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On the size of the ideal boundary

of a finite Riemann surface

Abstract. The ideal boundary of a non-compact Riemann surface R0 be-

comes visible if R0 is embedded into some compact surface R which naturally
should have the same genus g as R0. All these compactifications of R0 can

be compared in a certain quotient space of Cg . With respect to the canoni-
cal metric in this space the diameters of all models of the ideal boundary of

R0 are known to be bounded (cf. [4]) by a number depending only on R0.

In this paper we prove that the diameter of each component has either a
positive lower bound, depending only of R0, or this component appears to

be a single point in any compactification R.

Introduction. There are several definitions of the ideal boundary of Rie-
mann surfaces (cf. [2]). In this article we consider a finitely connected,
non-compact Riemann surface R0 of finite genus g. If ι : R0 → R is a
conformal embedding of R0 into some compact surface R of genus g, then
we call the boundary ∂ι(R0) ⊂ R the ideal boundary of R0 with respect to
the compactification (R, ι) of R0. We will ask for properties of this ideal
boundary which are independent of (R, ι) and such characteristics of R0.
As in [4] we use a suitable Jacobian manifold, a quotient space of Cg, in

1991 Mathematics Subject Classification. Primary 30F25, Secondary 30F20.

Key words and phrases. Ideal boundary, finite Riemann surface, Jacobian manifold.



176 G. Schmieder and M. Shiba

which each embedding ι(R0) ⊂ R can again be embedded. On the Jaco-
bian manifold we have a natural metric, induced by the euclidean metric on
Cg. With respect to this metric we may compare the diameter of the ideal
boundaries which we obtain for all the different embeddings in any surfaces
R as described above. In [4] is proved that there is some uniform bound for
all these diameters.

The ideal boundary, realized as a portion of a compact surface R, consists
of components. Because R0 is provided as a finitely connected surface we
have only finitely many components of the ideal boundary. It is easy to
verify that there is a one-to-one correspondence of these components if we
consider two or more different embeddings ι1 : R0 → R1, ι2 : R0 → R2. In
this sense we understand the components of the ideal boundary of R0. The
purpose of this article is to show that for each such component we have
(besides the supremum obtained in [4]) also a non trivial infimum for the
diameter of the corresponding subset of the Jacobian manifold, which is
valid for all such compactifications R of R0. If the infimum is 0, then the
component in view is always (i.e. on each such R) a singleton.

1. Notations and Definitions. Let, as before, R0 denote some finitely
connected non-compact Riemann surface of finite genus g > 0. Then we can
fix g pairs of piecewise smooth curves a0

j , b
0
j such χ0 = {a0

j , b
0
j}

g
j=1 represents

a canonical homology basis modulo dividing cycles on R0 (cf. [1]). Now we
consider some compact Riemann surface R of genus g together with some
conformal embedding ι : R0 → R and define

ι(a0
j ) =: aj and ι(b0

j ) =: bj (1 ≤ j ≤ g)

It can be easily seen that the g pairs of curves χ = {aj , bj}g
j=1 represent a

canonical homology basis for R.
We say that the triple R = (R,χ, ι) gives a conformal compactification of
the (marked) Riemann surface (R0, χ0).

Remark: For each j, 1 ≤ j ≤ g there is one and only one closed holomor-
phic differential φ(j) on R with

(1)
∫

ak

φ(j) = δjk,

∫
bk

φ(j) =: τjk (j, k = 1, 2, · · · , g),

where δjk denotes the Kronecker symbol(cf. [3] III.2.8).

We write τk(R,χ) resp. εk for the kth column of the matrix (τjk) resp.
(δjk).
Let Π stand for the linear span with integer coefficients of the 2g vectors

τ1, τ2, · · · , τg, ε1, ε2, · · · , εg
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and we call
Jac (R,χ) := Cg/Π

the Jacobian manifold of the marked Riemann surface (R,χ). We have the
canonical projection π : Cg → Jac (R,χ).

Now we fix some point p0 on R and take for each p ∈ R a piecewise
smooth curve γp on R with initial point p0 and endpoint p. This defines a
map Φ̃R : R → Cg via

Φ̃R(p) =

(∫
γp

φ(1),

∫
γp

φ(2), · · · ,

∫
γp

φ(g)

)
.

Note that the image Φ̃R(p) depends on p and on the contour γp. However,
the composition map ΦR := π ◦ Φ̃R : R → Jac (R,χ) turns out to be
independent of the special choice of γp.
Relating to the conformal compactification R = (R,χ, ι) of (R0, χ0) we
define the ideal boundary of R0 as the topological boundary of the set
ι(R0) ⊂ R, i.e.

∂RR0 := ι(R0) \ ι(R0).
The set R \ ι(R0) consists, by the assumption on R0 and the compactness
of R, of finitely many components B1

R, . . . , Bn
R. Now we consider another

conformal compactification S instead of R, which gives the components
B1

S , . . . , Bn
S . Then, by means of pairwise disjoint, simple closed curves on

R0 whose images under ιR resp. ιS separate the components Bj
R on R

as well as Bj
S on S, we get a one-to-one correspondence of the sets Bj

R

and Bj
S for j = 1, . . . , n. In this sense we can speak of the n components

B1, . . . , Bn (with respect to some fixed denumeration) of the ideal boundary
∂RR0 independently of R. Moreover, let

∆RR0 := ΦR(∂RR0) as well as ∆j
RR0 := ΦR(∂Bj

R) (j = 1, . . . , n).

We denote by dR(M) the diameter of a subset M of Jac(R,χ) with respect
to the canonically induced metric of Cg.

2. Universal bounds.

Theorem 1. Let (R0, χ0) denote a non compact, finitely connected, marked
Riemann surface of finite genus g > 0 with the ideal boundary compo-
nents B1, . . . , Bn (defined as above). Then there exist numbers cj , Cj (j =
1, . . . , n) such that

cj ≤ dR(∆j
RR0) ≤ Cj (j = 1, . . . , n)

for all conformal compactifications R = (R,χ, ι) of (R0, χ0). Each lower
bound cj can be taken strictly positive except for the case where Bj

R ⊂ R is a
singleton for some (and thus for all) conformal compactification of (R0, χ0).

In the proof we will need the following



178 G. Schmieder and M. Shiba

Lemma. Let Ω denote a doubly connected domain in the complex plane,
bounded by the piecewise smooth Jordan curves Γ1,Γ2. For each m ∈ N let
some complex-valued function fm, continuous on Ω and holomorphic on Ω
be given. We assume that the sequence fm is uniformly bounded on Ω and
tends to some constant c uniformly on Γ2.
Let f denote the limit function of some locally convergent subsequence of
fm on Ω. Then f ≡ c on Ω or Γ2 consists of a single point.

Proof. We assume that the cycle Γ := Γ1 − Γ2 represents a positively ori-
ented parametrization of ∂Ω, where the boundary of the unbounded com-
ponent C1 of C \Ω = C1 ∪C2 is given by Γ1. By Cauchy’s formula we have
for m ∈ N, z ∈ Ω

fm(z) =
1

2πi

∫
Γ

fm(ζ)
ζ − z

dζ =
1

2πi

∫
Γ1

fm(ζ)
ζ − z

dζ − 1
2πi

∫
Γ2

fm(ζ)
ζ − z

dζ

=: g1
m(z)− g2

m(z).

Each function g1
m admits an analytic continuation on I(Γ1) := Ω ∪ C2.

Because Γ1 has winding number 1 with respect to the points on Γ2 and
fm → c uniformly on Γ2 we have g1

m → c as m →∞ on this this contour.
The functions g1

m are uniformly bounded on I(Γ1). By Montel’s theorem we
may assume that the sequence g1

m is locally uniformly convergent on I(Γ1).
The limit function g is obviously an analytic continuation of f = lim fm on
I(Γ1). But we have just proved g ≡ c on Γ2. So, if Γ2 is a continuum, we
conclude g ≡ c on I(Γ1), and thus f ≡ c on Ω. �

Now we are ready to give the proof of Theorem 1.
According to [4, Satz 2] there exists some C with dR(∆RR0) ≤ C simulta-
neously for all conformal compactifications R = (R,χ, ι) of (R0, χ0).
Since ∆j

RR0 ⊂ ∆RR0 (j = 1, . . . , n), we get the existence of the upper
bounds Cj already by the mentioned result in [4].
Now we fix some j ∈ {1, . . . , n} and assume that there is no strictly positive
lower bound cj . This means, there exists some sequence of conformal com-
pactifications Rm = (Rm, χm, ιm) of (R0, χ0) in the described sense with
the property

(2) dRm
(∆j

Rm
R0)) → 0 as m →∞.

On the Riemann surface Rj
m := Rm \ Bj

Rm
we can find some domain Λ0

m

with the following properties:
(i) Λ0

m has genus g,

(ii) Bµ
Rm

⊂ Λ0
m for µ = 1, . . . , j − 1, j + 1, . . . , n,

(iii) ∂Λ0
m can be parametrized as a Jordan curve ω0

m on Rj
m.
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In Rj
m\Λ0

m we fix another Jordan curve ω1
m, homotopic to ω0

m on Rj
m. By

Am we denote the domain bounded by these curves and let Λ1
m := Λ0

m∪Am.
As proved (with slight modifications) in [4], p.42, the following estimate is
valid:

(3) dRm(ΦRm(Rm \ Λ1
m) ≤ B,

where B depends only on Am and the periods τνν . Note that we can give
the conformal annulus Am via ιm by the curves C0 := ι−1(ω0

m) and C1 :=
ι−1(ω1

m) on R0 as well as on Rm. Thus B is determined by considerations
purely on the Riemann surface R0 and we may assume that the boundary
curves C0, C1 are the same for all m ∈ N.
Note that (3) can also be expressed as:

(4)
The variation of Φ̃Rm

◦ ιm(m ∈ N) on Mm :=Rm \ Λ1
m

is uniformly bounded.

The set Mm is, for each m ∈ N, a simply connected domain. We may
assume that for all m the starting point p0

m of the contours in the definition
of Φ̃Rm

belongs to Mm and also that for each p ∈ Mm the contour γp is a
curve in Mm. Moreover, we take p0

m = ιm(p0) where p0 is some fixed point
on R0. By the monodromy theorem the value Φ̃Rm

(p) for p ∈ Mm comes
out to be independent of the special choice of the contours γp.
The set H := ι−1

m (Mm ∩ ιm(R0)) is a planar domain on R0 and does not
depend on m.

Let G ⊂ C be a domain bounded by Jordan curves which admits a
conformal map θ of G onto H. It follows from our construction that the
boundary of G consists of two components. One of them, which we denote
by Γ1, corresponds under θ to the Jordan curve C1 on R0, the other one,
Γ2, to the ideal boundary component Bj of R0.
The functions fm := Φ̃Rm

◦ ιm ◦ θ map G holomorphically in Cg and have a
continuous extension on Γ1 and Γ2. From (2) we know that the sequence fm

tends on Γ2 uniformly to some constant. The functions fm are uniformly
bounded on G, as follows from (4) and the normalization

fm(θ−1(p0)) = Φ̃Rm(ιm(p0)) = Φ̃Rm(p0
m) = 0.

We apply Montel’s theorem to the coordinate functions of fm and may
assume that the sequence fm itself is locally convergent on G. By our
Lemma we see that the limit function f is constant, or Γ2 consists of a
single point.
But the first case cannot happen: the canonical lifting of the function fm

on H ⊂ R0 is given by Fm := Φ̃Rm
◦ ιm and has an unrestricted analytic
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continuation on R0 along every curve on R0 starting in H. This defines an
analytic element F̃m on R0. On the universal covering surface Σ0 of R0 this
element F̃m appears as a holomorphic function F ∗m : Σ0 → Cg. Let this be
done for all m ∈ N. By (4) and the definition of the functions Φ̃Rm

we see
that the functions F ∗m are uniformly bounded on every compact subset of
Σ0. This shows that the sequence F ∗m tends, locally uniformly on Σ0, to
a constant as m → ∞ if the sequence fm does the same on G. But this
contradicts (cf.(1)) ∫

ak

φ(k) = 1 (k = 1, . . . , g).

Thus Γ2 is a constant curve. By elementary considerations we see that in
this case Bj

R ⊂ R must be a singleton for all conformal compactifications of
R0 in the described sense. �
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