\tau_{\nu\nu}$ . Note that we can give the conformal annulus  $A_m$  via  $\iota_m$  by the curves  $C_0 := \iota^{-1}(\omega_m^0)$  and  $C_1 := \iota^{-1}(\omega_m^1)$  on  $R_0$  as well as on  $R_m$ . Thus *B* is determined by considerations purely on the Riemann surface  $R_0$  and we may assume that the boundary curves  $C_0, C_1$  are the same for all  $m \in \mathbb{N}$ .

Note that (3) can also be expressed as:

(4) The variation of 
$$\Phi_{\mathcal{R}_m} \circ \iota_m (m \in \mathbb{N})$$
 on  $M_m := R_m \setminus \Lambda_m^1$  is uniformly bounded.

The set  $M_m$  is, for each  $m \in \mathbb{N}$ , a simply connected domain. We may assume that for all m the starting point  $p_m^0$  of the contours in the definition of  $\tilde{\Phi}_{\mathcal{R}_m}$  belongs to  $M_m$  and also that for each  $p \in M_m$  the contour  $\gamma_p$  is a curve in  $M_m$ . Moreover, we take  $p_m^0 = \iota_m(p_0)$  where  $p_0$  is some fixed point on  $R_0$ . By the monodromy theorem the value  $\tilde{\Phi}_{\mathcal{R}_m}(p)$  for  $p \in M_m$  comes out to be independent of the special choice of the contours  $\gamma_p$ .

The set  $H := \iota_m^{-1}(M_m \cap \iota_m(R_0))$  is a planar domain on  $R_0$  and does not depend on m.

Let  $G \subset \mathbb{C}$  be a domain bounded by Jordan curves which admits a conformal map  $\theta$  of G onto H. It follows from our construction that the boundary of G consists of *two* components. One of them, which we denote by  $\Gamma_1$ , corresponds under  $\theta$  to the Jordan curve  $C_1$  on  $R_0$ , the other one,  $\Gamma_2$ , to the ideal boundary component  $B^j$  of  $R_0$ .

The functions  $f_m := \Phi_{\mathcal{R}_m} \circ \iota_m \circ \theta$  map G holomorphically in  $\mathbb{C}^g$  and have a continuous extension on  $\Gamma_1$  and  $\Gamma_2$ . From (2) we know that the sequence  $f_m$  tends on  $\Gamma_2$  uniformly to some constant. The functions  $f_m$  are uniformly bounded on G, as follows from (4) and the normalization

$$f_m(\theta^{-1}(p_0)) = \tilde{\Phi}_{\mathcal{R}_m}(\iota_m(p_0)) = \tilde{\Phi}_{\mathcal{R}_m}(p_m^0) = 0.$$

We apply Montel's theorem to the coordinate functions of  $f_m$  and may assume that the sequence  $f_m$  itself is locally convergent on G. By our Lemma we see that the limit function f is constant, or  $\Gamma_2$  consists of a single point.

But the first case cannot happen: the canonical lifting of the function  $f_m$ on  $H \subset R_0$  is given by  $F_m := \tilde{\Phi}_{\mathcal{R}_m} \circ \iota_m$  and has an unrestricted analytic continuation on  $R_0$  along every curve on  $R_0$  starting in H. This defines an analytic element  $\tilde{F}_m$  on  $R_0$ . On the universal covering surface  $\Sigma_0$  of  $R_0$  this element  $\tilde{F}_m$  appears as a holomorphic function  $F_m^* : \Sigma_0 \to \mathbb{C}^g$ . Let this be done for all  $m \in \mathbb{N}$ . By (4) and the definition of the functions  $\tilde{\Phi}_{\mathcal{R}_m}$  we see that the functions  $F_m^*$  are uniformly bounded on every compact subset of  $\Sigma_0$ . This shows that the sequence  $F_m^*$  tends, locally uniformly on  $\Sigma_0$ , to a constant as  $m \to \infty$  if the sequence  $f_m$  does the same on G. But this contradicts (cf.(1))

$$\int_{a_k} \phi^{(k)} = 1$$
  $(k = 1, \dots, g).$ 

Thus  $\Gamma_2$  is a constant curve. By elementary considerations we see that in this case  $B_R^j \subset R$  must be a singleton for *all* conformal compactifications of  $R_0$  in the described sense.  $\Box$ 

#### References

- Ahlfors, L. V., Normalintegrale auf nichtkompakten Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. A-I 35, 1947, pp. 24.
- [2] Constantinescu, C., A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, Berlin-Göttingen-Heidelberg, 1963.
- [3] Farkas, H.M., I. Kra, *Riemann Surfaces*, Springer, New York-Heidelberg-Berlin, 1980.
- [4] Schmieder, G., M. Shiba, Realisierungen des idealen Randes einer Riemannschen Fläche unter konformen Abschließungen, Arch. Math. 68 (1997), 36–44.

Fachbereich Mathematik received October 2, 1998 Universität Oldenburg Postfach 2503 D-26111 Oldenburg, Bundesrepublik Deutschland e-mail: schmieder@mathematik.uni-oldenburg.de

Applied Mathematics Institute Hiroshima University Higashi-Hiroshima 724, Japan e-mail: shiba@puramis.amath.hiroshima-u.ac.jp