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Discrete harmonic measure, Green’s

functions and symmetrization: a unified

probabilistic approach∗

Abstract. We use probabilistic methods based on the work of Haliste
(1965) to obtain various new versions of theorems of Baernstein (1974) on

the effects of circular symmetrizations on harmonic measure and Green’s
functions. Our results are quite general and include a number of cases

of symmetrization in discrete settings. For instance, in the setting of the

discrete cylinder Z×Zm we obtain complete generalized analogues of Baern-
stein’s results on harmonic measure and Green’s functions, and even get a

discrete version of Beurling’s (1933) shove theorem.

1. Introduction. Suppose Zm be the integers modulo m, let Sn = {x∈
Rn+1 : |x| = 1} be the unit sphere of dimension n, use Hn to denote n-
dimensional hyperbolic space, and put T = S1.
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Suppose Rn is a simple random walk on Z2, and let P z(·) indicate pro-
babilities where the walk is conditioned to start at z. Given a set D ⊂ Z2,
let

τD = inf{n ≥ 0 : Rn /∈ D}

be the first time that the random walk exits D. Fix N ∈ Z. Assume that
the line LN = {N} ×Z lies outside D. We are interested in the probability
wN (D) that the random walk conditioned to start at (0, 0) hits LN before
hitting any other part of the complement of D. Evidently,

wN (D) = P (0,0)(RτD
∈ LN ).

The quantity wN (D) may also be described as the discrete harmonic mea-
sure of LN at (0, 0) in D. Define

(1.1) Θ(x;D) = |{y : (x, y) ∈ D}|,

where x ∈ Z and | · | indicates cardinalities of sets. Then, let D� be the
discrete Steiner symmetrization of D, defined by requiring that Θ(x;D) =
Θ(x;D�) for all x ∈ D and that for every x ∈ D the set {y : (x, y) ∈ D�}
be an interval of the form {−n,−n+1, . . . , n} or {−n,−n+1, . . . , n, n+1}.
These conditions uniquely define D�. (See Figure 1.1.) We will then prove
that

(1.2) wN (D) ≤ wN (D�).

Fig. 1.1. The discrete Steiner symmetrization on Z2. Black
squares indicate the points of the sets D and D� and white
squares indicate the complements of the sets. The stars indicate
the origin
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Fig. 1.2. The ordering l on the tree T3 is induced by the
standard ordering < on the labels in this diagram. The root of
the tree is marked “0”. (Figure reprinted with permission from
the Duke Mathematical Journal [15])

For w ∈ D ⊆ Z2, let

g(z, w;D) = Ez[|{n ∈ Z+
0 : n < τD and Rn = w}|]

be the Green function in D. This is just the expected number of visits to
w prior to leaving D when starting at z. It will be proved that:

(1.3) g((x, y), (x′, y′);D) ≤ g((x, 0), (x′, 0);D�).

Inequality (1.2) follows from the methods of Quine [17] and is a discrete
analogue of the continuous result in Theorem 8.1 of Haliste [9]. Inequali-
ties (1.2) and (1.3) are special cases of Theorems (3.1) and (3.2) (respective)
which will be proved later in this paper, and are representative of the kinds
of results that we shall give in this paper.

In general, we will be able to handle not only simple random walks on Z2,
but also simple random walks (as well as a more general class of walks than
just simple random walks) on any graph X×Y , where Y is Z, the circle Zm,
the p-regular tree Tp or the line graph L(Tp), andX has constant degree, and
an analogue of (1.2) will be valid in all these cases (see Corollary 3.3, below).
The only difference between these cases is in how the symmetrization D�

will be defined. The quantity Θ(x;D) will always be defined by (1.1). On
X × Zm, the symmetrization D� is defined almost in the same way as on
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Z×Z. On X×Tp it is defined by requiring that we should have Θ(x;D�) =
Θ(x;D) for all x and that for each fixed x the set {y : (x, y) ∈ D�} be either
all of Tp or of the form {y ∈ Tp : y l y0} for some y0 ∈ Tp, where l is the
ordering on the tree displayed in Figure 1.2. Our proofs depend crucially
on certain symmetrization-convolution inequalities of Pruss [15].

We not only obtain results for discrete harmonic measures and Green’s
functions, but also domination inequalities for certain generalized harmonic
measures and Green’s functions of unsymmetrized and symmetrized subsets
of X×Y where Y is as in the previous paragraph (see Theorems 3.1 and 3.2,
below). In fact, we handle some even more general cases, including problems
involving Brownian motions on Rn, Sn or Hn.

An approximate circular symmetrization inequality on Z2 has been used
by Kesten [12] to give an upper bound on a certain hitting probability for
a random walk on Z2. It is quite possible that our exact inequalities could
be used for similar purposes.

A companion paper [14] obtains similar results for some yet more general
difference equations, but unfortunately requires additional approximation
arguments to handle some of the cases directly handled by the methods of
the present paper. Moreover, the methods of the present paper have the
advantage of being probabilistic and more transparent; the methods of the
companion paper are analytic and based on a modification of a method of
Baernstein [2].

Terms such as “positive” and “decreasing” will be used in a non-strict
sense (i.e., as meaning “non-negative” and “non-decreasing”, respectively)
unless otherwise qualified. We shall always use the same symbol to denote
a graph and to denote its collection of vertices. Thus, if G is a graph, then
“x ∈ G” means “x is a vertex of G” and H ⊆ G denotes a collection H of
vertices of G.

2. Notation and some preliminary results of a general nature.

2.1 Symmetrizations. Let (X,F , µ) be a measure space. By a sym-
metrization on X we shall mean a map #:F → F with the following prop-
erties:

(i) X# = X and ∅# = ∅

(ii) if A ⊆ B are measurable, then A# ⊆ B#

(iii) if A1 ⊆ A2 ⊆ · · · are measurable, then( ∞⋃
i=1

Ai

)#

=
∞⋃

i=1

A#
i .

(iv) (A#)# = A# for all measurable sets A.
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Actually, property (ii) is a special case of (iii), but we list it separately
for ease of use. We call a set A #-symmetric (or just symmetric if no
confusion is possible) if A# = A. If A coincides µ-almost everywhere with
a #-symmetric set, then we call A almost #-symmetric. We say that the
symmetrization # is measure-preserving if we have µ(A#) = µ(A) for all
measurable sets A.

We say that #:F → F is a Schwarz-type symmetrization on X if # is a
measure-preserving symmetrization satisfying the auxiliary condition that
A# ⊆ B# whenever µ(A) ≤ µ(B). A classical example of Schwarz-type
symmetrization on Rn is Schwarz symmetrization, given by letting A# be
an open ball centred about the origin with the same volume as A.

Remark 2.1. The collection of the #-symmetric sets for a given Schwarz-
type symmetrization is totally ordered under set inclusion and the mapping
A 7→ µ(A) gives an order isomorphism between this collection and a subset
of [0,∞].

Given an extended real function f on some set X, define the level set

fλ = {x ∈ X : f(x) > λ}

for λ ∈ R. Given a symmetrization # on X and a measurable real function
f , let

f#(x) = sup{λ : x ∈ (fλ)#},

for every x ∈ X. It can be easily proved that (f#)λ = (fλ)# for every λ ∈ R
(this last fact actually uses property (iii) of symmetrization), and it follows
that f# is measurable. The function f# is known as the #-symmetrization
of f . Note that (f#)# = f# by property (v) of symmetrization. We say
that f is #-symmetric if f# = f . An equivalent condition is to require
that fλ should be #-symmetric for all λ ∈ R. We say that f is almost
#-symmetric if it is equal µ-almost everywhere to a #-symmetric function.
Observe that if f = 1A is the indicator function of a set A, then f# = 1A# .

We say that functions f and g are equimeasurable if µ(fλ) = µ(gλ) for
all λ ∈ R. If f and g are equimeasurable and # is a Schwarz-type sym-
metrization, then f# = g#. It follows that if f is almost #-symmetric, then
f coincides µ-almost everywhere with a #-symmetric function g. Then, f
and g are equimeasurable and so f# = g# = g. Hence f coincides µ-almost
everywhere with f#. We shall often implicitly use this remark.

If # is a measure-preserving symmetrization, then for every measurable
f on X we have f and f# equimeasurable.

Example 2.1. Suppose that X is Z or Zm. Given a set A ⊆ X, if |A| = ∞,
where |·| denotes cardinalities, then letA# = Z. If |A| = 0, then letA# = ∅.
If |A| <∞, then let A# be the unique set of the form {−n,−n+ 1, . . . , n−
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1, n} or of the form {−n,−n + 1, . . . , n − 1, n, n + 1} for some n ≥ 0 such
that |A#| = |A|. Then, # is a Schwarz-type symmetrization on the measure
space X equipped with counting measure.

Example 2.2. Suppose that X is the p-regular tree Tp for some p ≥ 1.
This is an infinite tree each of whose vertices has degree p. We distinguish
a vertex o known as the root of Tp and fix a “spiral-like” ordering l on the
vertices (see Figure 1.2 for an illustration that should make it clear how
to inductively choose such an ordering, and see Pruss [15] for the explicit
definition). Then, if A ⊆ X has infinite cardinality, let A# = X. But if A
has finite cardinality n, then let A# be the collection of the first n elements
of X, where by “first” we mean “first with respect to l”. It is easy to
see that # is a Schwarz-type symmetrization on X equipped with counting
measure.

Example 2.3. Suppose that X is the line graph L(Tp) of the p-regular tree
Tp. This is a graph whose vertices are the edges of Tp, where vertices e1
and e2 of L(Tp) are adjacent if and only if considered as edgeds of Tp they
have precisely one vertex of Tp in common. The ordering l on Tp from
the preceding example induces a unique ordering l on the vertices L(Tp)
in a natural way. This ordering on L(Tp) is defined as follows. Suppose
that e1 = {v1, w1} and e2 = {v2, w2} are distinct vertices of L(Tp), i.e.,
distinct edges of Tp. Suppose also that the labels are such that v1 l v2
and w1 l w2. We then set e1 l e2 if and only if either we have v1 l w1

or we have both v1 = w1 and v2 l w2. (See Pruss [15] for details and a
diagram.) As in the previous example, if A ⊆ X has infinite cardinality, let
A# = X, and otherwise let A# be the collection of the l-first n elements of
X. Once again, # will be a Schwarz-type symmetrization on X equipped
with counting measure.

Example 2.4. Let X be either Rn, or the sphere Sn, or the hyperbolic
space Hn, equipped with the appropriate volume measure. Fix an origin
o in X (if X = Rn, then let o = 0; in the other two cases, any point is
an acceptable origin). Given a set A ⊆ X, if A has infinite volume, let
A# = X. Otherwise, let A# be an open metric ball centred about o and
having the same volume as A. If X is Rn or Hn, then it is evident that #
is a Schwarz-type symmetrization on X equipped with volume measure.

We now make a subtle technical remark about the case X = Sn. In the
case of Sn, there is a small ambiguity if A ⊆ Sn has the same volume as
Sn. Let −o be the point of Sn antipodal to o. It is customary to define
A# = Sn\{−o} if A 6= Sn and A# = Sn if A = Sn. This means we do not
have a Schwarz-type symmetrization in the strict sense of the definition,
since A# does not depend only on the measure of A. In fact, we do not
quite have a symmetrization since if Am is an increasing sequence of proper
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subsets of Sn whose union is Sn, then −o /∈ A#
m while −o ∈ (Sn)#, so that

property (iii) fails (but this is the only way in which it can fail).
However, if we consider the symmetrization # as acting on Sn\{−o}

then we have a perfectly good Schwarz-type symmetrization. In the present
paper, it makes no difference what we do here because the point −o has null
measure and we will be working with discrete time processes. If we were
working with continuous time Brownian motion for n = 1 (which would be
equivalent to the setting of Baernstein [1]), then it would matter whether we
included −o in the symmetrization in the case where S1\A has null measure.
In that case we would have to use the different definition in the previous
paragraph according to which what A# would be would depend on whether
S1\A is empty or not. However, because the null set {−o} is not important
to us (except in Remark 3.6), it will not matter whether we consider # a
symmetrization on Sn\{−o} or an “almost symmetrization” on Sn. Except
for one brief mention in Remark 3.6, we shall thus ignore this issue, and act
as if # were a symmetrization on Sn.

The symmetrizations # of the preceding examples will be called the
canonical Schwarz-type symmetrizations on Z, Zm, Tp, L(Tp), Rn, Sn and
Hn, respectively. Although there may be some freedom in choice of origin
or, in the case of Tp (and consequently of L(Tp)), in the choice of ordering,
nonetheless all the choices are equivalent up to isometry.

Now, given a set Y equipped with a symmetrization #, and given an
arbitrary set X, we may define a product symmetrization � on X×Y given
by

A� =
⋃

x∈X

[{x} ×A#
x ],

where Ax = {y : (x, y) ∈ A}. If # is a Schwarz-type symmetrization,
then we can call � a Steiner-type symmetrization. A classical example is
when X = Y = R and # is Schwarz symmetrization; then, � is Steiner
symmetrization about the real axis on R2. Steiner symmetrization was in-
troduced by Steiner [19] in his attack on the isoperimetric problem in R2.
If X = Y = Z, and # is the canonical Schwarz-type symmetrization on Z,
then � is the discrete Steiner symmetrization on Z2, defined in the Intro-
duction, and in fact if X is any constant degree graph while Y is Z, Zm, Tp

or L(Tp), then � agrees with the definition outlined in the Introduction.
If X = Z and Y = Zm, then Z × Zm is a discrete tube. If # is the

canonical Schwarz-type symmetrization on Zm, then � can be considered
a discrete version of circular symmetrization on C in light of the confor-
mal equivalence of C\{0} with the tube R × T. Thus, our results about
Steiner-type symmetrization on Z× Zm will be discrete analogues of circu-
lar symmetrization results of Baernstein [1]. Steiner-type symmetrization
on Z× Zm was apparently first considered by Quine [17].
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The following two elementary propositions are quite important. The
first is essentially due to Hardy and Littlewood (cf. Theorem 368 of Hardy,
Littlewood and Pólya [10] and Lemma 2.1 of Kawohl [11]).

Proposition 2.1. Let f1, f2, . . . , fn be positive measurable functions on a
space X equipped with a measure µ. If # is a measure-preserving sym-
metrization on X, then∫

X

f1f2 · · · fn dµ ≤
∫

X

f#
1 f

#
2 · · · f#

n dµ.

Proof. Writing fk(x) =
∫∞
0

1(fk)λ
(x) dλ, with an analogous expression

for f#
k , together with Fubini’s theorem allows us to reduce to case where

f1, f2, . . . , fn are indicator functions of sets A1, A2, . . . , An, respectively
(“layer-cake principle”). The inequality to be proved then becomes

µ(A1 ∩ · · · ∩An) ≤ µ(A#
1 ∩ · · · ∩A#

n ).

Let A = A1 ∩ · · · ∩ An and A′ = A#
1 ∩ · · · ∩ A#

n . Then, A# ⊆ A#
k for all

k since A ⊆ Ak and by property (ii) of symmetrizations. It follows that
A# ⊆ A′. Hence, µ(A) = µ(A#) ≤ µ(A′) as desired. �

The next result is also useful. It is a generalization of Theorem 369 of
Hardy, Littlewood and Pólya [10].

Proposition 2.2. Let f be a positive integrable function on a set X equip-
ped with a measure µ, and let # be a measure-preserving symmetrization
on X. Suppose that ∫

X

fg dµ ≤
∫

X

fg# dµ

for every positive function g on X. Then f is almost #-symmetric.

Proof of Proposition 2.2. Fix λ ∈ R. Let A = fλ for some λ > 0. Note
that by the integrability of f , we have µ(A) <∞. Then, by assumption we
have ∫

A

f dµ ≤
∫

A#
f dµ.

Let A1 = A ∩ A# and let A2 = A#\A. Let B2 = A\A1. Evidently A# is
the disjoint union of A1 and A2, while A is the disjoint union of A1 with
B2. It follows that∫

A1

f dµ+
∫

B2

f dµ ≤
∫

A1

f dµ+
∫

A2

f dµ.
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Hence,

(2.1)
∫

B2

f dµ ≤
∫

A2

f dµ.

But f > λ on B2 ⊆ A, while f ≤ λ on A2 ⊆ X\A. Moreover, B2 and A2

have the same measure, since µ(A1) + µ(B2) = µ(A) = µ(A#) = µ(A1) +
µ(A2). It follows that the only way (2.1) can hold is if µ(A2) = µ(B2) = 0.
Thus, A and A# coincide up to a set of measure zero. Hence, fλ and (fλ)#

are equal modulo sets of measure zero for each fixed λ > 0. Writing

f(x) = max(0, sup{q ∈ Q : q > 0 and x ∈ fq})

and
f#(x) = max(0, sup{q ∈ Q : q > 0 and x ∈ (fq)#}),

it follows that f and f# coincide µ-almost everywhere. �

Remark 2.2. Later on in the paper we shall have to use approximation
arguments. To this end, note that if fn is a sequence of measurable functions
on a measure space X with fn(x) ↑ f(x) as n → ∞ for all fixed x and if
# is a symmetrization, then (fn)#(x) ↑ f#(x) as n→∞ for all fixed x by
property (iii) of symmetrization. We also note that if fn is an increasing
sequence of #-symmetric functions, necessarily converging pointwise to a
limit f , then (fn)# ↑ f# and since (fn)# = fn it follows that f = f# and
hence that f is symmetric.

If we are working on a σ-finite measure space X and # is a Schwarz-type
symmetrization, then we may always approximate a positive #-symmetric
function f from below by bounded functions supported on sets of finite
measure as follows. Letting γn(t) = min(t, n), we easily see that if f is
#-symmetric, then so is γn ◦ f . Let A1 ⊆ A2 ⊆ · · · be a sequence of
measurable sets with finite measure whose union is X. Replacing Ai by A#

i

and using properties (i) and (iii) of symmetrization, we may assume the Ai

are symmetric. Since the intersection of a finite number of #-symmetric sets
is #-symmetric as the #-symmetric sets are totally ordered under inclusion
(Remark 2.1), it follows the function f · 1An

is #-symmetric whenever f is
#-symmetric. Then (γn ◦ f) · 1An

is a sequence of #-symmetric functions
increasing pointwise to f .

2.2. Symmetrization-convolution inequalities. Our main tool is
that of symmetrization-convolution inequalities. Suppose that # is a sym-
metrization on a measure space (X,F , µ). Let κ be a measure defined on
the product σ-algebra F × F on X × X. We say that κ satisfies a #-
symmetrization-convolution inequality if∫

X×X

f(x)g(y) dκ(x, y) ≤
∫

X×X

f#(x)g#(y) dκ(x, y)
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whenever f and g are positive measurable functions on X. If K is a posi-
tive function on X ×X, then we say that K satisfies a #-symmetrization-
convolution inequality if dκ = K(x, y)dµ(x)dµ(y) does. The Riesz-Sobolev
inequality (see Riesz [18] in the case of n = 1, and Brascamp, Lieb and
Luttinger [7] for some much more general results) implies that if X = Rn

while K(x, y) = k(|x−y|) where k is a positive decreasing function, then K
satisfies a Schwarz-symmetrization-convolution inequality. Baernstein and
Taylor [3] have shown that if X = Sn and K(x, y) = k(|x − y|) where k is
a positive decreasing function, then K satisfies a Schwarz-symmetrization-
convolution inequality. Beckner [4] has obtained the same result if X = Hn

and K(x, y) = k(d(x, y)), where d is the hyperbolic metric.
Hardy and Littlewood (see Theorem 371 of Hardy, Littlewood and Pólya

[10]) have shown that if X = Z and # is the canonical Schwarz-type sym-
metrization on Z, then K(x, y) = k(|x−y|) for decreasing functions k satis-
fies a #-symmetrization-convolution inequality. Pruss [15] has shown that
if X is Zm, Tp or L(Tp), and if # is the canonical Schwarz-type symmetriza-
tion on X, then the function K(x, y) = k(d(x, y)) for positive decreasing
functions k satisfies a #-symmetrization-convolution inequality, where d is
the graph distance (length of shortest path) on the circular graph Zm, on the
tree Tp or on the line graph L(Tp). Pruss [15] has also shown the same thing
if X is the edge graph of the octahedron and # is defined appropriately.

Finally, Proposition 2.1 shows that for any measure-preserving sym-
metrization # on any measure space X, the diagonal measure δµ defined
by ∫

X×X

f(x, y) dδµ(x, y) =
∫

X

f(x, x) dµ(x)

satisfies a #-symmetrization-convolution inequality.
The main hypothesis that we shall make for our results is that we have an

appropriate symmetrization-convolution inequality. Thus, if new symmetri-
zation-convolution inequalities were to be discovered, then we would get
new results. Note that in discrete cases it is difficult to get symmetrization-
convolution inequalities. For instance, it is known [15] that on the cube
Z3

2 and on the ternary plane Z2
3 there are no Schwarz-type symmetrizations

which would yield a symmetrization-convolution inequality of the type that
we have on Z, Zm, Tp, L(Tp) or on the octahedron edge-graph.

2.3. Hardy-Littlewood-Pólya domination. Let X be a space equipped
with a measure µ and let f and g be positive measurable functions on X.
We say that f is dominated by g (in the sense of Hardy, Littlewood and
Pólya) and write f � g providing∫

X

Φ(f(x)) dµ(x) ≤
∫

X

Φ(g(x)) dµ(x),
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for all increasing convex functions Φ. It is well known that f � g if and
only if for every α ∈ (0,∞] we have

(2.2) sup
A

∫
A

f dµ ≤ sup
A

∫
A

g dµ,

where the suprema are taken over all measurable sets A ⊆ X with µ(A) ≤ α.

Prpopsition 2.3. Suppose that # is a Schwarz-type symmetrization on X
and that the positive function g is #-symmetric. Then the following are
equivalent for a positive measurable function f on X:

(a) f � g

(b)
∫

E
f dµ ≤

∫
E# g dµ for all measurable E ⊆ X

(c)
∫

X
fh dµ ≤

∫
X
gh# dµ for all positive measurable functions h on X.

The proof is given in §5.1.

Definition 2.1. Let f and g be two positive functions on X. We write
f E g if

∫
X
fh dµ ≤

∫
X
gh# dµ for all positive measurable functions h.

Remark 2.3. Assume that # is a Schwarz-type symmetrization. If f E g,
then (2.2) follows and so f � g. Conversely, by Proposition 2.3, if f � g and
g is #-symmetric, then f E g. Proposition 2.2 shows that f E f implies
that f is almost #-symmetric, assuming f is integrable.

Definition 2.2. We say that a measure µ is homogeneously divisible if for
any measurable sets A and B with µ(A) ≤ µ(B), there exists a measurable
subset B′ of B with µ(A) = µ(B′).

Lebesgue measure (whether on Rn, Sn or Hn) is homogeneously divisible.
So is counting measure on any set. In fact, a measure is homogeneously
divisible if and only if either it is purely atomic with all atoms having
equal weight or it is purely non-atomic. The author is grateful to Professor
Herman Rubin for this last observation.

Lemma 2.1. Assume that our measure µ is σ-finite and homogeneously
divisible, and that # is a Schwarz-type symmetrization. Let f and g be
positive and measurable. If f E g, then also f# E g.

The proof is given in §5.1.

3. Statement of results.

3.1. The processes. First we describe a class of processes for which our
results are valid.

Let Y be a space with a homogeneously divisible σ-finite measure µ. Let
# be a Schwarz-type rearrangement on Y . Let X be any measure space
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with a measure ν, and let � be the product symmetrization on Z
def=X × Y

induced by #. Let π1:Z → X and π2:Z → Y be defined by π1(x, y) = x
and π2(x, y) = y.

Suppose that {Rn}∞n=0 is a process on Z and let F be the σ-field gen-
erated by {π1(Rn)}∞n=0. Assume that almost surely given F , the process
{π2(Rn)}∞n=0 is a Markov process. Let κn be the F-conditional transition-
probability measure for π2(Rn) on Y × Y defined by
(3.1)∫

Y×Y

f(x, y) dκn(x, y) =
∫
E[f(x, π2(Rn+1)) | F , π2(Rn) = x] dµ(x).

Then, κn is a randomly-chosen measure on the set Y × Y such that∫
Y×Y

f(x)g(y)dκn(x, y) is an F-measurable random variable for any non-
random µ-measurable f and g. Note that if kn,y is the randomly-chosen
measure defined by kn,x(U) = P (π2(Rn+1) ∈ U | F , Rn = x), then

(3.2) dkn,x(y)dµ(x) = dκn(x, y).

For a measure κ on Y × Y and a function f on Y , we write f ∗ κ for the
measure on Y defined by

(3.3)
∫

Y

g d(f ∗ κ) =
∫

Y

f(x)g(y) dκ(x, y),

and κ ∗ f for the measure on Y defined by

(3.3)
∫

Y

g d(κ ∗ f) =
∫

Y

g(x)f(y) dκ(x, y).

We now assume that almost surely given F , for any µ-measurable positive
function f on Y , the measure f ∗ κn has µ-density fκn while the measure
κ ∗ g has µ-density fκn

. In all concrete cases of interest, the validity of this
assumption will be obvious.

Recall the diagonal measure δµ defined in Section 2.2. The following is
our central assumption.

Definition 3.1. We say that {Rn} is �-symmetrizable with constant c
providing it is a process on X × Y with the properties given above and
satisfies the additional condition that for every n ≥ 0 the random measure
κn + cδµ almost surely satisfies a #-symmetrization-convolution inequality,
where c ≥ 0.

The nicest cases are when c = 0, but some very natural discrete cases do
have c > 0.

We now give a few interesting examples of symmetrizable processes.
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Example 3.1. Let Y be Rm, Sm, Hm, Zm, Z, Tp or L(Tp), and let µ
be our canonical measure on Y . Let # be the canonical Schwarz-type
symmetrization on Y . (Another case that we can include here is if Y is the
octahedron edge graph and the canonical Schwarz-type symmetrization #
on it is defined as in Pruss [15].) Let rn be a process on Y such that

P (rn+1 ∈ U | rn = x) =
∫

U

kn(d(x, y)) dµ(y),

for any measurable U ⊆ Y , where kn is a decreasing function and d is the
canonical metric on Y . Let X be any set and let {An} be any process
on X independent of {rn}. Then, Rn = (An, rn) is �-symmetrizable with
constant 0. To see this note that dκn(x, y) = kn(d(x, y)) dµ(x)dµ(y), and as
mentioned in Section 2.2 such a κn in our cases satisfies #-symmetrization-
convolution, which implies that {Rn} is �-symmetrizable with constant 0.

Example 3.2. Let Y be Rn, Sn or Hn. Let Bt be Brownian motion on Y .
Let 0 ≤ t0 ≤ t1 ≤ t2 ≤ · · · be any real increasing process independent of
{Bt}t∈[0,∞), and let {An}∞n=0 be any process on a measure space X such
that {An}∞n=0 is also independent of {Bt}t∈[0,∞) (but possibly dependent
on the tn). Then Rn = (An, Btn

) is �-symmetrizable with constant 0. To
see this, note that the transition probability density between Btn

and Btn+1

given Gdef=σ({tn}∞n=0) is justKtn+1−tn
(x, y) whereKt is the heat kernel onX,

and, given G, this must be of the form ktn+1−tn(d(x, y)) on Rm, Sm or Hm

for a decreasing function ktn+1−tn , so that {Rn} given G is �-symmetrizable
with constant 0, and it follows immediately that {Rn} is unconditionally
�-symmetrizable with constant 0. One of the most interesting cases is when
we just have tn = n, in which case Rn = (An, Bn).

Example 3.3. Let Y be the linear graph Z, the circle graph Zm for m ≥ 2,
the p-regular tree Tp for p ≥ 2, the line graph L(Tq) of Tq for q ≥ 2 or
the octahedron edge graph, and let # be the canonical Schwarz-type sym-
metrization on Y . Let p be the degree of Y ; if Y = Tp then p is automatically
equal to the degree of Y ; if Y = Z or Y = Zm, then let p = 2; if Y = L(Tq)
then put p = 2(q− 1). Let X be an arbitrary graph with a constant degree
r (i.e., any graph such that all vertices have r edges emanating from them).
Let Z = X×Y be the graph whose vertices are all points (x, y) with x ∈ X
and y ∈ Y and whose edges are pairs ((x, y), (x1, y1)) where either we have
x = x1 and (y, y1) is an edge of Y , or we have y = y1 and (x, x1) is an edge
of X. Then, Z is a constant degree graph of degree s = r + p. Let Rn be
the standard nearest-neighbour random walk on Z, so that

P (Rn+1 = z | Rn = w) =
{ 1

s if w and z are adjacent,
0 otherwise.
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(For instance, if X = Y = Z then Rn is just the standard random walk on
Z2.)

I claim that {Rn} is �-symmetrizable with some constant c ≥ 0. It
suffices to check that κ0 + cδµ satisfies a #-symmetrization-convolution in-
equality for some c ≥ 0. Let c = p−1. Let x0 = π1(R0) and x1 = π1(R1).
Given F and R0, if x0 = x1, then π2(R1) is uniformly distributed over the
p neighbours of the point π2(R0) in Y . Hence, if x0 = x1, then∫

Y×Y

f(a)f(b) dκ0(a, b) =
1
p

∑
a∈Y

∑
b∈N(a)

f(a)f(b)

given F , where N(a) is the set of neighbours of a in Y . Therefore, under
these circumstances,∫

Y×Y

f(a)f(b) d(κ0(a, b) + p−1δµ(a, b)) =
1
p

∑
a∈Y

∑
b∈N(a)∪{a}

f(a)f(b)

=
1
p

∑
a,b∈Y

f(a)k(d(a, b))f(b),

where k(t) = 1 if t ≤ 1 and k(t) = 0 otherwise, while µ is the count-
ing measure on Y . Since k is a decreasing function, it follows from the
symmetrization-convolution inequalities of Pruss [15] (discussed in Section
2.2 of the present paper) that∑

a,b∈Y

f(a)k(d(a, b))g(b) ≤
∑

a,b∈Y

f#(a)k(d(a, b))g#(b).

Hence, κ0+p−1δµ satisfies a #-symmetrization-convolution inequality given
F if x0 = x1. On the other hand, if x0 6= x1, then π2(R0) = π2(R1), and so
given F if x0 6= x1 we have κ0 = δµ, and as mentioned in Section 2.2, the
measure δµ does satisfy a #-symmetrization-convolution inequality. Hence,
given F , if x0 6= x1, then we have κ0+p−1δµ satisfying a #-symmetrization-
convolution inequality, as desired.

Example 3.4. Other constructions like the one in the preceding example
are possible. For instance, while in the previous example we had an equal
probability 1/(r + p) of moving from (x, y) ∈ X × Y to any of its r + p
neighbours in X × Y , we could instead have a probability q/p of moving to
any of the neighbours of the form (x, y′) where y′ is a neighbour of y in Y ,
and a probability (1− q)/r of moving to any of the neighbours of the form
(x′, y) where x′ is a neighbour of x in X. We could even handle some cases
where X has non-constant degree. The thing to note is that our results do
not depend very much on what X is.
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Example 3.5. A particularly interesting case in Example 3.3 is when
X = Z and Y = Zm, so that Z = Z×Zm is the discrete cylinder and Rn is
the simple random walk on Z. Another interesting case is when X = Zm−1

and Y = Z so that Z = Zm and Rn is the simple random walk on Z.

3.2. Generalized harmonic measures and Green’s functions. Given
a �-symmetrizable process Rn on Z = X×X, we now define a certain stop-
ping time. Let s:Z → [0, 1] be measurable. The value of s at a point z will
represent the probability that Rn survives for one step while standing at z.
More precisely, let {Xn}∞n=0 be a sequence of independent identically dis-
tributed random variables uniformly distributed on [0, 1] and independent
of the process {Rn}. Let

τs = inf{n ≥ 0 : Xn > s(Rn)}

be the first time that Rn fails to survive a step.
Let A ⊆ Z be measurable. Then, the generalized harmonic measure of A

at z with respect to the survival function s and the process {Rn} is defined
to be

ω(z,A; s) = P z(τs <∞ and Rτs
∈ A),

where we use P z(·) and Ez[·] to indicate probabilities and expectations,
respectively, for the process Rn conditioned by {R0 = z}.

The generalized harmonic measure ω(z,A; s) is the probability that when
the process Rn started at z terminates by failing to survive a step, it ter-
minates inside the set A. The particularly interesting case is when s is the
indicator function 1D of some measurable set D and A is outside D (typi-
cally in the boundary of D). Then, we shall write ω(z,A;D) = ω(z,A; 1D).
This is the standard harmonic measure of A at z in D, i.e., the probability
that Rn when started at z first exists D at a point of A.

Another interesting quantity is the generalized Green’s function g(z,A; s)
which is the expected number of times that the process Rn started at z visits
the set A before terminating. More precisely,

g(z,A; s) = Ez[|{n ∈ Z+
0 : n < τs and Rn ∈ A}|]

=
∞∑

n=0

P z(n < τs and Rn ∈ A).

For fixed z, the function g(z, ·; s) is a measure on Z. If this measure is
absolutely continuous with respect to the product measure ν×µ on Z, then
we shall write g(z, w; s) for the value of its (ν × µ)-density at w ∈ Z. If ν
and µ are counting measures, then g(z, w; s) = g(z, {w}; s).
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If s = 1D, then again we write g(z,A;D) = g(z,A; 1D) for D,A ⊆ Z
and g(z, w;D) = g(z, w; 1D) for D ⊆ Z and w ∈ Z. Note that the function
g(z, w;D) is then the standard (probabilistic) Green’s function on D. If
Z is a discrete set and the measure ν × µ on it is counting measure, then
g(z, w;D) is the expected number of times that Rn visits the point w before
exiting D, assuming R0 = z.

3.3. Symmetrization for generalized harmonic measures and
Green’s functions. Let {Rn} be a process as in Section 3.1. Throughout,
we let

(3.5) ψc(t) =
t

1− p+ pt
,

where p = c/(1+ c). Note that ψc is strictly increasing and maps [0, 1] onto
itself. Moreover, ψ0 is the identity function.

Theorem 3.1. Suppose that {Rn} is �-symmetrizable with some constant
c ≥ 0. Let s, s′:Z → [0, 1], U ⊆ X and A ⊆ U × Y be measurable. Assume
that s and s′ vanish identically on U × Y and that ψc(s(x, ·)) � ψc(s′(x, ·))
with s′(x, ·) being almost #-symmetric for all fixed x ∈ X. Then,

ω((x, ·), A; s) � ω((x, ·), A�; s′),

for each fixed x ∈ X, with the function on the right hand side being almost
#-symmetric.

Remark 3.1. This result should not particularly surprise experts, given
the work of Haliste [9, Section 8] and Borell [6].

Remark 3.2. Note that s′(x, ·) is almost #-symmetric if and only if
ψc(s′(x, ·)) is almost #-symmetric since ψc: [0, 1] → [0, 1] is strictly increas-
ing and continuous so that s′(x, ·) and ψc(s′(x, ·)) have the same collection
of level sets.

Since we trivially have ψc(s(x, ·)) � ψc(s�(x, ·)) as the two functions are
equimeasurable, we immediately obtain the following corollary.

Corollary 3.1. Suppose that {Rn} is �-symmetrizable with some constant
c ≥ 0. Let s:Z → [0, 1], U ⊆ X and A ⊆ U × Y be measurable. Assume
that s vanishes identically on U × Y . Then, for each fixed x ∈ X we have

ω((x, ·), A; s) � ω((x, ·), A�; s�),

and the function on the right hand side is almost #-symmetric.
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Theorem 3.2. Suppose that {Rn} is a process which is �-symmetrizable
with constant c. Let s, s′:Z → [0, 1] and A ⊆ Z be measurable. Suppose
that ψc(s(x, ·)) � ψc(s′(x, ·)) with s′(x, ·) being almost #-symmetric for all
fixed x ∈ X. Then,

g((x, ·), A; s) � g((x, ·), A�; (s′)�),

for each fixed x ∈ X, with the function on the right hand side being almost
#-symmetric.

Remark 3.3. If s and s′ are indicator functions of sets, while X = Z and
either Y = Z or Y = Zm, and if Rn is a simple random walk on Z = X×Y ,
then Theorem 3.1 follows directly from the methods of Quine [17], and
Theorem 3.2 can probably also be proved by Quine’s methods (in the same
special case).

Corollary 3.2. Suppose that {Rn} is a process which is �-symmetrizable
with some constant c ≥ 0. Let s:Z → [0, 1] and A ⊆ Z be measurable.
Then, for each fixed x ∈ X we have

g((x, ·), A; s) � g((x, ·), A�; s�),

and the function on the right hand side is almost #-symmetric.

Remark 3.4. In many instances one can prove that ω((x, ·), A�; s�) and
g((x, ·), A�; s�) are continuous and that continuous functions which are
almost #-symmetric are in fact #-symmetric.

Given a nonempty discrete space Y (i.e., a space Y equipped with count-
ing measure) and a Schwarz-type symmetrization of Y , we say that o ∈ Y
is the origin of Y if {y}# = {o} for any singleton {y} ⊆ Y . Note that since
we are talking about a Schwarz-type symmetrization, the origin exists and
is of course unique. If Y is Z or Zm, then o = 0. If Y = Tp, then o is the
root of the tree. If Y = L(Tp), then o is the edge {oTp , 1Tp} of Tp, where
oTp

is the root of Tp and 1Tp
is the l-smallest vertex of Tp among those

greater than oTp
.

Corollary 3.3. Suppose that Y is a discrete space equipped with a Schwarz-
type symmetrization # and that o is the origin of Y . Then under the con-
ditions of Theorem 3.1 we have

ω((x, y), A; s) ≤ ω((x, o), A�; s′),

for all x ∈ X and y ∈ Y , and under the conditions of Theorem 3.2 we have

g((x, y), A; s) ≤ g((x, o), A�; s′),
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also for all x ∈ X and y ∈ Y .

Remark 3.5. Letting X = Y = Z, s = 1D, U = {N} and letting Rn be
the simple random walk on Z2 (Example 3.3) we obtain inequality (1.2) of
our Introduction.

Proof of Corollary 3.3. By Theorem 3.1,

ω((x, ·), A; s) � ω((x, ·), A�; s′)

and the quantity on the right hand side is #-symmetric. By Proposi-
tion 2.3(b) it follows that∑

a∈{y}

ω((x, a), A; s) ≤
∑

a∈{y}#
ω((x, a), A�; s′).

Since {y}# = {o} we are done. The case of Green’s functions is handled
analogously. �

Theorem 3.3. Suppose that {Rn} is a process which is �-symmetrizable
with constant 0. Let s:Z → [0, 1] be measurable. Then, for every N ∈ Z+

0

and each fixed x ∈ X we have

(y 7→ P (x,y)(τs > N)) � (y 7→ P (x,y)(τs# > N)),

and y 7→ P (x,y)(τs# > N) is almost #-symmetric.

Theorem 3.3 will not in general hold if we merely assume that {Rn} is
�-symmetrizable for a constant c > 0.

Remark 3.6. While all our results are for discrete time processes, an
approximation argument can often be used to get results for continuous
time. Thus, for instance, if we are interested in Brownian motion Bt on
X×Y where Y is one Rn, Sn and Hn, we can discretize the time coordinate
by considering the discrete time processes Rε

n = Bεn and taking a limit as
ε→ 0+. By Example 3.2, our results will apply to the process Rε

n. Hence,
we can obtain symmetrization inequalities for ordinary harmonic measures
and Green’s functions (i.e., for the case where s = 1D for an open set D) on
X × Y where Y is one of Rn, Sn and Hn and X is any manifold. To prove
these results, one could first use an approximation argument whereby one
first proves them by using the limit ε→ 0+ with Rε

n in the case where the
complement of D is the closure of an open set. Then, one could approximate
a general D (working now in the continuous Brownian motion case and
no longer with any reference to Rε

n) by domains whose complements are
closures of open sets.
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In particular, we can obtain probabilistic proofs of Baernstein and Tay-
lor’s results [1][3] on symmetrization, Green’s functions and harmonic mea-
sures. To produce versions where s takes values in [0, 1] would require a
more subtle approximation argument, but probably can also be done.

A small subtlety occurs if Y = S1 and X is one dimensional. In that
case, because the “line” X × {−o} may have strictly positive capacity with
respect to Brownian motion (even though it has null capacity with respect
to {Rε

n} for every fixed ε > 0), it matters very much to us that we define
the “symmetrization” # on S1 as in Example 2.4 with A# = S1 in the case
where A = S1 and A# = S1\{−o} in the case where S1\A is a non-empty
set of measure zero.

Remark 3.7. The methods used in our paper can be adapted to the case
of a Schwarz-type rearrangement # mapping subsets of Y to subsets of
another space Ŷ . Functions on Y can then be easily rearranged to form
functions on Ŷ , just as in this paper, and a function on Ŷ can be called
#-symmetric if it is of the form f# for some f on Y . Then, we must have
a pair of processes, Rn on X × Y and R̂n on X × Ŷ , and we must require
that we have a convolution-rearrangement inequality between the measures
induced by the conditioned transition kernels κn and κ̂n associated with Rn

and R̂n. We also need to make an additional assumption that f κ̂n and fκ̂n

are almost #-symmetric with probability one whenever f is #-symmetric.
Actually, this approach can yield new results even in continuous cases.

For instance, Y could be a manifold and Ŷ a manifold of revolution with an
appropriate isoperimetric inequality between them (cf. Gallot [8]). By the
methods of [8, Proof of Theorem 5.4(iii)], such isoperimetric inequalities can
be shown to imply a corresponding convolution-rearrangement inequality
for heat kernels. Assume that if f is #-symmetric, then f κ̂n and fκ̂n

are
almost #-symmetric (under appropriate conditions on Ŷ this will follow
from a maximum principle since f κ̂n and fκ̂n

are solutions at some time
t > 0 of the heat equation on Ŷ with initial data f ; moreover, we will have
f κ̂n = fκ̂n

by the symmetry of the heat kernel). These methods combined
with the time-discretization described in the preceding remark, should yield
rearrangement results for harmonic measures and Green’s functions defined
in terms of Brownian motion on X × Y and on X × Ŷ . We do not give the
details as they do not contain any new insights but only require a notation
complicated by the fact that Y and Ŷ do not coincide.

4. A discrete Beurling shove theorem. In this section we are working
with a random walk Rn on Z = Z × G, where G is one of the graphs Z,
Zm, Tp, L(Tp) or the edge-graph of the octahedron, either in the setting of
Example 3.3 or of Example 3.4. Let o be the origin of G.

Let D = Z− × G, where Z− = {−1,−2, . . . }. Let T = {0} × G. Then
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the following result is a discrete analogue of Beurling’s shove theorem (see
pp. 58–62 of his thesis [5] or §IV.5.4 of Nevanlinna [13]).

Theorem 4.1. Let H be a finite non-empty subset of Z− × {o}, and set
U = D\H. Let U� = D\H ′, where H ′ = {−|H|,−|H| + 1, . . . ,−1} × {o}.
Then,

(4.1) ω((t, o), T ;U) ≤ ω((t, o), T ;U�),

whenever t < inf{t′ : (t′, o) ∈ H}.

The reason for the name “shove theorem” is evident in this formulation
insofar as H ′ is formed from H by shoving all of its elements to the right in
Z− × {o} and thus eliminating any gaps in H.

Remark 4.1. The original Beurling shove theorem may be described by let-
tingD be the half-cylinder R−×T, where R− = (−∞, 0), setting T = {0}×T
and lettingH be a finite union of closed intervals in (−∞, 0]×{1}. Then, the
theorem asserts that ω((−∞, 1), T ;D\H) ≤ ω((−∞, 1), T ;D\H ′), where ω
is a continuous harmonic measure, and H ′ is a single interval of the form
[−|H|, 0] × T, where |H| is the linear measure of H. (Actually, the way
Beurling [5] originally formulated his result was on the unit disc and not
on the half-cylinder, but our description is conformally equivalent to his.)
Since Zm is a discrete analogue of T and Z− is a discrete analogue of R−,
we are justified in calling Theorem 4.1 a discrete Beurling shove theorem,
at least in the case G = Zm.

Remark 4.2. One may conjecture a number of generalizations of Theo-
rem 4.1. One such would be to consider a survival function s instead of U ,
such that s and s� vanish identically on Z\D and are identically 1 every-
where on D except possibly on Z− × {o}, while s�(·, o) is the decreasing
rearrangement of s(·, o). Then the conjecture of course is that (4.1) contin-
ues to hold. This conjecture appears to be nontrivial even in the case of
m = 1 (in this case the process is a one-dimensional random walk); in this
case the conjecture is known to be true, but the proof is not very easy [16].

The proof of Theorem 4.1 will be done almost exactly as in the classical
continuous case as soon as we establish two lemmas.

Let U ⊆ Z = Z×G. Write ∂U for the collection of points of Z\U which
lie precisely one simple random walk step away from U , i.e.,

∂U = {z ∈ Z\U : ∃w ∈ U such that Pw(R1 = z) > 0}.

Write Ū = U ∪ ∂U . Let f be any function on Ū . Define

∆f(z) = Ez[f(R1)]− f(z),
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for z ∈ U . We say that a function f is a harmonic function on U (with
respect to {Rn}) if it is defined on Ū and satisfies ∆f(z) = 0 for all z ∈ U .

Example 4.1. The function z 7→ g(z, w;U) is a harmonic function on
U\{w} for any fixed w ∈ Z. This is easiest seen directly from the definition
of g(z, w;U) = g(z, {w}; 1U ).

Example 4.2. The function z 7→ ω(z,A;U) is a harmonic function on U
for A outside U . This is also easy to see from the definition of ω(z,A;U) =
ω(z,A; 1U ).

We recall the following maximum principle, which is far from optimal,
but suffices for our needs.

Proposition 4.1. Let f be a bounded harmonic function on a set U ⊆ D.
Assume that f(z) ≤ C for all z ∈ ∂U . Then, f(z) ≤ C for all z ∈ U .

The proof follows immediately from the facts that f(Rmin(n,τU )) is a
martingale, where τU = inf{n ≥ 0 : Rn /∈ U}, and that P z(τU < ∞) = 1
for all z ∈ Z since U ⊆ D = Z− ×G while the first component of Rn is in
effect a simple random walk on Z (with some delays during which the walk
runs around on G) and hence cannot remain in Z− forever.

We now state our two lemmas which provide the keys to the proof of
Theorem 4.1.

Lemma 4.1. In the setting of Theorem 4.1, let h(t1,t2)=g((t1,o),(t2,o);D).
Then for fixed t2 ∈ Z− the function h(·, t2) is increasing on (−∞, t2] ∩ Z−,
and decreasing on [t2,−1] ∩ Z−. Similarly, for fixed t1 ∈ Z− the function
h(t1, ·) is increasing on (−∞, t1] ∩ Z−, and decreasing on [t2,−1] ∩ Z−.

Proof. Fix t2 ∈ Z−. First suppose t1 > t2. We shall show that h(t1 −
1, t2) ≥ h(t1, t2). Let D1 = {t1, t1 + 1, . . . ,−1} ×G. Then, it is easy to see
that

h(t1, t2) =
∑
α∈G

ω((t1, o), {(t1 − 1, α)};D1)g((t1 − 1, α), (t2, o);D).

But by Corollary 3.3 (just let (x, y) = (t1 − 1, α), s = s′ = 1D, and A =
{(t2, o)}) we have g((t1−1, α), (t2, o);D) ≤ g((t1−1, o), (t2, o);D) = h(t1−
1, t2). Thus,

h(t1, t2) ≤ g((t1 − 1, o), (t2, o);D)
∑
α∈G

ω((t1, o), {(t1 − 1, α)};D1)

= ω((t1, o), {t1 − 1} ×G};D1)h(t1 − 1, t2)

≤ h(t1 − 1, t2).



160 A.R. Pruss

The inequality h(t1 + 1, t2) ≥ h(t1, t2) in the case t1 < t2 is proved very
similarly. The case of t1 fixed can be handled just as above (or else it can be
noted that it follows from the fact that h(t1, t2) = h(t2, t1) for the random
walks of Examples 3.3 and 3.4.) �

Now, for a subset U of Z×G, recall that we have let

τU = inf{n ≥ 0 : Rn /∈ U}.

Define
τ̃U = inf{n > 0 : Rn /∈ U}.

The following lemma then is valid for any random walk, not just the random
walks of Examples 3.3 and 3.4. It extends in an easy way to a number of
situations.

Lemma 4.2. In the setting of Theorem 4.1, let φ(z) = 1−ω(z, T ;U). Then

φ(z) =
∑
w∈H

g(z, w;D)ψ(w),

for a positive function ψ on H. More precisely, we may take

ψ(w) = Pw(τ̃U = τ̃D).

Proof. For ψ(w) = Pw(τ̃U = τ̃D), by the definition of the Green’s function
and by Fubini’s theorem we have∑
w∈H

g(z, w;D)ψ(w)

=
∑
w∈H

Ez

[
τD−1∑
n=0

1{Rn=w}

]
Pw(τ̃U = τ̃D)

=
∞∑

n=0

∑
w∈H

P z(Rn = w and τD > n)Pw(τ̃U = τ̃D)

=
∞∑

n=0

P z
(
Rn ∈ H, τD > n and (Rk ∈ U,∀k ∈ {n+ 1, . . . , τD − 1})

)
.

But it is easy to see that the events within the P z(·) are disjoint for distinct
values of n since H ⊆ U c. Moreover, it is easy to see that the union over
n ∈ Z+

0 of these events is the event {∃n ∈ Z+
0 . (Rn ∈ H and n < τD)}.

Clearly, if the random walk starts at z, the probability of this event is
ω(z,H;D) = φ(z). �
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The rest of the proof follows by the original methods of Beurling [5] (see
also §IV.5.4 of Nevanlinna [13]), but we give it to make it completely clear
how to apply the methods in the discrete case.

Proof of Theorem 4.1. Let Z−0 = {0} ∪ Z−. For conciseness, given a
subset L of Z−0 × {o}, write

inf Ldef= inf{l : (l, o) ∈ L}.

Let t0 = infH. We proceed by induction on N = |t0|− |H|. First, if N = 0,
then H = H ′ and we are done. Suppose now that the result has been
proved whenever |t0| − |H| < N and that N ≥ 1. Let t1 = inf{t ∈ Z− :
t ≥ t0, t /∈ H}. Since N ≥ 1, we have t1 ∈ {t0 + 1, . . . ,−1}, and moreover
{t0, . . . , t1 − 1} ⊆ H.

Define
H1 = (H ∩ [t1,−1]) ∪ {t0 + 1, . . . , t1}.

It is easy to see that |H1| = |H| and that H1 is in fact just H with the hole
at t1 deleted by shifting everything to the left of the hole by one point to
the right. Moreover, | infH1| = t0 + 1 so that | infH1| − |H| < N as t0 < 0.
Thus, if we form (H1)′ from H1 in the same way that H ′ is formed from H,
by our induction hypothesis we will have

ω((t, o), T ;D\H1) ≤ ω((t, o), T ;D\(H1)′),

whenever t < infH1, and in particular whenever t < infH. But |H1| = |H|
so that (H1)′ = H ′. Thus, the desired inequality (4.1) will follow as soon
as we prove that

(4.2) ω((t, o), T ;D\H) ≤ ω((t, o), T ;D\H1)

whenever t < infH. Write H = A1 ∪ A2 where A1 = {t0, . . . , t1 − 1} and
A2 = [t1 + 1,−1] ∩H. Let φ(z) = 1− ω(z, T ;D\H). Then, by Lemma 4.2
we have

φ(z) = φ1(z) + φ2(z),

where
φi(z) =

∑
w∈Ai

g(z, w;D)ψ(w),

for i = 1, 2. For (x, y) ∈ Z−0 × G, let φ̂(x, y) = φ1(x − 1, y) + φ2(x, y). I
claim that

(4.3) φ̂(z) ≥ 1− ω(z, T ;D\H1)
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for all z ∈ Z−0 × G. Suppose for now that this claim holds. Then, for
t < infH we have

ω((t, o), T ;D\H1) ≥ 1− φ1(t− 1, o)− φ2(t, o).

But φ1(t− 1, o) ≤ φ1(t, o) since g((t, o), (u, o);D) is increasing in t for t < u
(Lemma 4.1) and since ψ is positive while A1 ⊆ [−t0,−1]× {o}. Thus,

ω((t, o), T ;D\H1) ≥ 1−φ1(t, o)−φ2(t, o) = 1−φ(t, o) = ω((t, o), T ;D\H),

which is precisely what we were supposed to prove.
Thus, we need only verify (4.3). But φ̂ is a bounded discrete harmonic

function on D\H1 since φ1 and φ2 are harmonic on D\A1 and D\A2, re-
spectively, (the φi are sums of Green’s functions to which we can apply
Example 4.1), and ω(·, T ;D\H1) is harmonic in D\H1 (Example 4.2), while

H1 = {(x+ 1, y) : (x, y) ∈ A1} ∪A2.

Thus, the maximum principle (Proposition 4.1) implies that to show (4.3)
it suffices to verify that (4.3) holds on ∂(D\H1) ⊆ H1 ∪ T .

But on T , the inequality (4.3) holds trivially as its right hand side van-
ishes while the left is positive. Suppose now that z ∈ H1 = {(x + 1, y) :
(x, y) ∈ A1}∪A2. Then the right hand side of (4.3) equals 1. There are two
cases to consider. First suppose that z ∈ {(x + 1, y) : (x, y) ∈ A1}. Then,
z = (x+ 1, o), where (x, o) ∈ A1. We have

φ̂(z) = φ1(x, o) + φ2(x+ 1, o).

But whenever w ∈ A2 and (x, o) ∈ A1, we have g((x + 1, o), w;D) ≥
g((x, o), w;D) by Lemma 4.1 so that φ2(x+ 1, o) ≥ φ2(x, o), and so

φ̂(z) ≥ φ1(x, o) + φ2(x, o) = φ(x, o).

Now, (x, o) ∈ A1 ⊆ H so that φ(x, o) = 1 − ω((x, o), T ;D\H) = 1, and so
(4.3) is verified. Suppose now that z = (x, o) ∈ A2. Then,

φ̂(z) = φ1(x− 1, o) + φ2(x, o).

But whenever w ∈ A1 and (x, o) ∈ A2 we have g((x − 1, o), w;D) ≥
g((x, o), w;D) by Lemma 4.1, so that φ1(x− 1, o) ≥ φ1(x, o), and thus

φ̂(z) ≥ φ1(x, o) + φ2(x, o) = φ(x, o) = 1,

since (x, o) ∈ H as before, so that again (4.3) is verified. �
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Remark 4.3. The perceptive reader may notice that the proof of Theo-
rem 4.1 may be slightly modified to relax the assumption that D is Z−×G;
indeed, any �-symmetric subset D of Z−×G will work just as well provided
that for every (x, y) ∈ D the set {(x′, y) : x′ ≤ x} is contained in D.

5. Proofs.

5.1. Proofs of two auxiliary results. Proof of Proposition 2.3. First
note that (b) and (c) are equivalent. For, if we let h = 1A then we obtain
(b) from (c). On the other hand, we may write

h(x) =
∫ ∞

0

1hλ
(x) dλ,

and

h#(x) =
∫ ∞

0

1h#
λ
(x) dλ.

Together with Fubini’s theorem, this proves that (b) implies (c).
Suppose now that (b) is true. Then, since E and E# always have the

same measure, it is easy to see that (2.2) must always hold, and so (a)
follows.

Hence it remains to prove that (a) implies (b). Fix a measurable set E.
Let α = µ(E). Then, by (a), (2.2), Proposition 2.1 and the symmetry of g
we have ∫

E

f dµ ≤ sup
A

∫
A

g dµ = sup
A

∫
X

1Ag dµ

≤ sup
A

∫
X

1A#g# dµ = sup
A

∫
A#

g dµ.

The supremum here is taken over all measurable A with µ(A) ≤ α. But
µ(E) = α, and since # is of Schwarz type it follows that A# ⊆ E# if
µ(A) = α, so that (a) implies (b) as desired. �

Proof of Lemma 2.1. The reasoning in the proof of Proposition 2.3 shows
that we only need to prove∫

A

f# dµ ≤
∫

A#
g dµ

for all measurable sets A.
In fact, by Proposition 2.1 it suffices to prove that∫

A#
f# dµ ≤

∫
A#

g dµ,
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for all A, or, equivalently, to prove that∫
A

f# dµ ≤
∫

A

g dµ

for all #-symmetric A. Approximating f from below shows that we may as-
sume that f has support in a set of at most finite measure (see Remark 2.2).
Fix a non-empty #-symmetric set A. Let λ = infA f

#. First I claim that
(f#)λ ⊆ A. Clearly by definition of the level set (f#)λ it suffices to prove
that (f#)t ⊆ A for every t > λ. Fix t > λ. By definition of λ, there is
an x ∈ A with f#(x) < t. Hence, x /∈ (f#)t. Therefore, A 6⊆ (f#)t. By
Remark 2.1 and since both A and (f#)t are #-symmetric, it follows that
(f#)t ⊆ A.

Let A1 = (f#)λ and let A2 = A\A1. By construction, f# = λ every-
where onA2. Now, letB3 = {x : f(x) = λ}. If ft has finite measure for some
t < λ, which will necessarily be the case if either λ > 0 (since f is supported
in a set of finite measure) or if our measure space is finite, then equimeasur-
ability easily shows that µ(A2) ≤ µ{x : f#(x) = λ} = µ(B3). But if λ = 0
and our measure space is infinite, then B3 has infinite measure (since f is
supported in a set of finite measure) and we trivially have µ(A2) ≤ µ(B3).
Hence in either case µ(A2) ≤ µ(B3). By the homegeneous divisibility prop-
erty of µ, there exists a subset B2 of B3 with µ(B2) = µ(A2). Let B1 = fλ.
By equimeasurability we have µ(B1) = µ(A1). Let B = B1 ∪ B2. Since
B1 and B2 are disjoint, and likewise A1 and A2 are disjoint, we have
µ(A) = µ(B). Thus, B# = A# = A. Since A1 = (f#)λ and B1 = fλ,
we have ∫

A1

f# dµ =
∫

B1

f dµ

by equimeasurability. We also have∫
A2

f# dµ = λµ(A2) = λµ(B2) =
∫

B2

f dµ.

Thus, since f E g, we have∫
A

f# dµ =
∫

B

f dµ ≤
∫

B#
g dµ =

∫
A

g dµ,

as desired. �

5.2. Reduction to the case of symmetrizable processes with c = 0.

Suppose that our process {Rn} is �-symmetrizable with constant c ≥ 0 and
that κn is defined as in (3.1).
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We shall show that if we can prove our Theorems 3.1 and 3.2 for pro-
cesses which are �-symmetrizable with constant 0, then we obtain them for
constant c > 0 as well.

Since {Rn} is �-symmetrizable with constant c ≥ 0, the measure κn +
cδµ satisfies a #-symmetrization-convolution inequality. Now, define the
process {Nn}∞n=0 to be a Markov process with values in Z+

0 such that N0 = 0
with probability one and

P (Nn = Nn−1 + 1 | Nn−1) =
1

1 + c

while
P (Nn = Nn−1 | Nn−1) =

c

1 + c
.

Assume that {Nn}∞n=0 is independent of {Rn}∞n=0. Note that if c = 0 then
Nn = n for all n with probability one. Now, define

R̂n = RNn
.

I claim that {R̂n} is �-symmetrizable with constant 0. Let F =
σ
(
{π1(Rn)}∞n=0

)
. Let G = F ∨ σ

(
{Nn}∞n=0

)
. It suffices to show that for

all positive measurable f and g on Y we have

(5.1)

∫
Y

E[g(π2(R̂n+1)) | G, π2(R̂n) = x]f(x) dµ(x)

≤ E[g#(π2(R̂n+1)) | G, π2(R̂n) = x]f#(x) dµ(x).

Let F = σ{π1(Rn)}∞n=0. Fix n ≥ 0. Set α = Nn and α′ = Nn+1. Then,

E[g(π2(R̂n+1)) | G, π2(R̂n) = x] = E[g(π2(Rα′)) | F , π2(Rα) = x, α]

=
1

1 + c
E[g(π2(Rα+1)) | F , π2(Rα) = x, α, α′ = α+ 1]

+
c

1 + c
E[g(π2(Rα)) | F , π2(Rα) = x, α, α′ = α]

= (1 + c)−1(E[g(π2(Rα+1)) | F , π2(Rα) = x, α] + cg(x)).

It follows that

(1 + c)
∫

Y

E[g(π2(R̂n+1)) | G, π2(R̂n) = x]f(y) dµ(x)

=
∫

Y

f(x)g(y)dκα(x, y) + c

∫
Y

f(x)g(x) dµ(x)

=
∫

Y

f(x)g(y)d(κα(x, y) + cδµ(x, y)).
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By choice of c and using the independence of α from {Rm}∞m=0 we have
κα+cδµ almost surely satisfying a #-symmetrization-convolution inequality
given G and (5.1) follows.

Hence {R̂n} is �-symmetrizable with constant 0 as desired. We now
show that Theorems 3.1 and 3.2 for {R̂n} imply corresponding theorems
for {Rn}. Let ω̂ and ĝ respectively denote generalized harmonic measures
and Green’s functions with respect to {R̂n}, and let ω and g denote the
analogous functions for {Rn}.

We may describe the process {R̂n} as follows. A step of this random walk
consists of first flipping a coin and with probability p = c/(1 + c) staying
put, while with probability 1− p = 1/(1 + c) taking a step with transition
probabilities associated with {Rm}. Let Sn be the event {Nn+1 = Nn +1},
i.e., the event that the flip of the coin was such that we took the step with
transition probabilities associated with {Rm}.

Now, note that the distribution of R̂n+1 conditioned on the event Sn

given Nn is the same as the distribution of RNn+1 given Nn. Moreover, the
probability that the random walk {R̂n} starting at time k at the point z
will survive until one of the events Sn happens is equal to

(1−p)s(z)+(1−p)p(s(z))2 +(1−p)p2(s(z))3 + · · · = (1− p)s(z)
1− ps(z)

= φ(s(z)),

where φ(t) = (1−p)t
1−pt . Note that φ is a strictly increasing function mapping

[0, 1] onto itself. The above shows that {R̂n} with survival probabilities s
behaves much as {Rn} with survival probabilities φ ◦ s would. This obser-
vation shows that

ω(z,A;φ ◦ s) = ω̂(z,A; s),

or, equivalently, since ψc = φ−1 (where ψc is defined by (3.5)),

ω(z,A; s) = ω̂(z,A;ψc ◦ s).

This observation together with Remark 3.2 shows that Theorem 3.1 for the
process {R̂n} which has symmetrizability constant 0 (recall at this point
that ψ0(t) = t for all t) implies the same theorem for the process {Rn}
which has an arbitrary symmetrizability constant c.

Now, if the random walk {R̂n} is at a point w at a given time, then
the probability that it survives at least k contiguous steps before one of
the events Sn happening (i.e., before taking a step in accordance with the
transition probabilities of {Rn}) is

(s(w))kpk−1.
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The expected number of contiguous steps that it makes without one of the
Sn happening is then equal to

∞∑
k=1

(s(w))kpk−1 =
s(w)

1− s(w)p
= (1− p)−1φ(s(w)).

On the other hand, the expected number of contiguous steps that the process
{Rn} conditioned to start at w and equipped with survival probabilities φ◦s
(where φ is as before) will survive and stay at w before taking a step with
the transition probabilities of {Rn} is φ(s(w)). For the process Rn will
necessarily take the next step according to its own transition probabilities
unless it fails to survive, and the survival probability is φ(s(w)). Combining
these observations with the results of the previous paragraph, we can easily
convince ourselves that the identity

ĝ(z,A;φ ◦ s) = (1− p)−1g(z, w; s),

must hold. As before, this shows that Theorem 3.2 for {R̂n} implies the
same theorem for {Rn}.

5.3. Proofs for the case of symmetrizability with constant zero.
Our proofs are based on the methods of Haliste [9].

Suppose that {rn} is a process on Y such that the process {(n, rn)}∞n=0

on Z+
0 ×Y is �-symmetrizable with constant 0. Let TS = inf{n ≥ 0 : Xn ≥

S(n, rn)} for a function S on Y .

Proposition 5.1. Suppose we are in the above-described setting and that
S and S′ are measurable functions from Z+

0 × Y into [0, 1] with S(n, ·) �
S′(n, ·) and S′(n, ·) being #-symmetric for all fixed n. Then,(

y 7→ P (TS > N and rN ∈ A | r0 = y)
)

E
(
y 7→ P (TS′ > N and rN ∈ A# | r0 = y)

)
,

for each fixed n ≥ 0, x ∈ Z+
0 and A ⊆ Y , with the function on the right

hand side being almost #-symmetric.

The proof will be given later.

Lemma 5.1. Let f and g be positive almost #-symmetric functions on a
σ-finte measure space Y , where # is a Schwarz-type symmetrization. Then
fg and f+g are almost #-symmetric. Moreover, if f1, f2, f3, . . . are almost
#-symmetric and positive, then so is

∑∞
i=1 fi.

Proof of Lemma 5.1. Since our measure space is σ-finite, via Remark 2.2
we may approximate f and g from below by symmetric functions from L2.



168 A.R. Pruss

Hence, it suffices to consider the case where fg is integrable. But then for
any measurable positive h we have∫

Y

fgh dµ ≤
∫

Y

f#g#h# dµ =
∫

Y

fgh# dµ

by Proposition 2.1 and by the almost #-symmetry of f and g. By Proposi-
tion 2.2, it follows that fg is almost #-symmetric. Likewise, to prove that
f + g are almost #-symmetric, it suffices to consider the case of integrable
f and g. But then,∫

Y

(f + g)h dµ ≤
∫

Y

f#h# dµ+
∫

Y

g#h# dµ =
∫

Y

(f + g)h# dµ,

and as before it follows from Proposition 2.2 that f + g is almost #-
symmetric. By induction, it follows that if f1,f2, . . .are almost #-symmetric,
then

∑n
i=1 fi is almost #-symmetric for all i and since this sum increases to∑∞

i=1 fi as the fi are positive, it follows from Remark 2.2 that our infinite
sum is also almost #-symmetric. �

Lemma 5.2. Let f(y, ω) be a positive measurable function on Y ×Ω, where
Ω is a probability space and Y is a σ-finite measure space equipped with a
Schwarz-type symmetrization #. Assume that for almost every ω ∈ Ω the
function f(·, ω) is almost #-symmetric. Then, y 7→ E[f(y, ω)], where the
expectation is taken with respect to ω, is almost #-symmetric.

Proof of Lemma 5.2. Let µ be our measure on Y . If ψn and An

are as in Remark 2.2 (except that now we have Y in place of X), then
ψn(f(y, ω)) · 1An

(y) is an almost #-symmetric function of y for almost all
ω (this observation uses Lemma 5.1). Let fn(y, ω) = ψn(f(y, ω)) · 1An(y).
By Proposition 2.1 if g is positive and measurable, then we have∫

Y

fn(y, ω)g(y) dµ(y) ≤
∫

Y

fn(y, ω)g#(y) dµ(y)

for almost all ω since fn(y, ω) is an almost #-symmetric function of y for
almost all ω. By Fubini’s theorem,∫

Y

E[fn(y, ω)]g(y) dµ(y) ≤
∫

Y

E[fn(y, ω)]g#(y) dµ(y).

Hence, by Proposition 2.2, since y 7→ E[fn(y, ω)] is integrable (as it is
bounded and supported on a set An of finite measure), it must be almost #-
symmetric. But by monotone convergence as n→∞ this function increases
to E[f(y, ω)] and by Remark 2.2 the latter function must also be almost
#-symmetric. �
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First, assuming Proposition 5.1 and Lemma 5.2, we give the proofs of
Theorems 3.1 and 3.2 in the case of symmetrizability constant 0, since the
case of symmetrizability constant c > 0 follows by the work of the previous
section.

Proof of Theorem 3.1 in the case c = 0. Let N = inf{n ≥ 0 :
π1(Rn) ∈ U}. Note that N ∈ F , where F = σ

(
{π1(Rn)}∞n=0

)
. Let AN =

{y : (π1(RN ), y) ∈ A}. Then,

ω(z,A; s) = P z(N ≤ τs and π2(RN ) ∈ AN and N <∞).

This observation uses the assumption that s vanishes on U × Y . Moreover,
if N <∞, then we have (AN )# = {y : (π1(RN ), y) ∈ A#}. Thus, repeating
the above argument, we see that

ω(z,A#; s′) = P z(N ≤ τs′ and π2(RN ) ∈ (AN )# and N <∞).

Let rn = π2(Rn) for all n. Then, if {Rn} is symmetrizable with constant 0,
the process {(n, rn)} is also symmetrizable with constant 0 conditionally on
F . Letting S(n, y) = s(π1(Rn), y) and S′(n, y) = s′(π1(Rn), y) for n < N
and putting S(n, y) = S′(n, y) = 1 for all n ≥ N , we have S(n, ·) E S′(n, ·)
for each fixed n almost surely given F . It is easy to see that the inequalities
TS > N and τs ≥ N are almost surely equivalent, as are the inequalities
TS′ > N and τs′ ≥ N . An application of Proposition 5.1 to the process
{(n, rn)} conditioned on F thus implies that almost surely(
y 7→ 1{N<∞}P

(x,y)(τs ≥ N and π2(RN ) ∈ AN | F)
)

E
(
y 7→ 1{N<∞}P

(x,y)(τs′ ≥ N and π2(RN ) ∈ (AN )# | F)
)
.

Fix x ∈ X. If y 7→ L(y) is the left hand side of the above expression and
y 7→ R(y) is the right hand side, then what the above expression says is
that almost surely we have∫

Y

L(y)g(y) dµ(y) ≤
∫

Y

R(y)g#(y) dµ(y)

for all positive measurable g. Taking expectations of both sides of this
inequality and using Fubini’s theorem we see that∫

Y

E(x,y)[L(y)]g(y) dµ(y) ≤
∫

Y

E(x,y)[R(y)]g#(y) dµ(y).

Hence,
(y 7→ E(x,y)[L(y)]) E (y 7→ E(x,y)[R(y)]).
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But

E(x,y)[L(y)] = P (x,y)(N <∞ and τs ≥ N and π2(RN ) ∈ AN )

which equals ω((x, y), A; s) as can be easily verified. Likewise, E(x,y)[R(y)]
= ω((x, y), A�; s′). Hence, we have ω((x, ·), A; s) E ω((x, ·), A�; s′) and by
Proposition 2.3 we can replace “E” by “�” here.

Now, by Proposition 5.1, the random function R(y) is almost surely an al-
most #-symmetric function of y. It follows by Lemma 5.2 that ω((x,·),A#;s′)
is also almost #-symmetric. �

Proof of Theorem 3.2 in the case c = 0. By definition of the Green
function and by Fubini’s theorem, we have

(5.2)

g(z,A; s) = Ez

[τs−1∑
N=0

1{RN∈A}

]

= Ez

[ ∞∑
N=0

1{RN∈A and N<τs}

]

=
∞∑

N=0

P z(RN ∈ A and N < τs).

We will obtain the desired inequality between g((x,·),A;s) and g((x,·),A�;s′)
as soon as we show that for all fixed N and x we have

(5.3) P (x,·)(RN ∈ A and N < τs) E P (x,·)(RN ∈ A� and N < τs).

But much as in Theorem 3.1 (although even more easily), (5.3) follows
immediately by conditioning on F = σ

(
{π1(Rn)}∞n=0

)
and applying Propo-

sition 5.1 to the process {(n, rn)} given F , where rn = π2(Rn).
The almost #-symmetry of the right hand side of (5.3) then follows by the

same conditioning argument together with Lemma 5.2, just as in the proof
of Theorem 3.1. By Lemma 5.1 and equation (5.2), the almost #-symmetry
of the right hand side of (5.3) for all N implies the almost #-symmetry of
g((x, ·), A�; s′). �

The proof of Theorem 3.3 is even easier.

Proof of Theorem 3.3. Let A = Y . Put S(n, y) = s(π1(Rn), y) and
S′(n, y) = s′(π1(Rn), y). Applying Proposition 5.1 to the process {(n, rn)}
conditioned on F = σ

(
{π1(Rn)}∞n=0

)
we obtain the result as in the preceding

two proofs. �

Hence it remains to prove Proposition 5.1.
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The following inequality is crucial here. Let κn be one of the measures
defined by (3.1) for the process in Proposition 5.1. Note that κn is then
an ordinary (non-random) measure since the σ-field defined by the first
component of the process {(n, rn)} is trivial. Let fκn and fκn

be the µ-
densities of f ∗ κn and κn ∗ f , respectively, as before.

Lemma 5.3. If f is a positive #-symmetric measurable function, then fκn

and fκn
are #-symmetric.

Proof. It is clear that if f is bounded and supported in a set of finite
measure, then fκn and fκn are integrable if κn is defined by (3.1). Recall
Remark 2.2. Since a general #-symmetric positive function can be approx-
imated by bounded #-symmetric functions with support in a set of finite
measure, we may assume that f is bounded and supported in a set of fi-
nite measure, and hence that fκn and fκn

are integrable. Fix any positive
measurable g. Then,∫

Y

fκng dµ =
∫

Y×Y

f(x)g(y) dκn(x, y)

≤
∫

Y×Y

f#(x)g#(y) dκn(x, y)

=
∫

Y×Y

f(x)g#(y) dκn(x, y) =
∫

Y

fκng# dµ,

since our process is symmetrizable with constant 0 and as f = f#. By
Proposition 2.2 it follows that fκn is almost #-symmetric since it is inte-
grable. The almost #-symmetry of fκn

is proved analogously. �

Lemma 5.4. Suppose that f and F are positive µ-measurable functions on
Y with f � F and F almost #-symmetric. Then, fκn

E Fκn
.

Proof. Fix any positive measurable function g on Y . Then,∫
Y

fκng dµ =
∫

Y×Y

g(x)f(y) dκn(x, y)

≤
∫

Y×Y

g#(x)f#(y) dκn(x, y)

=
∫

Y

(g#)κnf# dµ

≤
∫

Y

(g#)κnF dµ =
∫

Y

Fκn
g# dµ.

Here, the first inequality followed from the symmetrizability with constant
0 of our process. The second followed from the fact that by Lemma 5.4
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the function (g#)κn is #-symmetric while by Lemma 2.1 we have f# E F
if f E F . From our chain of inequalities it follows that fκn E Fκn , as
desired. �

Lemma 5.5. Suppose that f E f ′ and that g E g′ with g′ almost #-
symmetric. Then, fg E f ′g′.

Proof. Fix a positive measurable function h on Y . We have∫
Y

fgh dµ ≤
∫

Y

f#g#h# dµ ≤
∫

Y

f#g′h# dµ

≤
∫

Y

f ′g′h# dµ.

The first inequality here came from Proposition 2.1. The second came from
the fact that f#h# is almost #-symmetric by Lemma 5.1 while g# E g′

by Lemma 2.1. The final inequality came from the facts that f# E f ′ by
Lemma 2.1 and that g′h# is almost #-symmetric by Lemma 5.1 as g′ is
almost #-symmetric. �

Proof of Proposition 5.1. For convenience, we write Sn for S(n, ·) and
S′n for S′(n, ·). Let κn be our measure on Y × Y defined by∫

Y×Y

f(x, y) dκn(x, y) =
∫
E[f(x, rn+1) | rn = x] dµ(x).

Let
α(y) = P (TS > N and rN ∈ A | r0 = y)

and
α′(y) = P (TS′ > N and rN ∈ A | r0 = y).

Let gN = SN1A and g′N = S′N1A# . By Lemma 5.5, gN E g′N and by
Lemma 5.1, g′N is almost #-symmetric. For 0 ≤ n ≤ N − 1, if gn+1 has
been defined, put

gn = Sn(gn+1)κn
.

Likewise put
g′n = (S′ng

′
n+1)κn .

By an application of Lemmas 5.1, 5.3, 5.4 and 5.5, we see that if gn+1 E
g′n+1 and g′n+1 is almost #-symmetric, then gn E g′n and g′n is almost #-
symmetric. By iteration, g0 E g′0 and g′0 is almost #-symmetric.
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I now claim that α = g0 and α′ = g′0. If this claim is correct then we are
done. It suffices to show that α = g0 since the other equality is analogous.
Let kn,y be the measure P (rn+1 ∈ · | rn = y). Then,

α(y0) = S0(y0)
∫

Y

dk0,y0(y1)S1(y1)
∫

Y

dk1,y1(y2)

· · ·SN−1(yn−1)
∫

Y

dkN−1,yN−1(yN )SN (yN )1A(yN ).

The innermost integrand then equals gN (yN ). By (3.2), the innermost in-
tegral is (gN )κN−1(yN−1). Thus, gN−1(yN−1) is equal to the integrand of
the second-innermost integral (i.e., of the integral with respect to yN−1).
Iterating these observations we may conclude that α(y0) = g0(y0), as de-
sired. �
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Press, Cambridge, 1964.

[11] Kawohl, B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in

Mathematics, vol. 1150, Springer Verlag, Berlin/Heidelberg, 1985.

[12] Kesten, H., Hitting probabilities of random walks on Zd, Stochastic Processes and
their Applications 25 (1987), 165–184.

[13] Nevanlinna, R., Analytic Functions, Springer Verlag, New York, 1970.

[14] Pruss, A.R., Symmetrization inequalities for difference equations on graphs, Adv.

Appl. Math. 22 (1999), 338–370.

[15] , Discrete convolution-symmetrization inequalities and the Faber-Krahn in-
equality on regular trees, Duke Math. J. 91 (1998), 463–514.



174 A.R. Pruss

[16] Pruss, A.R., One-dimensional random walks, decreasing rearrangements and dis-

crete Steiner symmetrization, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997),
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