ANNALES

UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. L V, 9
SECTIO A 2001

MIROSLAV KUREŠ

Connections and torsions on $T T^{*} M$

Dedicated to Professor Ivan Kolár
on the occasion of his 65-th birthday

Abstract

The connections on the bundle $T T^{*} M \rightarrow T^{*} M$ are investigated and the results concerning liftings of connections are summarized. General torsions of a connection are defined as the Frölicher-Nijenhuis brackets of the associated horizontal projection and natural affinors on this bundle. All general torsions on $T T^{*} M$ are derived. Specially, the torsions of linear connections and lifted classical linear connections are described geometrically.

1. The bundle $\boldsymbol{T} \boldsymbol{T}^{*} \boldsymbol{M}$. The research on the geometry of the bundle $T T^{*} M$ is of considerable importance. It yields not only one second order bundle, but according to Modugno and Stefani, [12], there exists a geometrical isomorphism between the bundles $T T^{*} M$ and $T^{*} T M$ for every manifold M. From the categorial point of view this is a natural equivalence between bundle functors $T T^{*}$ and $T^{*} T$ defined on the category $\mathcal{M} f_{m}$ of m dimensional smooth manifolds and smooth mappings. Moreover, if we take into account a classical geometrical construction of a natural equivalence

[^0]between $T T^{*}$ and $T^{*} T^{*}$, we see that our considerations include the second order bundles $T T^{*} M, T^{*} T M$ and $T^{*} T^{*} M$. However, the functor $T T$ is not of this type. It is defined on the whole category $\mathcal{M} f$ of smooth manifolds and smooth mappings and it is product preserving and there is no natural equivalence between $T T$ and $T^{*} T$. The fundamental paper of Kolár and Radziszewski [7], includes details concerning the natural transformations of second tangent and cotangent functors. There is also a motivation for studying the properties of bundles $T T^{*} M, T^{*} T M$ and $T^{*} T^{*} M$ in some problems of the analytical mechanics.

The bundle $T T^{*} M$ disposes of the following bundle structures: $T T^{*} M \rightarrow$ $T^{*} M, T T^{*} M \rightarrow T M, T T^{*} M \rightarrow M$. Given some local coordinates x^{i} on M, let us denote by x^{i}, p_{i} the induced coordinates on $T^{*} M$ and $x^{i}, p_{i}, X^{i}=$ $d x^{i}, P_{i}=d p_{i}$ the induced coordinates on $T T^{*} M$. Then the projections of mentioned structures work in this way: $\left(x^{i}, p_{i}, X^{i}, P_{i}\right) \mapsto\left(x^{i}, p_{i}\right)$, $\left(x^{i}, p_{i}, X^{i}, P_{i}\right) \mapsto\left(x^{i}, X^{i}\right),\left(x^{i}, p_{i}, X^{i}, P_{i}\right) \mapsto\left(x^{i}\right)$.

2. Connections on $T T^{*} M$.

2.1. General connections on $\boldsymbol{T} \boldsymbol{T}^{\boldsymbol{*}} \boldsymbol{M}$. Let $Y \rightarrow M$ be an arbitrary fiber bundle, $\operatorname{dim} M=m, \operatorname{dim} Y=m+n$. Let $i, j, \cdots=1, \ldots, m, p, q, \cdots=$ $1, \ldots, n$ and let $\left(x^{i}, y^{p}\right)$ be some local coordinates on Y. We define a general connection as a section $\Gamma: Y \rightarrow J^{1} Y$ of the first jet prolongation of Y. A general connection Γ can be identified with the associated horizontal projection denoted by the same symbol Γ, which is a special $(1,1)$-tensor field on Y. It has the coordinate expression

$$
d y^{p}=\Gamma_{i}^{p}(x, y) d x^{i}
$$

Especially, on $T T^{*} M \rightarrow T^{*} M$ it yields the coordinate expression of Γ as

$$
\begin{aligned}
d X^{i} & =D_{j}^{i}(x, p, X, P) d x^{j}+E^{i j}(x, p, X, P) d p_{j} \\
d P_{i} & =F_{i j}(x, p, X, P) d x^{j}+G_{i}^{j}(x, p, X, P) d p_{j}
\end{aligned}
$$

2.2. Linear connections on $\boldsymbol{T} \boldsymbol{T}^{*} \boldsymbol{M}$. Let $E \rightarrow M$ be an arbitrary vector bundle. Then the first jet prolongation $J^{1} E \rightarrow M$ is also a vector bundle. A general connection $\nabla: E \rightarrow J^{1} E$ is said to be a linear connection if ∇ is a vector bundle morphism. In the case $E=T M$ we obtain the well-known concept of the classical linear connection on M.

We obtain directly the coordinate expression of a linear connection ∇ on E as

$$
d y^{p}=\nabla_{q i}^{p}(x) y^{q} d x^{i}
$$

and so we have on $T T^{*} M \rightarrow T^{*} M$ a linear connection in a form

$$
\begin{aligned}
d X^{i}= & K_{j k}^{i}(x, p) X^{j} d x^{k}+L_{k}^{i j}(x, p) P_{j} d x^{k}+M_{j}^{i k}(x, p) X^{j} d p_{k} \\
& +N^{i j k}(x, p) P_{j} d p_{k} \\
d P_{i}= & P_{i j k}(x, p) X^{j} d x^{k}+Q_{i k}^{j}(x, p) P_{j} d x^{k}+R_{i j}^{k}(x, p) X^{j} d p_{k} \\
& +S_{i}^{j k}(x, p) P_{j} d p_{k},
\end{aligned}
$$

and we call it the classical linear connection on $T^{*} M$, too.
2.3. Liftings of general connections. Let F, G be a natural bundles over m-dimensional manifolds, $m+n=\operatorname{dim} F \mathbb{R}^{m}$ and let H be a natural bundle over $(m+n)$-dimensional manifolds. We denote $C^{\infty} G M$ and $C^{\infty} H(F M)$ the spaces of local sections of $G M \rightarrow M$ and $H(F M) \rightarrow F M$, respectively. Elements of these spaces are called geometric G - and H-objects.

A lifting to F of geometric G-objects from M to geometric H-objects on $F M$ is a family $\Lambda=\left\{\Lambda_{M}\right\}$ of mappings $\Lambda_{M}: C^{\infty} G M \rightarrow C^{\infty} H(F M)$ satisfying the following conditions:
(i) If $s \in C^{\infty} G M$ is defined on an open subset $U \subset M$ then $\Lambda_{M}(s) \in$ $C^{\infty} H(F M)$ is defined on $F U \subset F M$.
(ii) (The naturality condition) For every embedding $\varphi: M \rightarrow N$, if objects $s_{1} \in C^{\infty} G M, s_{2} \in C^{\infty} G N$ are φ-related, then $\Lambda_{M}\left(s_{1}\right) \in$ $C^{\infty} H(F M), \Lambda_{M}\left(s_{2}\right) \in C^{\infty} H(F N)$ are $F \varphi$-related.
We say that a lifting $\Lambda=\left\{\Lambda_{M}\right\}$ to F satisfies the regularity conditions if
(iii) (The regularity condition) If $s_{t} \in C^{\infty} G M$ is a smooth family of local fields of geometric objects on M, then $\Lambda_{M}\left(s_{t}\right) \in C^{\infty} H(F M)$ is also a smooth family of local fields of geometric objects on $F M$.
The condition (i) and (ii) imply immediately
(iv) (The locality condition) If $s_{1}, s_{2} \in C^{\infty} G M$ are objects such that $s_{1 \mid U}$ $=s_{2 \mid U}$ for some open subset $U \subset M$, then $\Lambda_{M}\left(s_{1}\right)_{\mid F U}=\Lambda_{M}\left(s_{2}\right)_{\mid F U}$.
Let $r \in \mathbb{N} \cup\{\infty\}$ is the smallest number for which $j_{x}^{r} s_{1}=j_{x}^{r} s_{2}$ implies $\Lambda_{M}\left(s_{1}\right)_{\mid F_{x} M}=\Lambda_{M}\left(s_{2}\right)_{\mid F_{x} M}$ for every point $x \in M$ and every two sections $s_{1}, s_{2} \in C^{\infty} G M$ defined on its neighborhoods. Then Λ is said to be of order r. (The implication $j_{x}^{\infty} s_{1}=j_{x}^{\infty} s_{2} \Rightarrow \Lambda_{M}\left(s_{1}\right)_{\mid F_{x} M}=\Lambda_{M}\left(s_{2}\right)_{\mid F_{x} M}$ always holds, see [4].)

The problem of classifications of liftings of order $r<\infty$ and satisfying the regularity condition is possible to reduce to classifications of equivariant mappings

$$
\lambda: F_{0} \mathbb{R}^{m} \times J_{0}^{r} G \mathbb{R}^{m} \rightarrow(H F)_{0} \mathbb{R}^{m}
$$

satisfying $d p_{H} \circ \lambda=p_{1}$, where $p_{1}: F_{0} \mathbb{R}^{m} \times J_{0}^{r} G \mathbb{R}^{m} \rightarrow F_{0} \mathbb{R}^{m}$ is the standard projection onto the first factor and $d p_{H}:(H F)_{0} \mathbb{R}^{m} \rightarrow F_{0} \mathbb{R}^{m}$ is the projection for the natural bundle H. (There is a bijective correspondence between them, see [5].)

If $Y \rightarrow M$ is an arbitrary fiber bundle, there are three canonical structures of a fibered manifold on $F Y$, namely $F Y \rightarrow M, F Y \rightarrow F M$ and $F Y \rightarrow Y$. In [5] are studied liftings of a general connections to these bundles.

If we are concerned with the case of liftings to $F Y \rightarrow F M$, especially for $Y=T M$ and $F=T^{*}$ (all natural transformations $T T^{*} \rightarrow T^{*} T$ are already described in [7]), we can only state that any natural operator transforming general connections on $Y \rightarrow M$ into general connections on $F Y \rightarrow F M$ is nowhere to be found for any concrete non-product-preserving functor F up to now.
2.4. Liftings of linear connections. In this subsection we recall the problem of lifting of a classical torsion-free linear connection on a manifold M (i.e. a torsion-free linear connection on $T M$) into a classical linear connection on the cotangent bundle $T^{*} M$. (i.e. a linear connection on $\left.T T^{*} M\right)$. We remark that the admittance of non-zero torsion complicates this problem very much.

The classical lifts of such a type were first considered by Yano and Patterson in [14], [15]. Let ∇ be a classical torsion-free linear connection on M with the coordinate expression $d X^{i}=\nabla_{j k}^{i}(x) X^{j} d x^{k}$, where $x^{i}, X^{i}=d x^{i}$ are some coordinates on $T M$.

First we define the complete lift of ∇ to $T^{*} M\left(x^{i}, p_{i}\right.$ are the corresponding coordinates on $T^{*} M$). We consider a $(0,2)$-tensor field g on $T^{*} M$ with components

$$
\begin{aligned}
g_{i j} & =2 p_{k} \nabla_{i j}^{k} \\
g_{i}^{j} & =\delta_{i}^{j} \\
g_{j}^{i} & =\delta_{j}^{i} \\
g^{i j} & =0 .
\end{aligned}
$$

Clearly, g is symmetric and regular, i.e. g is a pseudo-Riemannian metric, $(d s)^{2}=2 d x^{i}\left(d p_{i}+p_{k} \nabla_{i j}^{k} d x^{j}\right)$. We call g the Riemann extension of ∇ and denote it by ∇^{R}. Let ∇^{C} be the Levi-Civita connection determined by the Riemann extension ∇^{R}. We call ∇^{C} the complete lift of ∇ to $T^{*} M$. The coordinate expression of ∇^{C} is

$$
\begin{aligned}
d X^{i}= & \nabla_{j k}^{i} X^{j} d x^{k} \\
d P_{i}= & p_{m}\left(\nabla_{j k, i}^{m}-\nabla_{i j, k}^{m}-\nabla_{i k, j}^{m}-2 \nabla_{i l}^{m} \nabla_{j k}^{l}\right) X^{j} d x^{k} \\
& -\nabla_{i j}^{k} X^{j} d p_{k}-\nabla_{i k}^{j} P_{j} d x^{k} .
\end{aligned}
$$

Second we define the horizontal lift of ∇. The horizontal lift ∇^{H} of ∇ to
$T^{*} M$ is a unique classical linear connection on $T^{*} M$ satisfying

$$
\begin{aligned}
\nabla_{\omega^{V}}^{H} \theta^{V} & =0 \\
\nabla_{\omega^{V}}^{H} Y^{H} & =0 \\
\nabla_{X^{H}}^{H} \theta^{V} & =\left(\nabla_{X} \theta\right)^{V} \\
\nabla_{X^{H}}^{H} Y^{H} & =\left(\nabla_{X} Y\right)^{H},
\end{aligned}
$$

where ω^{V}, θ^{V} are vertical lifts of 1-forms ω, θ and X^{H}, Y^{H} are horizontal lifts of vector fields X, Y with respect to ∇. A direct evaluation yields the following coordinate expression of ∇^{H}

$$
\begin{aligned}
d X^{i} & =\nabla_{j k}^{i} X^{j} d x^{k} \\
d P_{i} & =p_{m}\left(-\nabla_{i j, k}^{m}-\nabla_{l j}^{m} \nabla_{i k}^{l}-\nabla_{i l}^{m} \nabla_{j k}^{l}\right) X^{j} d x^{k}-\nabla_{i j}^{k} X^{j} d p_{k}-\nabla_{i k}^{j} P_{j} d x^{k} .
\end{aligned}
$$

In [9] it was proved:
Proposition 1. All natural operators transforming a classical torsion-free linear connection on a manifold M into a classical linear connection on the cotangent bundle $T^{*} M$ are the sum of a classical (e.g. complete or horizontal) lift with the 21-parameter family

$$
\begin{aligned}
d X^{i}= & \left(c_{1} \delta_{j}^{i} p_{k}+c_{2} \delta_{k}^{i} p_{j}\right) X^{j} d x^{k} \\
d P_{i}= & \left(c_{7} p_{i} p_{j} p_{k}+\left(c_{4}+c_{6}\right) p_{i} p_{l} \nabla_{j k}^{l}+\left(c_{3}-c_{2}\right) p_{j} p_{l} \nabla_{i k}^{l}\right. \\
& +\left(c_{5}-c_{1}\right) p_{k} p_{l} \nabla_{i j}^{l}+c_{8} p_{l} \mathbf{R}_{i j k}^{l}+c_{9} p_{l} \mathbf{R}_{k i j}^{l}+c_{10} p_{i} \mathbf{R}_{j k l}^{l}+c_{11} p_{i} \mathbf{R}_{k l j}^{l} \\
& +c_{12} p_{j} \mathbf{R}_{k l i}^{l}+c_{13} p_{j} \mathbf{R}_{l i k}^{l}+c_{14} p_{k} \mathbf{R}_{i j l}^{l}+c_{15} p_{k} \mathbf{R}_{l i j}^{l}+c_{16} \mathbf{R}_{j i k l}^{l} \\
& \left.+c_{17} \mathbf{R}_{j l i k}^{l}+c_{18} \mathbf{R}_{k i j l}^{l}+c_{19} \mathbf{R}_{k l i j}^{l}+c_{20} \mathbf{R}_{l i j k}^{l}+c_{21} \mathbf{R}_{l k i j}^{l}\right) X^{j} d x^{k} \\
& +\left(c_{3} \delta_{i}^{k} p_{j}+c_{4} \delta_{j}^{k} p_{i}\right) X^{j} d p_{k}+\left(c_{5} \delta_{i}^{j} p_{k}+c_{6} \delta_{k}^{j} p_{i}\right) P_{j} d x^{k},
\end{aligned}
$$

which is formed upon a natural difference tensor, where $\mathbf{R}_{j k l}^{i}, \mathbf{R}_{j k l m}^{i}$ are the canonical coordinates of the curvature space $\left(\mathbf{R}_{j k l}^{i}\right.$ are skew-symmetric in the last two subscripts.).

This family is in [9] interpreted geometrically. Let us remark that if $c_{9}=1$ and all other coefficients are zero, we obtain just the difference between the complete lift and the horizontal lift.

3. Torsions of connections on $T T^{*} M$.

3.1. The classical torsion. On the vector bundle $T T^{*} M \rightarrow T^{*} M$ we can define the torsion τ of the linear connection Γ on $T T^{*} M$ by the classical formula

$$
\tau(\mathcal{X}, \mathcal{Y})=\Gamma_{\mathcal{X}} \mathcal{Y}-\Gamma_{\mathcal{Y}} \mathcal{X}-[\mathcal{X}, \mathcal{Y}],
$$

where we denote the covariant differentiation with respect to Γ by the symbol of the connection itself and where $\mathcal{X}=X^{i} \frac{\partial}{\partial x^{i}}+P_{i} \frac{\partial}{\partial p_{i}}, \mathcal{Y}=Y^{i} \frac{\partial}{\partial x^{i}}+Q_{i} \frac{\partial}{\partial p_{i}}$ are vector fields on $T^{*} M$. The coordinate expression of the torsion τ is

$$
\begin{aligned}
(\tau(\mathcal{X}, \mathcal{Y}))^{i}= & \left(K_{j k}^{i}-K_{k j}^{i}\right) X^{j} Y^{k}+\left(L_{k}^{i j}-M_{k}^{i j}\right) P_{j} Y^{k} \\
& +\left(M_{j}^{i k}-L_{j}^{i k}\right) X^{j} Q_{k}+\left(N^{i j k}-N^{i k j}\right) P_{j} Q_{k} \\
(\tau(\mathcal{X}, \mathcal{Y}))_{i}= & \left(P_{i j k}-P_{i k j}\right) X^{j} Y^{k}+\left(Q_{i k}^{j}-R_{i k}^{j}\right) P_{j} Y^{k} \\
& +\left(R_{i j}^{k}-Q_{i j}^{k}\right) X^{j} Q_{k}+\left(S_{i}^{j k}-S_{i}^{k j}\right) P_{j} Q_{k} .
\end{aligned}
$$

In particular, this yields the well-known results for torsions of the complete lift and the horizontal lift (see Yano, Ishihara, [13]).
Proposition 2. The complete lift ∇^{C} is torsion-free, i.e.

$$
\begin{aligned}
& (\tau(\mathcal{X}, \mathcal{Y}))^{i}=0 \\
& (\tau(\mathcal{X}, \mathcal{Y}))_{i}=0
\end{aligned}
$$

and the torsion of the horizontal lift ∇^{H} has the coordinate expression

$$
\begin{aligned}
(\tau(\mathcal{X}, \mathcal{Y}))^{i} & =0 \\
(\tau(\mathcal{X}, \mathcal{Y}))_{i} & =-p_{l} \mathbf{R}_{i j k}^{l} X^{j} Y^{k}
\end{aligned}
$$

where \mathbf{R} represents the curvature tensor.
3.2. Natural affinors and the Frölicher-Nijenhuis bracket. By an affinor A on a manifold M we mean (1,1)-tensor field, which we can consider as a linear morphism $L: T M \rightarrow T M$ over $i d_{M}$. In general, an affinor represents a vector valued 1-form. Specially, an affinor representing a vertical valued 1-form is called the vertical affinor.

A natural affinor on a natural bundle F over m-manifolds is a system of affinors $A_{M}: T F M \rightarrow T F M$ for every m-manifold M satisfying

$$
T F f \circ A_{M}=A_{N} \circ T F f
$$

for every local diffeomorphism $f: M \rightarrow N$.
We remark that Kolár and Modugno determined in [6] all natural affinors for an arbitrary Weil bundle and in addition for $T^{*} M$. Kurek, [8], described all natural affinors for $T^{r *} M$ and Doupovec, [1] described all natural affinors for $T T^{*} M$.

Let A, B be (1,1)-tensor fields on M. The Frölicher-Nijenhuis bracket $[A, B]$ is defined by

$$
\begin{aligned}
{[A, B](\mathcal{X}, \mathcal{Y})=} & {[A \mathcal{X}, B \mathcal{Y}]+[B \mathcal{X}, A \mathcal{Y}]+A B[\mathcal{X}, \mathcal{Y}]+B A[\mathcal{X}, \mathcal{Y}] } \\
& -A[\mathcal{X}, B \mathcal{Y}]-A[B \mathcal{X}, \mathcal{Y}]-B[\mathcal{X}, A \mathcal{Y}]-B[A \mathcal{X}, \mathcal{Y}]
\end{aligned}
$$

where \mathcal{X}, \mathcal{Y} are vector fields on M. One sees directly that the FrölicherNijenhuis bracket represents a (1,2)-tensor field on M satisfying

$$
[A, B](\mathcal{X}, \mathcal{Y})=-[A, B](\mathcal{Y}, \mathcal{X})
$$

and which is expressed in coordinates by

$$
([A, B](\mathcal{X}, \mathcal{Y}))^{i}=\left(a_{j}^{l} \partial_{l} b_{k}^{i}+b_{j}^{l} \partial_{l} a_{k}^{i}-a_{l}^{i} \partial_{j} b_{k}^{l}-b_{l}^{i} \partial_{j} a_{k}^{l}\right) \mathcal{X}^{j} \wedge \mathcal{Y}^{k},
$$

where a_{j}^{i} and b_{j}^{i} are coordinates of A and B, respectively. Obviously, for the identity affinor $1_{F M}=i d_{T F M}$, as well as for its constant multiples, we have

$$
\left[A, k 1_{F M}\right]=\left[k 1_{F M}, B\right]=0
$$

for every A, B and that is why we will not consider such affinors.
In this situation, the Frölicher-Nijenhuis bracket $[\Gamma, A]$, where Γ is a general connection and A is a natural affinor, is called the torsion of Γ of type A. In [3], [6], [10], [11] are completely described torsions of connections on a number of Weil bundles. Moreover, in [2], [6] are described torsions on $T^{*} M, T^{r *} M, T^{(r)} M$ which are not a Weil bundles.

In [6] it is used a formula for the finding of torsions in the case of vertical affinors. We state a general formula. Consider an arbitrary fibered manifold $Y \rightarrow M$, an affinor $\varphi: Y \rightarrow T Y \otimes T^{*} Y$ and a general connection Γ on Y. The coordinate form of the horizontal projection of Γ is

$$
\delta_{j}^{i} \frac{\partial}{\partial x^{i}} \otimes d x^{j}+F_{i}^{p} \frac{\partial}{\partial y^{p}} \otimes d x^{i} .
$$

A section $\varphi: Y \rightarrow T Y \otimes T^{*} Y$ has the coordinate expression
$\varphi_{j}^{i}(x, y) \frac{\partial}{\partial x^{i}} \otimes d x^{j}+\varphi_{p}^{i}(x, y) \frac{\partial}{\partial x^{i}} \otimes d y^{p}+\varphi_{i}^{p}(x, y) \frac{\partial}{\partial y^{p}} \otimes d x^{i}+\varphi_{q}^{p}(x, y) \frac{\partial}{\partial y^{p}} \otimes d y^{q}$.
Lemma. The Frölicher-Nijenhuis bracket $[\Gamma, \varphi]$ has the coordinate expression

$$
\begin{aligned}
& \left(F_{i}^{p} \frac{\partial \varphi_{j}^{k}}{\partial y^{p}}-\varphi_{p}^{k} \frac{\partial F_{j}^{p}}{\partial x^{i}}\right) \frac{\partial}{\partial x^{k}} \otimes d x^{i} \wedge d x^{j} \\
+ & \left(\frac{\partial \varphi_{i}^{k}}{\partial y^{p}}+F_{i}^{q} \frac{\partial \varphi_{p}^{k}}{\partial y^{q}}+\varphi_{q}^{k} \frac{\partial F_{i}^{q}}{\partial y^{p}}\right) \frac{\partial}{\partial x^{k}} \otimes d x^{i} \wedge d y^{p} \\
+ & \left(\frac{\partial \varphi_{j}^{p}}{\partial x^{i}}+\varphi_{i}^{k} \frac{\partial F_{j}^{p}}{\partial x^{k}}-F_{k}^{p} \frac{\partial \varphi_{j}^{k}}{\partial x^{i}}+F_{i}^{q} \frac{\partial \varphi_{j}^{p}}{\partial y^{q}}+\varphi_{i}^{q} \frac{\partial F_{j}^{p}}{\partial y^{q}}\right. \\
- & \left.\varphi_{q}^{p} \frac{\partial F_{j}^{q}}{\partial x^{i}}\right) \frac{\partial}{\partial y^{p}} \otimes d x^{i} \wedge d x^{j} \\
+ & \left(\frac{\partial \varphi_{q}^{p}}{\partial x^{i}}-\varphi_{q}^{j} \frac{\partial F_{i}^{p}}{\partial x^{j}}-F_{j}^{p} \frac{\partial \varphi_{q}^{j}}{\partial x^{i}}+F_{j}^{p} \frac{\partial \varphi_{i}^{j}}{\partial y^{q}}+F_{i}^{r} \frac{\partial \varphi_{q}^{p}}{\partial y^{r}}-\varphi_{q}^{r} \frac{\partial F_{i}^{p}}{\partial y^{r}}\right. \\
+ & \left.\varphi_{r}^{p} \frac{\partial F_{i}^{r}}{\partial y^{q}}\right) \frac{\partial}{\partial y^{p}} \otimes d x^{i} \wedge d y^{q} .
\end{aligned}
$$

Proof. We applied the coordinate expression of the Frölicher-Nijenhuis bracket $[A, B]$ in our concrete situation.

Of course, in the case $\varphi_{j}^{i}=\varphi_{p}^{i}=0$ we obtain the same formula as Kolár and Modugno in [6] for vertical affinors.
3.3. All natural affinors on $\boldsymbol{T} \boldsymbol{T}^{*} \boldsymbol{M}$. All natural affinors on $T T^{*} M$ are described by Doupovec in [1], where it is possible to find also their geometrical interpretations. Under the usual identification of the affinors on $T T^{*} M$ with linear maps $L: T T T^{*} M \rightarrow T T T^{*} M$, we obtain this form of a affinor on $T T T^{*} M$

$$
\begin{aligned}
d x^{i}= & \kappa_{j}^{i}(x, p, X, P) d x^{j}+\kappa^{i j}(x, p, X, P) d p_{j}+\hat{\kappa}_{j}^{i}(x, p, X, P) d X^{j} \\
& +\hat{\kappa}^{i j}(x, p, X, P) d P_{j} \\
d p_{i}= & \lambda_{i j}(x, p, X, P) d x^{j}+\lambda_{i}^{j}(x, p, X, P) d p_{j}+\hat{\lambda}_{i j}(x, p, X, P) d X^{j} \\
& +\hat{\lambda}_{i}^{j}(x, p, X, P) d P_{j} \\
d X^{i}= & \mu_{j}^{i}(x, p, X, P) d x^{j}+\mu^{i j}(x, p, X, P) d p_{j}+\hat{\mu}_{j}^{i}(x, p, X, P) d X^{j} \\
& +\hat{\mu}^{i j}(x, p, X, P) d P_{j} \\
d P_{i}= & \nu_{i j}(x, p, X, P) d x^{j}+\nu_{i}^{j}(x, p, X, P) d p_{j}+\hat{\nu}_{i j}(x, p, X, P) d X^{j} \\
& +\hat{\nu}_{i}^{j}(x, p, X, P) d P_{j}
\end{aligned}
$$

Now, we can formulate the Doupovec's result in the following form.
Proposition 3. All natural affinors on $T T^{*} M$ constitute a 11-parameter family determined as a linear combination of $A_{i}, i=1, \ldots, 11$. The coordinate expressions of the generators are

$$
\begin{array}{cc}
A_{1}: d x^{i}=d x^{i} & A_{2}: d x^{i}=0 \\
d p_{i}=d p_{i} & d p_{i}=0 \\
d X^{i}=d X^{i} & d X^{i}=d x^{i} \\
d P_{i}=d P_{i} & d P_{i}=d p_{i} \\
& \\
A_{3}: d x^{i}=0 & A_{4}: d x^{i}=0 \\
d p_{i}=0 & d p_{i}=0 \\
d X^{i}=p_{j} d x^{j} X^{i} & d X^{i}=\left(p_{j} d X^{j}+d p_{j} X^{j}\right) X^{i} \\
d P_{i}=p_{j} d x^{j} P_{i} & d P_{i}=\left(p_{j} d X^{j}+d p_{j} X^{j}\right) P_{i}
\end{array}
$$

$$
\begin{array}{rlr}
A_{5}: d x^{i}=0 & A_{6}: d x^{i}=0 \\
d p_{i}=0 & d p_{i}=0 \\
d X^{i}=\left(p_{j} d X^{j}+P_{j} d x^{j}\right) X^{i} & d X^{i}=0 \\
d P_{i}=\left(p_{j} d X^{j}+P_{j} d x^{j}\right) P_{i} & d P_{i}=p_{j} d x^{j} p_{i} \\
& \\
A_{7}: d x^{i}=0 & A_{8}: d x^{i}=0 \\
d p_{i}=0 & d p_{i}=0 \\
d X^{i}=0 & d X^{i}=0 \\
d P_{i}=\left(p_{j} d X^{j}+d p_{j} X^{j}\right) p_{i} & d P_{i}=\left(p_{j} d X^{j}+P_{j} d x^{j}\right) p_{i} \\
& \\
A_{9}: d x^{i}=0 & A_{10}: d x^{i}=0 \\
d p_{i}=p_{j} d x^{j} p_{i} & d p_{i}=\left(p_{j} d X^{j}+d p_{j} X^{j}\right) p_{i} \\
d X^{i}=0 & d X^{i}=0 \\
d P_{i}=p_{j} d x^{j} P_{i} & d P_{i}=\left(p_{j} d X^{j}+d p_{j} X^{j}\right) P_{i} \\
& \\
A_{11}: d x^{i}=0 & \\
d p_{i}=\left(p_{j} d X^{j}+P_{j} d x^{j}\right) p_{i} & \\
d X^{i}=0 & \\
d P_{i}=\left(p_{j} d X^{j}+P_{j} d x^{j}\right) P_{i} . &
\end{array}
$$

We see that A_{1} represents the identity of $T T^{*} M, A_{2}, A_{3}, A_{4}, A_{5}$ represent vertical affinors with respect to the projection $T T^{*} M \rightarrow T^{*} M, A_{9}, A_{10}, A_{11}$ represent vertical affinors with respect to the projection $T T^{*} M \rightarrow T M$, A_{6}, A_{7}, A_{8} represent vertical affinors with respect to both the projections $T T^{*} M \rightarrow T^{*} M, T T^{*} M \rightarrow T M$.

We aim only at the generators A_{2}, A_{3} (as the representative of the triple A_{3}, A_{4}, A_{5}), A_{6} (as the representative of the triple A_{6}, A_{7}, A_{8}) and A_{9} (as the representative of the triple $\left.A_{9}, A_{10}, A_{11}\right)$. The geometrical interpretation of generators entitled us to do such a selection.
3.4. General torsions. The general expression for the Frölicher-Nijenhuis bracket enables us to obtain new results concerning torsions for all abovementioned generators.
I. A_{2} : We have $\mu_{j}^{i}=\delta_{j}^{i}, \nu_{i}^{j}=\delta_{i}^{j}$ and all other functions from 3.3 are zero.

A direct evaluation yields the coordinate expression of torsion $\tau_{2}=\left[\Gamma, A_{2}\right]$

$$
\begin{aligned}
d X^{i} & =\frac{\partial D_{k}^{i}}{\partial X^{j}} d x^{j} \wedge d x^{k}+\left(\frac{\partial E^{i k}}{\partial X^{j}}-\frac{\partial D_{j}^{i}}{\partial P_{k}}\right) d x^{j} \wedge d p_{k}+\frac{\partial E^{i k}}{\partial P_{j}} d p_{j} \wedge d p_{k} \\
d P_{i} & =\frac{\partial F_{i k}}{\partial X^{j}} d x^{j} \wedge d x^{k}+\left(\frac{\partial G_{i}^{k}}{\partial X^{j}}-\frac{\partial F_{i j}}{\partial P_{k}}\right) d x^{j} \wedge d p_{k}+\frac{\partial G_{i}^{k}}{\partial P_{j}} d p_{j} \wedge d p_{k}
\end{aligned}
$$

If Γ is a linear connection, then we obtain

$$
\begin{aligned}
d X^{i} & =K_{j k}^{i} d x^{j} \wedge d x^{k}+\left(M_{j}^{i k}-L_{j}^{i k}\right) d x^{j} \wedge d p_{k}+N^{i j k} d p_{j} \wedge d p_{k} \\
d P_{i} & =P_{i j k} d x^{j} \wedge d x^{k}+\left(R_{i j}^{k}-Q_{i j}^{k}\right) d x^{j} \wedge d p_{k}+S_{i}^{j k} d p_{j} \wedge d p_{k}
\end{aligned}
$$

and this coincides with the pullback $\sigma^{*}(\tau(\mathcal{X}, \mathcal{Y}))$ of the classical torsion τ given by $\sigma^{*}: T T^{*} M \rightarrow V T T^{*} M$, where $\sigma: T T^{*} M \rightarrow T^{*} M$ is the canonical projection.

We see that the complete lift ∇^{C} of a classical torsion-free connection ∇ on M is torsion-free in our new sense as well. If Γ is a lifted linear connection expressed as the sum of ∇^{C} with a natural difference tensor from 21-parameter family determined in Proposition 1, then we obtain

$$
\begin{aligned}
d X^{i}= & \left(c_{1}-c_{2}\right) p_{j} d x^{i} \wedge d x^{j} \\
d P_{i}= & \left(\left(c_{1}-c_{2}+c_{3}-c_{5}\right) p_{j} p_{l} \nabla_{i k}^{l}+\left(2 c_{8}-c_{9}\right) p_{l}\left(\nabla_{i j, k}^{l}+\nabla_{m k}^{l} \nabla_{i j}^{m}\right)\right. \\
& +\left(-c_{10}-c_{11}\right) p_{i}\left(\nabla_{l j, k}^{l}+\nabla_{m k}^{l} \nabla_{l j}^{m}\right)+\left(c_{12}+c_{14}\right) p_{j} \mathbf{R}_{k l i}^{l} \\
& +\left(c_{13}+c_{14}-c_{15}\right) p_{j} \mathbf{R}_{l i k}^{l}+\left(c_{16}-c_{18}\right) \mathbf{R}_{j i k l}^{l}+\left(c_{17}-c_{19}\right) \mathbf{R}_{j l i k}^{l} \\
& \left.+c_{20} \mathbf{R}_{l i j k}^{l}+c_{21} \mathbf{R}_{l k i j}^{l}\right) d x^{j} \wedge d x^{k} \\
& +\left(c_{5}-c_{3}\right) p_{j} d x^{j} \wedge d p_{i}+\left(c_{6}-c_{4}\right) p_{i} d x^{j} \wedge d p_{j} .
\end{aligned}
$$

II. A_{3} : We have $\mu_{j}^{i}=X^{i} p_{j}, \nu_{i j}=P_{i} p_{j}$ and all other functions from 3.3 are zero. A direct evaluation yields the coordinate expression of torsion $\tau_{3}=\left[\Gamma, A_{3}\right]$

$$
\begin{aligned}
d X^{i}= & p_{j}\left(X^{l} \frac{\partial D_{k}^{i}}{\partial X^{l}}+P_{l} \frac{\partial D_{k}^{i}}{\partial P_{l}}-D_{k}^{i}\right) d x^{j} \wedge d x^{k} \\
& +\left(p_{j}\left(X^{l} \frac{\partial E^{i k}}{\partial X^{l}}+P_{l} \frac{\partial E^{i k}}{\partial P_{l}}-E^{i k}\right)-\delta_{j}^{k} X^{i}\right) d x^{j} \wedge d p_{k} \\
d P_{i}= & p_{j}\left(X^{l} \frac{\partial F_{i k}}{\partial X^{l}}+P_{l} \frac{\partial F_{i k}}{\partial P_{l}}-F_{i k}\right) d x^{j} \wedge d x^{k} \\
& +\left(p_{j}\left(X^{l} \frac{\partial G_{i}^{k}}{\partial X^{l}}+P_{l} \frac{\partial G_{i}^{k}}{\partial P_{l}}-G_{i}^{k}\right)-\delta_{j}^{k} P_{i}\right) d x^{j} \wedge d p_{k} .
\end{aligned}
$$

If Γ is a linear connection, then we obtain

$$
\begin{aligned}
d X^{i} & =-X^{i} d x^{j} \wedge d p_{j} \\
d P_{i} & =-P_{i} d x^{j} \wedge d p_{j}
\end{aligned}
$$

with the following geometrical interpretation. Let $A=(x, p, X, P, \xi, \pi, \Xi, \Pi)$, $B=(x, p, X, P, \eta, \theta, \mathrm{H}, \Theta) \in T T T_{0}^{*} \mathbf{R}^{m}$. There are two canonical projections $\zeta, \chi: T T T^{*} M \rightarrow T T^{*} M, \zeta(A)=\zeta(B)=(X, P), \chi(A)=(\xi, \pi), \chi(B)=$ (η, θ). We use the canonical injection $\iota=\iota_{T T^{*} M}: T T^{*} M \rightarrow T T T^{*} M$, $\iota(x, p, X, P)=(x, p, X, P, 0,0, X, P)$ and we evaluate the images of χ. Then we see that we have obtained

$$
(\langle\eta, \pi\rangle-\langle\xi, \theta\rangle) \iota(\zeta)
$$

and we discover immediately, that the torsion τ_{3} does not depend on Γ, if Γ is linear.
III. A_{6} : We have $\nu_{i j}=p_{i} p_{j}$ and all other functions from 3.3 are zero. A direct evaluation yields the coordinate expression of torsion $\tau_{6}=\left[\Gamma, A_{6}\right]$

$$
\begin{aligned}
d X^{i} & =p_{j} p_{l}\left(\frac{\partial D_{k}^{i}}{\partial P_{l}}\right) d x^{j} \wedge d x^{k}+p_{j} p_{l}\left(\frac{\partial E^{i k}}{\partial P_{l}}\right) d x^{j} \wedge d p_{k} \\
d P_{i} & =p_{j} p_{l}\left(\frac{\partial F_{i k}}{\partial P_{l}}\right) d x^{j} \wedge d x^{k}+p_{j} p_{l}\left(\frac{\partial G_{i}^{k}}{\partial P_{l}}-\delta_{j}^{k} p_{i}-\delta_{j}^{k} p_{j}\right) d x^{j} \wedge d p_{k}
\end{aligned}
$$

If Γ is a linear connection, then we obtain

$$
\begin{aligned}
d X^{i} & =p_{j} p_{l} L_{k}^{i l} d x^{j} \wedge d x^{k}+p_{j} p_{l} N^{i l k} d x^{j} \wedge d p_{k} \\
d P_{i} & =p_{j} p_{l} Q_{i k}^{l} d x^{j} \wedge d x^{k}+p_{j} p_{l} S_{i}^{l k} d x^{j} \wedge d p_{k}-p_{i} d x^{j} \wedge d p_{j}-p_{j} d x^{j} \wedge d p_{i}
\end{aligned}
$$

with the following geometrical interpretation. We consider the canonical projections $\sigma: T T^{*} M \rightarrow T^{*} M, \tau: T T^{*} M \rightarrow T M$. First we take the short subtracted terms. The first one can be interpreted analogously as the term in 3.4.II, but in distinction from it we multiply a vertical vector $\iota_{T T^{*} M}$ 。 $\iota_{T^{*} M}(x, p)=(x, p, 0, p, 0,0,0, p)=: \tilde{\iota}(x, p)$, where $(x, p)=\sigma \circ \zeta=\sigma \circ \chi(A)=$ $\sigma \circ \chi(B)=: \tilde{\sigma}$. The interpretation of the second one requires also images $\tau \circ \chi(A), \tau \circ \chi(B)$ which are joining to the evaluation together with $\tilde{\sigma}$, and the verticalization of $\chi(A)$ and $\chi(B)$. (We write $\tilde{\pi}=V \chi(A), \tilde{\theta}=V \chi(B)$.) The main part is a lift of $\iota_{T^{*} M}(x, p)$ with respect to Γ multiplied by the last evaluation. Then we see that we have obtained

$$
\Gamma(\iota(\tilde{\sigma}))(\langle\xi, p\rangle-\langle\eta, p\rangle)+(\langle\eta, \pi\rangle-\langle\xi, \theta\rangle) \tilde{\iota}(\tilde{\sigma})+\langle\eta, p\rangle \iota(\tilde{\pi})-\langle\xi, p\rangle \iota(\tilde{\theta}) .
$$

If Γ is an arbitrary lifted linear connection in the sense stated in Proposition 1 , then we obtain

$$
\begin{aligned}
d X^{i} & =0 \\
d P_{i} & =p_{j} p_{l} \nabla_{i k}^{l} d x^{j} \wedge d x^{k}-p_{i} d x^{j} \wedge d p_{j}-p_{j} d x^{j} \wedge d p_{i}
\end{aligned}
$$

IV. A_{9} : We have $\lambda_{i j}=p_{i} p_{j}, \nu_{i j}=P_{i} p_{j}$ and all other functions from 3.3 are zero. A direct evaluation yields the coordinate expression of torsion $\tau_{9}=\left[\Gamma, A_{9}\right]$

$$
\begin{aligned}
d X^{i}= & \left(p_{l} p_{j} \frac{\partial D_{k}^{i}}{\partial p_{l}}+P_{l} p_{j} \frac{\partial D_{k}^{i}}{\partial P_{l}}\right) d x^{j} \wedge d x^{k} \\
& +\left(p_{l} p_{j} \frac{\partial E^{i k}}{\partial p_{l}}+P_{l} p_{j} \frac{\partial E^{i k}}{\partial P_{l}}+p_{j} E^{i k}+\delta_{j}^{k} p_{l} E^{i l}\right) d x^{j} \wedge d p_{k} \\
d P_{i}= & \left(p_{l} p_{j} \frac{\partial F_{i k}}{\partial p_{l}}+P_{l} p_{j} \frac{\partial F_{i k}}{\partial P_{l}}-p_{j} F_{i k}\right) d x^{j} \wedge d x^{k} \\
& +\left(p_{l} p_{j} \frac{\partial G_{i}^{k}}{\partial p_{l}}+P_{l} p_{j} \frac{\partial G_{i}^{k}}{\partial P_{l}}+p_{j} G_{i}^{k}+\delta_{j}^{k}\left(p_{l} G_{i}^{l}-P_{i}\right)\right) d x^{j} \wedge d p_{k}
\end{aligned}
$$

If Γ is a linear connection, then we obtain

$$
\begin{aligned}
d X^{i}= & \left(p_{l} p_{j}\left(\frac{\partial K_{m k}^{i}}{\partial p_{l}} X^{m}+\frac{\partial L_{k}^{i m}}{\partial p_{l}} P_{m}\right)+L_{k}^{i l} P_{l} p_{j}\right) d x^{j} \wedge d x^{k} \\
& +\left(p_{l} p_{j}\left(\frac{\partial M_{m}^{i k}}{\partial p_{l}} X^{m}+\frac{\partial N^{i m k}}{\partial p_{l}} P_{m}\right)+M_{l}^{i k} X^{l} p_{j}+2 N^{i l k} P_{l} p_{j}\right) d x^{j} \wedge d p_{k} \\
& +p_{l}\left(M_{m}^{i l} X^{m}+N^{i m l} P_{m}\right) d x^{j} \wedge d p_{j} \\
d P_{i}= & \left(p_{l} p_{j}\left(\frac{\partial P_{i m k}}{\partial p_{l}} X^{m}+\frac{\partial Q_{i k}^{m}}{\partial p_{l}} P_{m}\right)-P_{i l k} X^{l} p_{j}\right) d x^{j} \wedge d x^{k} \\
& +\left(p_{l} p_{j}\left(\frac{\partial R_{i m}^{k}}{\partial p_{l}} X^{m}+\frac{\partial S_{i}^{m k}}{\partial p_{l}} P_{m}\right)+R_{i l}^{k} X^{l} p_{j}+2 S_{i}^{k l} P_{l} p_{j}\right) d x^{j} \wedge d p_{k} \\
& +\left(p_{l}\left(R_{i m}^{l} X^{m}+S_{i}^{l m} P_{m}\right)-P_{i}\right) d x^{j} \wedge d p_{j}
\end{aligned}
$$

The geometrization of torsions formed by the Frölicher-Nijenhuis bracket, in which the projection for Γ and the verticality for A are different, is very complicated and we assume that there is not any utilization for them.

So, we can summarize.
Proposition 4. There are 10 general torsions τ_{i} of connections on $T T^{*} M \rightarrow T^{*} M$ related to the natural affinors $A_{i}, i=2, \ldots, 11$.

Proof. The torsions $\tau_{2}, \tau_{3}, \tau_{6}, \tau_{9}$ related to the natural affinors A_{2}, A_{3}, A_{6}, A_{9}, respectively, are already described. The finding of the remaining
torsions is quite analogous. Moreover, the ideas of geometrization of them in the case of a linear (lifted, respectively) connection are also preserved.

We hope that here stated approach to general torsions will provide a rather clearer view to general torsions defined as the Frölicher-Nijenhuis brackets of Γ and arbitrary natural affinors.

References

[1] Doupovec, M., Natural transformations between $T T T^{*} M$ and $T T^{*} T M$, Czech. Math. J. 43 (118) (1993), 599-613.
[2] Doupovec, M., J. Kurek, Torsions of connections on higher order cotangent bundles (to appear).
[3] , Torsions of connections on higher order tangent bundles, Ann. Univ. Mariae Curie-Skłodowska Sect. A 55 (2001), 15-22.
[4] Gancarzewicz, J., W. Mikulski and Z. Pogoda, Natural bundles and natural liftings. Prolongation of geometric structures, Proc. "Conf. on Diff. Geom. and Its Appl.", Opava 1992, Silesian University Opava (1993), 281-320.
[5] Kolář, I., P.W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer Verlag, 1993.
[6] Koláŕ, I., M. Modugno, Torsions of connections on some natural bundles, Differential Geometry and its Applications 2 (1992), 1-16.
[7] Kolář, I., Z. Radziszewski, Natural transformations of second tangent and cotangent functors, Czech. Math. J. 38 (113) (1988), 274-279.
[8] Kurek, J., Natural affinors on higher order cotangent bundle, Arch. Math. 28 (1992), 175-180.
[9] Kureš, M., Natural lifts of classical linear connections to the cotangent bundle, Supplem. ai Rendic. del Circ. Matem. di Palermo 43 (1996), 181-187.
[10] , Affinors and connections in higher order geometry, Differential Geometry and Applications, Proc. Sat. Confer. of ICM, 1998, Brno, 1999, pp. 239-246.
[11] , Torsions of connections on tangent bundles of higher order, Supplem. ai Rendic. del Circ. Matem. di Palermo 54 (1998), 65-73.
[12] Modugno, M., G. Stefani, Some results on second tangent and cotangent spaces, Quaderni dell' Instituto di Matematica dell' Universita di Lecce Q. 16 (1978).
[13] Yano, K., S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, INC., New York, 1973.
[14] Yano, K., E.M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 19 (1967), 91-113.
[15] ,_, Horizontal lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 19 (1967), 185-198.

Department of Mathematics received February 21, 2000
Technical University of Brno
Technická 2, 61669 Brno, Czech Republic e-mail: kures@mat.fme.vutbr.cz

[^0]: 1991 Mathematics Subject Classification. 53C05, 58A20.
 Key words and phrases. Natural affinor, lifting of connection, torsion.
 The author was supported by GA CR, grants Nos. 201/99/0296, 201/99/P065.

