
ANNALES
UN IVERS ITAT I S MAR IAE CUR IE { SK�ODOWSKA

LUBL IN { POLON IA

VOL. L V, 11 SECTIO A 2001

DARIUSZ PARTYKA and KEN-ICHI SAKAN

On pseudo-metrics on the space of generalized

quasisymmetric automorphisms of a Jordan curve

Dedicated to Professor Hiroki Sato
on the occasion of his 60th birthday

Abstract. We discuss conformally invariant pseudo-metrics on the class

of all sense-preserving homeomorphisms of a given Jordan curve by means
of the second module of a quadrilateral.

1. Introduction. Given a domain Ω ⊂ Ĉ and K ≥ 1, let QC(Ω; K) stand
for the class of all K-quasiconformal (qc. for short) self-mappings of Ω and
let

QC(Ω) :=
⋃

K≥1

QC(Ω; K) .

Assume that Ω is a Jordan domain bounded by a Jordan curve Γ. A classical
result says that each F ∈ QC(Ω) has a homeomorphic extension F ∗ of the
closure Ω = Ω ∪ Γ onto itself; cf. [12]. Then the restriction

Tr[F ] := F ∗
|Γ ∈ Hom+(Γ) ,
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where Hom+(Γ) is the class of all sense-preserving homeomorphic self-
mappings of Γ. For K ≥ 1 consider the class

Q(Γ; K) := {Tr[F ] : F ∈ QC(Ω; K)}
and

Q(Γ) := {Tr[F ] : F ∈ QC(Ω)} .

From respective properties of quasiconformal mappings (cf. [12]) it follows
that the functional

K(f) := inf{K ≥ 1 : f ∈ Q(Γ; K)} , f ∈ Q(Γ)
has the following properties

K(f ◦ g) ≤ K(f)K(g) , f, g ∈ Q(Γ) ;

K(f) = K(f−1) , f ∈ Q(Γ) ;

K(f) = 1 ⇐⇒ f ∈ Q(Γ; 1) , f ∈ Q(Γ) .

Hence the functional

τ(f, g) :=
1
2

log K(f ◦ g−1) , f, g ∈ Q(Γ) ;

is a pseudo-metric on Q(Γ) called the Teichmüller pseudo-metric on Q(Γ).
There are several descriptions of the class Q(Γ) without using quasiconfor-
mal extensions; cf. e.g. [4], [1], [12], [11], [10], [16] and [15, Introduction].
Throughout this paper we use a description of Q(Γ) in terms of the sec-
ond module m(Q) of a quadrilateral Q; cf. [15, Definition 1.3]. We recall
that a quadrilateral G(z1, z2, z3, z4) is a Jordan domain G ⊂ Ĉ with dis-
tinct points z1, z2, z3, z4, called vertices, lying on the boundary curve ∂G
and ordered according to the positive orientation of ∂G with respect to G;
cf. [12, pp. 8-9]. The considerations in [15] justify to call any quadrilat-
eral alternatively a hyperbolic rectangle and write HR(Ω) for the class of
all quadrilaterals Q := Ω(z1, z2, z3, z4) with vertices lying on the bound-
ary curve Γ = ∂Ω. Write HS(Ω) for the class of all hyperbolic squares
Ω(z1, z2, z3, z4), i.e. all quadrilaterals Q ∈ HR(Ω) such that m(Q) = 1; cf.
[15]. If f ∈ Hom+(Γ) and Q := Ω(z1, z2, z3, z4) is a quadrilateral, then
we use the notation f ∗Q for the quadrilateral Ω(f(z1), f(z2), f(z3), f(z4)).
The smallest M ∈ [1; +∞] such that the inequality
(0.1) 1/M ≤ m(f ∗Q) ≤ M

holds for all Q ∈ HS(Ω) is said to be the generalized quasisymmetric di-
latation of f ∈ Hom+(Γ) and is denoted by δ(f). [15, Thm. 2.2] says
that

(0.2)

Q(Γ) = GQS(Γ) := {f ∈ Hom+(Γ) : δ(f) < ∞} ;

GQS(Γ; M) := {f ∈ Hom+(Γ) : δ(f) ≤ M}

⊂ Q
(

Γ; min{M3/2, 2M − 1}
)

, M ≥ 1 ;
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(0.3) Q(Γ; K) ⊂ GQS(Γ; λ(K)) , K ≥ 1 ,

where λ(K) := ΦK(1/
√

2)2Φ1/K(1/
√

2)−2 and ΦK is the familiar Hersch-
Pfluger distortion function; cf. [8], [12, pp. 53, 63]. We recall that (for
M ≥ 1) a homeomorphism f ∈ Hom+(Γ) is called a generalized (M -)
quasisymmetric homeomorphism of Γ provided δ(f) < ∞ (δ(f) ≤ M).

The main topic in this paper is to construct functionals ρ on Hom+(Γ)×
Hom+(Γ) which take values in [0; +∞] and satisfy all or some of the follow-
ing six properties:

Property I. ρ is a pseudo-metric on Hom+(Γ), i.e. for all f, g, h ∈
Hom+(Γ),

ρ(f, g) = ρ(g, f) , ρ(f, h) ≤ ρ(f, g) + ρ(g, h) , ρ(f, f) = 0 .

Property II. For arbitrary f, g ∈ Hom+(Γ),

ρ(f, g) = 0 ⇐⇒ f ◦ g−1 ∈ Q(Γ; 1) .

Property III. ρ is equivalent to τ on Q(Γ), i.e. for any sequence fn ∈
Q(Γ), n ∈ N, and any f ∈ Q(Γ),

( ρ(fn, f) → 0 as n →∞ ) ⇐⇒ ( τ(fn, f) → 0 as n →∞ ) .

Property IV. ρ is complete on Q(Γ), i.e. for any sequence fn ∈ Q(Γ),
n ∈ N,

( ρ(fn, fm) → 0 as n, m →∞ ) =⇒ ( ρ(fn, f) → 0 as n →∞ )

for some f ∈ Q(Γ).

Property V. ρ determines the class Q(Γ), i.e. there exists λ ∈ (0; +∞]
such that

Q(Γ) = {f ∈ Hom+(Γ) : ρ(f, id) < λ} ,

where id is the identity self-mapping of Γ.

Property VI. ρ is invariant in this sense that for all f, g, h ∈ Hom+(Γ),

ρ(f ◦ h, g ◦ h) = ρ(f, g) .

From the theory of quasiconformal mappings it follows easily that ρ := τ
has all the properties (I)-(VI). In this note we construct such pseudo-metrics
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without using quasiconformal extensions to Ω. An example of such a pseudo-
metric is the functional

ρ(f, g) := log inf{K ≥ 1 : f ◦ g−1 ∈ QH(Γ; K)} , f, g ∈ Hom+(Γ) ,

where QH(Γ; K) stands for the class of all K-quasihomographies of Γ, intro-
duced by Zaja̧c; cf. [16] for their definition and properties. However, Zaja̧c’s
description involves the distortion function ΦK , and so it is somewhat com-
plicated in applications. Using the second module m(Q) of a quadrilateral
Q we introduce in Section 1 simpler pseudo-metrics ρ satisfying some of the
properties (I)-(VI). They have especially simple representations by means of
the cross-ratio in the most essential case for applications, where Γ is the unit
circle T := {z ∈ C : |z| = 1} and Ω is the unit disk D := {z ∈ C : |z| < 1},
or Γ is the extended real axis R̂ := R ∪ {∞} and Ω is the upper half plane
C+ := {z ∈ C : Im z > 0}. The key role in our approach is played by
the second module m(Q) of a quadrilateral Q, the generalized quasisym-
metric dilatation δ(f) of f ∈ Hom+(Γ) and their properties developed in
[15]. Due to the simplicity of the pseudo-metric d it can be very useful in
topics dealing with topological properties of the Teichmüller pseudo-metric
τ . We present some results of this type in Section 2. Following considera-
tions from Hamilton’s paper [7] we construct in Section 3 a pseudo-metric
d̂ satisfying all the properties (I)-(VI). In the last section we gather some
complementary results and technical tools that support our consideration
in Sections 1 and 3.

1. The pseudo-metrics d and d
∗. Write ω(z, Ω)[I] for the harmonic

measure at the point z ∈ Ω of the arc I ⊂ Γ with respect to a domain
Ω ⊂ Ĉ bounded by a Jordan curve Γ = ∂Ω. Given distinct points z1, z2 ∈ Γ
we denote by Γ(z1, z2) the open arc from z1 to z2 according to the positive
orientation of Γ with respect to Ω. By [15, Lemma 1.1] there exists a
unique point c(Q) ∈ Ω, called the hyperbolic center of a quadrilateral Q :=
Ω(z1, z2, z3, z4) ∈ HR(Ω), such that

ω(c(Q), Ω)[Γ(z1, z2)] = ω(c(Q), Ω)[Γ(z3, z4)]

and
ω(c(Q), Ω)[Γ(z2, z3)] = ω(c(Q), Ω)[Γ(z4, z1)] .

We recall that the ratio

m(Q) :=
tan πω(c(Q), Ω)[Γ(z1, z2)]
tan πω(c(Q), Ω)[Γ(z2, z3)]
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is said to be the second module of Q; cf. [15, Definition 1.3]. If Q ∈ HR(D)
or Q ∈ HR(C+), then [15, Lemma 3.1] says that

(1.1) m(Q) =
[z2, z3, z4, z1]
[z1, z2, z3, z4]

=
1

[z1, z2, z3, z4]
− 1 ,

where
[w1, w2, w3, w4] :=

w2 − w3

w1 − w3
· w1 − w4

w2 − w4

is the cross-ratio of a quadruple of distinct points w1, w2, w3, w4 ∈ Ĉ. Given
f, g ∈ Hom+(Γ) we introduce

(1.2) d(f, g) := sup
{∣∣∣∣ 1

1 + m(f ∗Q)
− 1

1 + m(g ∗Q)

∣∣∣∣ : Q ∈ HR(Ω)
}

and

(1.3) d∗(f, g) := sup
{∣∣∣∣ 1

1 + m(f ∗Q)
− 1

1 + m(g ∗Q)

∣∣∣∣ : Q ∈ HS(Ω)
}

.

It is easy to show that d and d∗ are pseudo-metrics on Hom+(Γ). In what
follows we describe various properties of d and d∗. For this purpose we
widely use results in [15].

Theorem 1.1. The functional d satisfies the properties (I), (II), (III), (IV)
and (VI) with ρ replaced by d.

Proof. From (1.2) we easily conclude that the functional d satisfies (I) with
ρ := d, and hence d is a pseudo-metric on Hom+(Γ). By [15, Thm. 1.5]
the second module m is conformally invariant, i.e. for all h ∈ Q(Γ; 1) and
Q ∈ HR(Ω)

(1.4) m(h ∗Q) = m(Q) .

If now f, g ∈ Hom+(Γ) and h ∈ Q(Γ; 1) satisfy f = h ◦ g, then by (1.2) and
(1.4)

(1.5) d(f, g) = d(f, h ◦ g) = d(f, f) = 0 .

Conversely, assume that f, g ∈ Hom+(Γ) and d(f, g) = 0. Then

m(f ∗Q) = m(g ∗Q) , Q ∈ HR(Ω) ,

and hence
m((f ◦ g−1) ∗Q) = m(Q) , Q ∈ HS(Ω) .
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By [15, Thm. 2.2] (or Lemma 4.2) we get f ◦ g−1 ∈ Q(Γ; 1), which shows
(II). Let fn ∈ Q(Γ), n ∈ N be a sequence. If τ(fn, f) → 0 as n → ∞ for
some f ∈ Q(Γ), then Lemma 4.1 implies

(1.6) d(fn, f) ≤ M(K(fn ◦ f−1)) → 0 as n →∞ .

Conversely, assume that d(fn, f) → 0 as n → ∞. Then by (1.2), (1.3) and
(4.1),

d∗(fn ◦ f−1, id) ≤ d(fn ◦ f−1, id) = d(fn, f) → 0 as n →∞ .

Applying now Lemmas 4.4 and 4.5 we get

τ(fn, f) → 0 as n →∞ .

Combining this with (1.6) we deduce that d is equivalent to τ , i.e. (III)
holds. Assume now fn ∈ Q(Γ), n ∈ N is a Cauchy sequence in (Q(Γ), d).
Then Lemma 4.1 shows that the inequality∣∣∣∣ 1
1 + m((fn ◦ f−1

n0 ) ∗Q)
− 1

1 + m(Q)

∣∣∣∣ ≤ d((fn ◦ f−1
n0

), id) = d(fn, fn0) < 1/4

holds for sufficiently large n0 ∈ N and for all n ∈ N, n ≥ n0 and Q ∈ HS(Ω).
Therefore, for every Q ∈ HS(Ω),

1/3 < m((fn ◦ f−1
n0

) ∗Q) < 3 , n ≥ n0 ,

hence by (0.1)
δ((fn ◦ f−1

n0
) ∗Q) < 3 , n ≥ n0 ,

and finally, by [15, Thm. 2.2], we get

δ(fn) < λ(33/2K(fn0)) , n ≥ n0 .

Lemma 4.3 now shows that there exist f ∈ Q(Γ) and sequences gn ∈ Q(Γ),
n ∈ N and nk ∈ N, k ∈ N satisfying (4.8) and (4.9). Let ϕ be a homeo-
morphic mapping of Ω onto C+ and conformal on Ω. For every n ∈ N set
g̃n := ϕ ◦ gn ◦ϕ−1. Since the second module m(Q) is conformally invariant,
given Q := Ω(z1, z2, z3, z4) ∈ HS(Ω) we conclude from (1.1) and (4.9) that

(1.7)

m(gnk
∗Q) = m(g̃nk

∗ (ϕ ∗Q))

= [g̃nk
◦ ϕ(z1), g̃nk

◦ ϕ(z2), g̃nk
◦ ϕ(z3), g̃nk

◦ ϕ(z4)]−1−1

→ [f̃ ◦ ϕ(z1), f̃ ◦ ϕ(z2), f̃ ◦ ϕ(z3), f̃ ◦ ϕ(z4)]−1−1

= m(f̃ ∗ (ϕ ∗Q)) = m(f ∗Q) as k →∞ ,
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where f̃ := ϕ ◦ f ◦ ϕ−1. Since (fn) is a Cauchy sequence, we see, by (1.4),
that

(1.8) sup
m≥n

d(gm, gn) = sup
m≥n

d(fm, fn) → 0 as n →∞ .

By (1.7), for all n ∈ N and Q ∈ HS(Ω) we have∣∣∣∣ 1
1 + m(gnk

∗Q)
− 1

1 + m(gn ∗Q)

∣∣∣∣→ ∣∣∣∣ 1
1 + m(f ∗Q)

− 1
1 + m(gn ∗Q)

∣∣∣∣
as k →∞. Applying now (1.8) and (1.4) we see that

d(fn, f) = d(gn, f) ≤ sup
m≥n

d(gm, gn) → 0 as n →∞ ,

which proves the completeness of d on Q(Γ). Thus (IV) holds. The property
(VI) follows easily from (4.1), and this ends the proof. �

Theorem 1.2. The functional d∗ satisfies the properties (I), (II) and (V)
with ρ := d∗ and λ := 1/2.

Proof. From (1.3) we easily conclude that the functional d∗ satisfies (I),
and hence d∗ is a pseudo-metric on Hom+(Γ). Fix f, g ∈ Hom+(Γ). If
f ◦ g−1 ∈ Q(Γ; 1), then by (1.2), (1.3) and (1.5)

(1.9) d∗(f, g) ≤ d(f, g) = d(f, f) = 0 .

Conversely, assume that d∗(f, g) = 0. Then

m(f ∗Q) = m(g ∗Q) , Q ∈ HS(Ω) .

Lemma 4.2 now shows that f ◦ g−1 ∈ Q(Γ; 1). This combined with (1.9)
yields (II). The property (V) follows directly from Lemma 4.5. �

Corollary 1.3. The functional

d̃(f, g) := max{d(f, g) , 2d∗(f, g)} , f, g ∈ Hom+(Γ) ,

satisfies the properties (I)-(V) with ρ := d̃ and λ := 1.

Proof. The corollary follows directly from Theorems 1.1 and 1.2, Lemma
4.5, (4.2) and the inequalities

d∗(f, g) ≤ d(f, g) ≤ d̃(f, g) , f, g ∈ Hom+(Γ) . �
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For f, g ∈ Hom+(Γ) define

d1(f, g) := sup
{

hd

(
1

1 + m(f ∗Q)
,

1
1 + m(g ∗Q)

)
: Q ∈ HS(Ω)

}
,

where

hd(z, w) :=
1
2

log
1 +

∣∣∣ z−w
1−wz

∣∣∣
1−

∣∣∣ z−w
1−wz

∣∣∣ , z, w ∈ D ,

is the hyperbolic distance of z and w in D, and

(1.10) d2(f, g) := sup
{∣∣∣∣log

1 + m(f ∗Q)
1 + m(g ∗Q)

∣∣∣∣ : Q ∈ HS(Ω)
}

.

Theorem 1.4. For each k = 1, 2 the functional dk satisfies the properties
(I), (II), (IV) and (V) with ρ := dk and λ := +∞. Moreover, for any
sequence fn ∈ Q(Γ), n ∈ N and any f ∈ Q(Γ),

(1.11) ( τ(fn, f) → 0 as n →∞ ) =⇒ ( dk(fn, f) → 0 as n →∞ ) .

Proof. Assume first k = 2. From (1.10) we easily conclude that the
functional d2 satisfies (I). Fix f, g ∈ Hom+(Γ). If h := f ◦ g−1 ∈ Q(Γ; 1),
then by (1.4) and (1.10) we have

(1.12) d2(f, g) = d2(f, h ◦ g) = d2(f, f) = 0 .

Conversely, if d2(f, g) = 0, then m(f ∗ Q) = m(g ∗ Q) for all Q ∈ HS(Ω).
Lemma 4.2 now shows that f ◦ g−1 ∈ Q(Γ; 1). This combined with (1.12)
yields (II). From (1.10) and the identity

m(Ω(z1, z2, z3, z4))m(Ω(z2, z3, z4, z1)) = 1

for all quadrilaterals Ω(z1, z2, z3, z4), we see that for all M ≥ 1,

(1.13) d2(f, id) ≤ M ⇐⇒ (2eM−1)−1 ≤ m(f∗Q) ≤ 2eM−1 , Q ∈ HS(Ω) ,

and consequently (V) holds with λ := +∞.
Assume now fn ∈ Q(Γ), n ∈ N is a Cauchy sequence in (Q(Γ), d2). Then

d2(fn, id) ≤ M , n ∈ N ,

for some M ≥ 0. Combining this with (1.13) we obtain

δ(fn) ≤ 2eM − 1 , n ∈ N .

Hence, as in the proof of Theorem 1.1, we can easily deduce (IV). The
implication (1.11) follows easily from Lemma 4.6 and Theorem 1.1.

In case k = 1 the proof runs in much the same way as in the previous
case. The only difference is in a slightly more complicated form of the right
hand side of the equivalence (1.13) with d2 replaced by d1 and in the proof
of the implication (1.11). �
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Corollary 1.5. For each k = 1, 2 the functional

d̃k(f, g) := d(f, g) + dk(f, g) , f, g ∈ Hom+(Γ) ,

satisfies the properties (I)-(V) with ρ := d̃k and λ := +∞.

Proof. The corollary follows directly from Theorems 1.1 and 1.4 and the
inequalities

max{dk(f, g) , d(f, g)} ≤ d̃k(f, g) , f, g ∈ Hom+(Γ) , k = 1, 2 . �

For f, g ∈ Hom+(Γ) we write f ∼ g iff f ◦ g−1 ∈ Q(Γ; 1). It is clear that
∼ is an equivalence relation on Hom+(Γ). Moreover, any pseudo-metric ρ
on Hom+(Γ) taking values in [0; +∞) and satisfying (II) induces a metric
ρ/∼ on the quotient space Hom+(Γ)/Q(Γ; 1) given by

ρ/∼([f/ ∼], [g/ ∼]) := ρ(f, g) , f, g ∈ Hom+(Γ) .

where [f/ ∼] denotes the equivalence class of f with respect to ∼. Applying
now Theorems 1.1 and 1.4, as well as Corollaries 1.3 and 1.5 we obtain

Corollary 1.6. For each ρ = d, d1, d2, d̃, d̃1, d̃2, (Q(Γ)/Q(Γ; 1), ρ/ ∼) is a
complete metric space.

2. Applications of the pseudo-metric d. Let Ω ⊂ Ĉ be a Jordan domain
bounded by a Jordan curve Γ. Given a quadrilateral Q := Ω(z1, z2, z3, z4)
we define the conjugate quadrilateral Q∗ := Ω(z4, z1, z2, z3).

Lemma 2.1. For all f, g ∈ Hom(Γ) the equality
(2.1)

d(f, g) = sup
{∣∣∣∣ 1

1 + m(f ∗Q)
− 1

1 + m(g ∗Q)

∣∣∣∣ : Q ∈ HR(Ω) , m(Q) ≥ 1
}

= sup
{∣∣∣∣ 1

1 + m(f ∗Q)
− 1

1 + m(g ∗Q)

∣∣∣∣ : Q ∈ HR(Ω) , m(Q) ≤ 1
}

holds. In particular,
(2.2)

d(f, g) = sup{|[f(z1), f(z2), f(z3), f(z4)]− [g(z1), g(z2), g(z3), g(z4)]| :

Ω(z1, z2, z3, z4) ∈ HR(Ω) , [z1, z2, z3, z4] ≥ 1/2}
= sup{|[f(z1), f(z2), f(z3), f(z4)]− [g(z1), g(z2), g(z3), g(z4)]| :

Ω(z1, z2, z3, z4) ∈ HR(Ω) , [z1, z2, z3, z4] ≤ 1/2} ,
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provided Ω = C+ or Ω = D.

Proof. From [15, Definition 1.3] it follows that for every Q ∈ HR(Ω),
m(Q∗) = 1/m(Q). Since (f ∗ Q)∗ = f ∗ Q∗ and (g ∗ Q)∗ = g ∗ Q∗, we see
that

1
1+m(f ∗Q)

− 1
1+m(g ∗Q)

=
1

1+m(g ∗Q∗)
− 1

1+m(f ∗Q∗)
, Q ∈ HR(Ω) .

Then (2.1) follows from the definition of the pseudo-metric d. The equality
(2.2) is a direct consequence of (2.1) and the equality

m(Q) =
1

[z1, z2, z3, z4]
− 1 ,

provided Q ∈ HR(D) or Q ∈ HR(C+); cf. [15, Lemma 3.1]. �

For every f ∈ L1
loc(R), i.e. a complex-valued and locally integrable func-

tion f on R, set

fI :=
1
|I|1

∫
I

f(t)dt

for the average of f over a closed and bounded interval I ⊂ R with a positive
length |I|1 > 0. The functional

‖f‖∗ := sup
{

1
|I|1

∫
I

|f(t)− fI |dt : I ⊂ R is a closed interval and

0 < |I|1 < +∞}

is a pseudo–norm on the space BMO(R) := {f ∈ L1
loc(R) : ‖f‖∗ < +∞}

and for every f ∈ BMO(R), ‖f‖∗ = 0 iff f is a constant function almost
everywhere on R. We recall that a function f ∈ BMO(R) is said to be of
bounded mean oscillation on R. For a survey of the properties of the space
BMO(R) we refer the reader to [6, Chapter VI].

Theorem 2.2. Suppose that H is an absolutely continuous homeomorphism
of R̂ onto itself such that h := log H ′ ∈ BMO(R). If

(2.3) ‖h‖∗ ≤ c/2 ,

then

(2.4) d(H, id) ≤ (2Cc−1‖h‖∗ + 1)4e6‖h‖∗ − 1 → 0 as ‖h‖∗ → 0 ,

where c and C are the constants from the John-Nirenberg theorem; cf. [6,
p. 230].
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Proof. Given a closed and bounded interval I ⊂ R with a positive length
|I|1 > 0 we conclude from (2.3) and [14, Lemma 1.2] that

|I|1ehI (2Cc−1‖h‖∗ + 1)−1 ≤
∫

I

eh(t)dt ≤ |I|1ehI (2Cc−1‖h‖∗ + 1) .

Hence

(2.5) |I|1ehI (2Cc−1‖h‖∗ + 1)−1 ≤ H(I) ≤ |I|1ehI (2Cc−1‖h‖∗ + 1) .

Fix z1, z2, z3, z4 ∈ R satisfying z1 < z2 < z3 < z4, and set I1 := [z1; z3],
I2 := [z2; z4], I3 := [z2; z3] and I4 := [z1; z4]. Note that the absolute
continuity of H implies H(∞) = ∞. Since

[H(z1),H(z2),H(z3),H(z4)]

=
H(z4)−H(z1)
H(z3)−H(z1)

· H(z3)−H(z2)
H(z4)−H(z2)

=
|H(I4)|1
|H(I1)|1

· |H(I3)|1
|H(I2)|1

and

0 < [z1, z2, z3, z4] =
|I4|1
|I1|1

· |I3|1
|I2|1

< 1 ,

we conclude from (2.5) that

(2.6)

|[H(z1),H(z2),H(z3),H(z4)]− [z1, z2, z3, z4]|

=
∣∣∣∣ |H(I4)|1
|H(I1)|1

· |H(I3)|1
|H(I2)|1

− |I4|1
|I1|1

· |I3|1
|I2|1

∣∣∣∣
≤
(

(2Cc−1‖h‖∗ + 1)4e|hI4+hI3−hI1−hI2 | − 1
) |I4|1
|I1|1

· |I3|1
|I2|1

≤ (2Cc−1‖h‖∗ + 1)4e|hI4+hI3−hI1−hI2 | − 1 .

Since
|I4|1 = |I1|1 + |I2|1 − |I3|1 ,

we have

0 < [z1, z2, z3, z4] =
|I4|1
|I1|1

· |I3|1
|I2|1

=
|I4|1
|I1|1

+
|I4|1
|I2|1

− |I4|1
|I1|1

· |I4|1
|I2|1

= 1−
(
|I4|1
|I1|1

− 1
)(

|I4|1
|I2|1

− 1
)

,

and hence

(2.7)
|I4|1
|I1|1

< 2 or
|I4|1
|I2|1

< 2 .
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By Lemma 2.1 we may assume that

(2.8) [z1, z2, z3, z4] ≥ 1/2 ,

which implies
|I2|1
|I3|1

≤ 2
|I4|1
|I1|1

and
|I1|1
|I3|1

≤ 2
|I4|1
|I2|1

.

Combining this with (2.7) we obtain

(2.9)
|I2|1
|I3|1

≤ 2
|I4|1
|I1|1

< 4 or
|I1|1
|I3|1

≤ 2
|I4|1
|I2|1

< 4 .

Since I3 ⊂ I1 ⊂ I4 and I3 ⊂ I2 ⊂ I4, we deduce from (2.9) that

(2.10)

|hI4+hI3 − hI1 − hI2 |
≤ min{|hI4 − hI1 |+ |hI3 − hI2 | , |hI4 − hI2 |+ |hI3 − hI1 |}
≤ 2‖h‖∗ + 4‖h‖∗ = 6‖h‖∗ .

The last inequality follows from |hI − hJ | ≤ 2‖h‖∗ provided I, J ⊂ R are
intervals satisfying I ⊂ J and 0 < |J |1 ≤ 2|I|1 < +∞; cf. [6, p. 223].
Combining (2.10) with (2.6) we obtain

(2.11)
|[H(z1),H(z2),H(z3),H(z4)]− [z1, z2, z3, z4]|

≤ (2Cc−1‖h‖∗ + 1)4e6‖h‖∗ − 1 ,

provided (2.8) holds. Assume now z1, z2, z3 ∈ R satisfy z1 < z2 < z3 and
z4 = ∞. Then

[H(z1),H(z2),H(z3),H(z4)] =
H(z3)−H(z2)
H(z3)−H(z1)

=
|H(I3)|1
|H(I1)|1

,

as well as

[z1, z2, z3, z4] =
|I3|1
|I1|1

< 1 .

Following the proof of (2.11) we obtain

(2.12)

|[H(z1),H(z2),H(z3),H(z4)]− [z1, z2, z3, z4]|

=
∣∣∣∣ |H(I3)|1
|H(I1)|1

− |I3|1
|I1|1

∣∣∣∣
≤
(

(2Cc−1‖h‖∗ + 1)2e|hI3−hI1 | − 1
) |I3|1
|I1|1

≤ (2Cc−1‖h‖∗ + 1)2e2‖h‖∗ − 1 ,
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provided (2.8) holds. If now z1 = ∞ and z2, z3, z4 ∈ R satisfy z2 < z3 < z4,
then in a similar way we obtain (2.12) with I1 replaced by I2, provided (2.8)
holds. The last two cases where z2 = ∞ or z3 = ∞ follow from the two
former ones and the identity

[w1, w2, w3, w4] = [w3, w4, w1, w2] ,

which holds for every quadruple of distinct points w1, w2, w3, w4 ∈ Ĉ. Com-
bining (2.11) with (2.12) and applying Lemma 2.1 we obtain (2.4). �

Corollary 2.3. Suppose that f ∈ Q(R̂) and hn ∈ Q(R̂), n ∈ N, is a se-
quence of absolutely continuous functions on R such that log h′n ∈ BMO(R),
n ∈ N. If

(2.13) ‖ log h′n‖∗ → 0 as n →∞ ,

then

(2.14) τ(hn ◦ f, f) → 0 as n →∞ .

Proof. By Lemma 4.1,

d(hn ◦ f, f) = d(hn, id) , n ∈ N ,

and consequently, by Theorem 2.2 and (2.13),

d(hn ◦ f, f) → 0 as n →∞ .

Thus (2.14) follows from Theorem 1.1, which ends the proof. �

Corollary 2.4. Given f ∈ Q(R̂) assume that f and f−1 are absolutely
continuous on R and that the inequality

(2.15)
|f(E)|1
|f(I)|1

≤ α

(
|E|1
|I|1

)β

holds for every interval I ⊂ R, 0 < |I|1 < ∞, and every Borel set E ⊂ I,
where α and β are some positive constants. If fn ∈ Q(R̂), n ∈ N, is a
sequence of absolutely continuous functions on R such that

(2.16) ‖ log f ′n − log f ′‖∗ → 0 as n →∞ ,

then τ(fn, f) → 0 as n →∞.

Proof. By the assumption, each function fn ◦ f−1, n ∈ N, is absolutely
continuous on R and the equality

(2.17) log(fn ◦f−1)′ = log(f ′n ◦f−1)− log(f ′ ◦f−1) = (log f ′n− log f ′)◦f−1
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holds almost everywhere on R. The inequality (2.15) says that the Borel
measure E 7→ |f(E)|1 on R belongs to the so-called Muckenhoupt class A∞;
cf. [6, p.264] for the definition of the class A∞. From the Jones result [9]
and the Banach invertible operator theorem it follows that the mapping

h 7→ h ◦ f−1

is a linear homeomorphism of the space BMO(R) onto itself. Combining
now (2.16) with (2.17) we obtain

‖ log(fn ◦ f−1)′‖∗ → 0 as n →∞ .

Then Corollary 2.3 implies

τ(fn, f) = τ((fn ◦ f−1) ◦ f, f) → 0 as n →∞ ,

which ends the proof. �

Remark 2.5. It is easy to show that, if f ∈ Hom+(R̂) satisfies for all
x, y ∈ R the double inequality

1
L
|x− y| ≤ |f(x)− f(y)| ≤ L|x− y|

with some constant L > 0, i.e., f is a L-bilipschitz homeomorphism of R onto
itself, then f satisfies the inequality (2.15) with α := L2 and β := 1. In the
proof of [14, Lemma 1.4] a more sophisticated result was shown. It says that
f ∈ Hom+(R̂) satisfies the inequality (2.15) with α := exp(2‖h‖∞)(

√
C +

1)(C + 1) and β := 1/2, provided f is absolutely continuous on R,

log f ′ ∈ BMO(R) , h ∈ L∞(R) and ‖ log f ′ − h‖∗ ≤ c/4 ,

where c and C are the constants from the John-Nirenberg theorem; cf. [6,
p. 230].

Using the stronger pseudo-norm ‖ · ‖∞ instead of ‖ · ‖∗ we may omit the
absolute continuity of f−1 and the assumption (2.15) in Corollary 2.4. We
now prove

Theorem 2.6. Suppose that fn ∈ Q(R̂), n = 0, 1, 2, . . . , is a sequence of
absolutely continuous functions on R such that

(2.18) λn := ‖ log f ′n − log f ′‖∞ → 0 as n →∞ ,

where f := f0. Then τ(fn, f) → 0 as n →∞.

Proof. Setting hn := log f ′n− log f ′, n = 1, 2, . . . , we see by (2.18) that the
inequalities

(2.19) e−λnf ′ ≤ ehnf ′ = f ′n ≤ eλnf ′ , n = 1, 2, . . . ,
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hold almost everywhere on R. Given a closed interval I ⊂ R we have

|fn(I)|1 =
∫

I

f ′n(t)dt , n = 0, 1, 2, . . . .

Hence by (2.19),

(2.20) e−λn |f(I)|1 ≤ |fn(I)|1 ≤ eλn |f(I)|1 , n = 1, 2, . . . .

Fix z1, z2, z3, z4 ∈ R satisfying z1 < z2 < z3 < z4, and set I1 := [z1; z3],
I2 := [z2; z4], I3 := [z2; z3] and I4 := [z1; z4]. Since for every n = 0, 1, 2 . . . ,

[fn(z1), fn(z2), fn(z3), fn(z4)] =
fn(z4)− fn(z1)
fn(z3)− fn(z1)

· fn(z3)− fn(z2)
fn(z4)− fn(z2)

=
|fn(I4)|1
|fn(I1)|1

· |fn(I3)|1
|fn(I2)|1

,

we conclude from (2.20) that

(2.21)
e−4λn [f(z1), f(z2), f(z3), f(z4)] ≤ [fn(z1), fn(z2), fn(z3), fn(z4)]

≤ e4λn [f(z1), f(z2), f(z3), f(z4)] , n = 1, 2, . . . .

Since 0 < [f(z1), f(z2), f(z3), f(z4)] < 1, (2.21) yields

(2.22)
|[fn(z1), fn(z2), fn(z3), fn(z4)]−[f(z1), f(z2), f(z3), f(z4)]|
≤ (e4λn−1)[f(z1), f(z2), f(z3), f(z4)] ≤ e4λn−1 , n = 1, 2, . . . .

Suppose now that one of the points z1, z2, z3, z4 is equal to ∞. For simplicity
we may restrict ourselves to the case where z4 = ∞ and z1, z2, z3 ∈ R satisfy
z1 < z2 < z3. Then

[fn(z1), fn(z2), fn(z3), fn(z4)] =
fn(z3)−fn(z2)
fn(z3)−fn(z1)

=
|fn(I3)|1
|fn(I1)|1

, n = 1, 2, . . . ,

and a reasoning similar to that in (2.22) leads to

(2.23)
|[fn(z1), fn(z2), fn(z3), fn(z4)]−[f(z1), f(z2), f(z3), f(z4)]|

≤ e2λn − 1 , n = 1, 2, . . . .

Combining (2.22) with (2.23) we obtain for every Q ∈ HR(C+),

(2.24)
∣∣∣∣ 1
1 + m(fn ∗Q)

− 1
1 + m(f ∗Q)

∣∣∣∣ ≤ e4λn − 1 , n = 1, 2, . . . .
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By the definition of the pseudo-metric d we conclude from (2.24) and (2.18)
that

d(fn, f) ≤ e4λn − 1 → 0 as n →∞ .

Theorem 1.1 now shows that τ(fn, f) → 0 as n → ∞, which ends the
proof. �

Remark 2.7. All the results presented above have their counterparts in
the case Ω := D and Γ := T. However, we omit the details.

3. The pseudo-metric d̂. Let S := Ĉ \ {0, 1,∞} and let ρS be the
Poincaré metric on S. For f, g ∈ Hom+(Γ) we define

(3.1) d̂(f, g) := sup{ρS(−m(f ∗Q) , −m(g ∗Q)) : Q ∈ HR(Ω)} .

To show that d̂ satisfies all the properties (I)-(VI) we need the following
lemma related to Hamilton’s result [7, Lemmma 2]. For K ≥ 1 denote by
QC′(Ĉ; K) the class of all F ∈ QC(Ĉ; K) such that F (t) = t for t = 0, 1,∞.

Lemma 3.1. If K ≥ 1 and if F ∈ QC′(Ĉ; K), then

(3.2) ρS(F (z), z) ≤ 1
2

log K , z ∈ S .

Proof. Given z ∈ S let w := F (z) and π : D → S be a holomorphic
universal covering satisfying π(0) = z. By the definition of ρS there exists
some λ ∈ D such that

(3.3) π(λ) = w and ρS(w, z) = inf{ρh(0, t) : t ∈ π−1(w)} = ρh(0, λ) ,

where ρh is the hyperbolic metric on D. For every function µ ∈ L∞(Ĉ) with
‖µ‖∞ < 1, let Bµ denote the uniquely determined homeomorphic solution
ϕ : Ĉ → Ĉ of the Beltrami equation

∂̄ϕ = µ∂ϕ

which keeps the points 0, 1 and ∞ fixed; cf. [12, p. 194]. From the Bers-
Royden lemma, cf. [3] it follows that every point of T (Ĉ \ {0, 1,∞, z})
is of the form [Bµ] where µ ∈ L∞(Ĉ), ‖µ‖∞ < 1 and that there exists a
holomorphic universal covering p : T (Ĉ\{0, 1,∞, z}) → S which sends every
[Bµ] ∈ T (Ĉ \ {0, 1,∞, z}) into Bµ(z). Here T (Ĉ \ {0, 1,∞, z}) stands for
the Teichmüller space of Ĉ\{0, 1,∞, z} and [Bµ] stands for the equivalence
class of Bµ. Thus there exists a biholomorphic mapping Φ : D → T̂ (C \
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{0, 1,∞, z}) such that Φ(0) = [id] and p ◦ Φ = π. Since in D the Kobayashi
distance between 0 and a given t ∈ D is equal to ρh(0, t), it follows that

(3.4) the Kobayashi distance between [id] and Φ(t) is equal to ρh(0, t) .

By Theorem 3[5, Chapter 7], the Kobayashi and Teichmüller metrics coin-
cide. Combining this with (3.4) we see that for every t ∈ D,

(3.5)
1
2

inf{log K(Bµ) : [Bµ] = Φ(t)} = ρh(0, t) =
1
2

log
1 + |t|
1− |t|

.

Given µ ∈ L∞(Ĉ) with ‖µ‖∞ < 1 it is easy to check that Bµ(z) = w iff
there exists t ∈ D such that π(t) = w and Φ(t) = [Bµ]. Thus by (3.3) and
(3.5) we obtain

ρS(w, z) = inf{ρh(0, t) : π(t) = w}

=
1
2

inf{inf{log K(Bµ) : [Bµ] = Φ(t)} : π(t) = w}

=
1
2

inf{log K(Bµ) : Bµ(z) = w} .

Hence
ρS(w, z) ≤ 1

2
log K(F ) ≤ 1

2
log K ,

which proves (3.2). �

Theorem 3.2. The functional ρ := d̂ satisfies all the properties (I), (II),
(III), (IV), (V) with λ := +∞ and (VI). Moreover, for all f, g ∈ Q(Γ),

(3.6) d̂(f, g) ≤ 1
2

log K(f ◦ g−1) = τ(f, g) .

Proof. The property (I) follows directly from the definition (3.1).
From (3.1) we also see that for all f, g ∈ Hom+(Γ),

d̂(f, g) = 0 ⇐⇒ m(f ∗Q) = m(g ∗Q) , Q ∈ HR(Ω) .

Hence, as in the proof of Theorem 1.2, we deduce the property (II).
To prove the property (III) we first show the inequality (3.6). Fix f, g ∈

Hom+(Γ) and Q := Ω(z1, z2, z3, z4) ∈ HR(Ω). By the Riemann and Taylor–
Osgood–Carathéodory theorems there exist homeomorphic mappings ϕ1

and ϕ2 of C+ onto Ω and conformal on C+ such that

ϕ1(0) = f ◦ g−1(z2)

ϕ1(1) = f ◦ g−1(z3)

ϕ1(∞) = f ◦ g−1(z4)

and

ϕ2(0) = z2

ϕ2(1) = z3

ϕ2(∞) = z4 .
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Setting z := ϕ−1
2 (z1) and w := ϕ−1

1 ◦ f ◦ g−1(z1) we conclude from the
conformal invariance of the second module and from [15, Lemma 3.1] that

(3.7) m(Q) = m(ϕ−1
2 ∗Q) = m(C+(z, 0, 1,∞)) =

1
[z, 0, 1,∞]

− 1 = −z

and similarly,

(3.8) m((f ◦g−1)∗Q) = m((ϕ−1
1 ◦f ◦g−1)∗Q) = m(C+(w, 0, 1,∞)) = −w .

Since ϕ−1
1 ◦ f ◦ g−1 ◦ ϕ2 ∈ Q(R̂; K) with K := K(f ◦ g−1), there exists

F ∈ QC(Ĉ; K) such that

(3.9) F (t) = ϕ−1
1 ◦ f ◦ g−1 ◦ ϕ2(t) , t ∈ R̂ .

Hence F (t) = t for t = 0, 1,∞, and so F ∈ QC′(Ĉ; K). Since by (3.9),
F (z) = w, we conclude from (3.7), (3.8) and Lemma 3.1 that

ρS(−m(f ∗ (g−1 ∗Q)),−m(g ∗ (g−1 ∗Q))=ρS(−m((f ◦g−1) ∗Q),−m(Q))

= ρS(w, z) = ρS(F (z), z) ≤ 1
2

log K .

Then (3.6) follows from (3.1) and the equality {g−1 ∗ Q : Q ∈ HR(Ω)} =
HR(Ω). Let f ∈ Q(Γ) and fn ∈ Q(Γ), n ∈ N, be arbitrarily fixed. If
τ(fn, f) → 0 as n →∞, then by (3.6),

(3.10) d̂(fn, f) ≤ τ(fn, f) → 0 as n →∞ .

Conversely, assume that d̂(fn, f) → 0 as n →∞. Then

(3.11)

sup{ρS(−m((fn ◦ f−1) ∗Q) , −1) : Q ∈ HS(Ω)}
≤ sup{ρS(−m((fn ◦ f−1) ∗Q) , −m(Q)) : Q ∈ HR(Ω)}
= sup{ρS(−m(fn ∗Q) , −m(f ∗Q)) : Q ∈ HR(Ω)}

= d̂(fn, f) → 0 as n →∞ ,

and consequently,

(3.12) δ(fn◦f−1) = sup{m((fn◦f−1)∗Q) : Q ∈ HS(Ω)} → 1 as n →∞ .

Lemma 4.4 now implies that τ(fn, f) → 0 as n →∞, which combined with
(3.10) yields the property (III).
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Suppose now that d̂(fn, fm) → 0 as n, m → ∞. Replacing f by fm in
the inequalities and equalities in (3.11) and (3.12) we have

δ(fn ◦ f−1
m ) → 1 as n, m →∞ ,

and consequently by (0.2),

K(fn ◦ f−1
m ) → 1 as n, m →∞ .

Applying now Lemma 4.1 we see that d(fn, fm) → 0 as n, m → ∞. By
Theorem 1.1 there exists f ∈ Q(Γ) such that d(fn, f) → 0 as n → ∞.
Applying Theorem 1.1 once again we have τ(fn, f) → 0 as n →∞. By the
property (III) we obtain d̂(fn, f) → 0 as n →∞, which proves the property
(IV).

If f ∈ Q(Γ) then by (3.6),

(3.13) d̂(f, id) ≤ 1
2

log K(f) < +∞ .

Conversely, assume that f ∈ Hom+(Γ) and d̂(f, id) < +∞. Then

sup{ρS(−m(f ∗Q) , −1) : Q ∈ HS(Ω)}

≤ sup{ρS(−m((f ∗Q) , −m(Q)) : Q ∈ HR(Ω)} = d̂(f, id) < +∞ ,

and consequently there exists M ≥ 1 such that

1/M ≤ m(f ∗Q) ≤ M , Q ∈ HS(Ω) .

By [15, Thm. 2.2], f ∈ Q(Γ). Combining this with (3.13) we derive the
property (V) with λ := +∞.

The property (VI) is an immediate consequence of (3.1) and the equality
{h ∗Q : Q ∈ HR(Ω)} = HR(Ω) for h ∈ Hom+(Γ). �

4. Supplementary results. Throughout this section we collect a number
of technical lemmas that complete considerations in the previous section.

Lemma 4.1. For all f, g ∈ Hom+(Γ),

(4.1) d(f, g) = d(f ◦ g−1, id) .

Moreover, if K ≥ 1 and f ◦ g−1 ∈ Q(Γ; K), then

(4.2) d(f, g) ≤ M(K) := 2Φ2√
K

(1/
√

2)− 1 .
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Proof. Since g ∗Q ∈ HR(Ω) iff Q ∈ HR(Ω), we see by (1.2)

d(f, g) = sup
{∣∣∣∣ 1

1 + m((f ◦ g−1)(g ∗Q))
− 1

1 + m(g ∗Q)

∣∣∣∣ : Q ∈ HR(Ω)
}

= d(f ◦ g−1, id) ,

which yields (4.1). Assume that K ≥ 1 and h := f ◦ g−1 ∈ Q(Γ; K) and
that Q ∈ HR(Ω). As in the proof of [15, Thm. 2.2] we can show that

Φ1/K

(
1√

1 + m(Q)

)
≤ 1√

1 + m(h ∗Q)
≤ ΦK

(
1√

1 + m(Q)

)
.

Therefore

Φ1/K

(
1√

1 + m(Q)

)2

− 1
1 + m(Q)

≤ 1
1 + m(h ∗Q)

− 1
1 + m(Q)

≤ ΦK

(
1√

1 + m(Q)

)2

− 1
1 + m(Q)

and applying the identity ([2, Thm. 3.3])

ΦK(r)2 + Φ1/K(
√

1− r2 )2 = 1 , 0 ≤ r ≤ 1 ,

we obtain by (1.2)

d(f, g) ≤ max
{

max
0≤t≤1

(ΦK(
√

t )2 − t) , max
0≤t≤1

(t− Φ1/K(
√

t )2)
}

= max
0≤t≤1

(ΦK(
√

t )2 − t) .

Combining this with [13, Thm. 3.1] we obtain (4.2), which completes the
proof. �

Lemma 4.2. If f, g ∈ Hom+(Γ) and if

(4.3) m(f ∗Q) = m(g ∗Q) , Q ∈ HS(Ω) ,

then f ◦ g−1 ∈ Q(Γ; 1).

Proof. By the Riemann and Taylor–Osgood–Carathéodory theorems there
exist homeomorphic mappings ϕ, ϕ1 and ϕ2 of C+ onto Ω and conformal
on C+ such that f ◦ϕ(t) = ϕ1(t) and g ◦ϕ(t) = ϕ2(t) for t = 0, 1,∞. Then
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the mappings f̃ := ϕ−1
1 ◦ f ◦ ϕ and g̃ := ϕ−1

2 ◦ g ◦ ϕ belong to Hom+(R̂)
and satisfy f̃(t) = g̃(t) = t for t = 0, 1,∞. By (4.3) and the conformal
invariance of the second module m(Q),

(4.4) m(f̃ ∗Q) = m(g̃ ∗Q) , Q ∈ HS(C+) .

From [15, Example 1.4] it follows that

(4.5) m(Q) =
x2 − x1

x3 − x2
, x1, x2, x3 ∈ R , x1 < x2 < x3 ,

where Q := C+(x1, x2, x3,∞). Combining (4.4) and (4.5) we see that

(4.6)
f̃(x)− f̃(x− t)
f̃(x + t)− f̃(x)

=
g̃(x)− g̃(x− t)
g̃(x + t)− g̃(x)

, x ∈ R , t > 0 .

Since f̃(t) = g̃(t) = t for t = 0, 1,∞, we conclude from (4.6) that

f̃

(
k

2n

)
= g̃

(
k

2n

)
, n = 0, 1, 2, . . . , , k = . . . ,−1, 0, 1, . . . .

By continuity, f̃(t) = g̃(t) for all t ∈ R. Hence

ϕ−1
1 ◦ f ◦ ϕ = ϕ−1

2 ◦ g ◦ ϕ

and finally
f ◦ g−1 = ϕ1 ◦ ϕ−1

2 ∈ Q(Γ; 1) ,

which proves the lemma. �

Lemma 4.3. Suppose that fn ∈ Hom+(Γ), n ∈ N is a sequence satisfying

(4.7) δ(fn) ≤ M , n ∈ N ,

with some real constant M ≥ 1. Then there exist f ∈ Q(Γ) and sequences
gn ∈ Q(Γ), n ∈ N and nk ∈ N, k ∈ N such that δ(f) ≤ M ,

(4.8) gn ◦ f−1
n ∈ Q(Γ; 1) , n ∈ N

and

(4.9) gnk
(z) → f(z) as k →∞ , z ∈ Γ .

Proof. By the Riemann and Taylor–Osgood–Carathéodory theorems there
exist homeomorphic mappings ϕ and ϕn, n ∈ N of C+ onto Ω and conformal



136 D. Partyka and K. Sakan

on C+ such that fn ◦ ϕ(t) = ϕn(t) for n ∈ N and t = 0, 1,∞. Then
f̃n := ϕ−1

n ◦ fn ◦ ϕ ∈ Hom+(R̂) and f̃n(t) = t for n ∈ N and t = 0, 1,∞. By
(4.7) and the conformal invariance of the second module m(Q),

δ(f̃n) ≤ M , n ∈ N ,

and hence, by [15, Example 1.4 and Thm. 2.2], we obtain

(4.10) f̃n ∈ QS(R; M) , n ∈ N ,

where QS(R; M) denotes the class of all sense-preserving homeomorphic
self-mappings of R̂ that keep the point ∞ fixed and are M -quasisymmetric
in the sense of Beurling and Ahlfors; cf. [4], [11, p. 31] or [12, p. 88]. The
class {h ∈ QS(R; M) : h(0) = 0 , h(1) = 1} is compact in the locally uniform
convergence topology; cf. [11, p. 32] or [1, p. 66, Lemma 1]. Combining
this with (4.10) we see that

(4.11) f̃nk
(z) → f̃(z) as k →∞ , z ∈ R̂ ,

for some f̃ ∈ QS(R; M) and a sequence nk ∈ N, k ∈ N. Setting f :=
ϕ ◦ f̃ ◦ ϕ−1 and gn := ϕ ◦ f̃n ◦ ϕ−1 for n ∈ N, we conclude from (4.11) that
(4.9) holds. Furthermore,

gn ◦ f−1
n = ϕ ◦ ϕ−1

n ∈ Q(Γ; 1) , n ∈ N ,

which yields (4.8). Given Q = C+(z1, z2, z3, z4) ∈ HS(C+) we conclude
from (4.11) and (1.1) that
(4.12)

m(f̃n ∗Q) =
1

[f̃nk
(z1), f̃nk

(z2), f̃nk
(z3), f̃nk

(z4)]
− 1

→ 1
[f̃(z1), f̃(z2), f̃(z3), f̃(z4)]

− 1 = m(f̃ ∗Q) as k →∞ .

Applying the conformal invariance of the second module m(Q) we deduce
from (4.7) that

1/M ≤ m(f̃n ∗Q) ≤ M , n ∈ N , Q ∈ HS(C+) ,

and hence, by (4.12), that

1/M ≤ m(f̃ ∗Q) ≤ M , Q ∈ HS(C+) .

The last inequality yields δ(f) = δ(f̃) ≤ M , which completes the proof. �
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Lemma 4.4. For every f ∈ Q(Γ) and every sequence fn ∈ Q(Γ), n ∈ N,

(4.13) ( δ(fn◦f−1) → 1 as n →∞ ) ⇐⇒ ( τ(fn, f) → 0 as n →∞ ) .

Proof. If δ(fn ◦ f−1) → 1 as n →∞, then by [15, Remark 2.4] we have
(4.14)
1 ≤ K(fn ◦ f−1) ≤ min{δ(fn ◦ f−1)3/2 , 2δ(fn ◦ f−1)− 1} → 1 as n →∞ .

Conversely, if τ(fn, f) → 0 as n →∞, then by [15, Remark 2.4] we have

(4.15) 1 ≤ δ(fn ◦ f−1) ≤ λ(K(fn ◦ f−1)) → 1 as n →∞ .

Combining (4.14) with (4.15) we obtain (4.13). �

Lemma 4.5. For every f ∈ Hom+(Γ),

d∗(f, id) =
1
2

δ(f)− 1
δ(f) + 1

.

In particular, f ∈ Q(Γ) iff d∗(f, id) < 1/2.

Proof. The lemma follows from the equivalence∣∣∣∣ 1
1 + u

− 1
2

∣∣∣∣ ≤ v ⇐⇒ 1− 2v

1 + 2v
≤ u ≤ 1 + 2v

1− 2v
, u > 0 , 0 ≤ v <

1
2

,

and the definitions of δ and d∗. �

Lemma 4.6. Let M1,M2 ≥ 1 and let f ∈ Q(Γ; M1) and g ∈ Q(Γ; M2).
Then

d2(f, g) ≤ (1 + λ(M1))(1 + λ(M2))d∗(f, g) .

Proof. The lemma follows from (0.3), (1.3), (1.10) and from the inequality∣∣∣∣log
1 + u

1 + v

∣∣∣∣ ≤ |u− v| = (1 + u)(1 + v)
∣∣∣∣ 1
1 + u

− 1
1 + v

∣∣∣∣ , u, v > 0 . �
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