ANNALES

UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
LUBLIN - POLONIA
VOL. L V, 7
SECTIO A 2001

V. K. JAIN

On maximum modulus of polynomials

$$
\begin{aligned}
& \text { AbStract. For a polynomial } p(z) \text { of degree } n \text {, it is known that } \\
& \qquad\left|p\left(R e^{i \theta}\right)\right|+\left|q\left(R e^{i \theta}\right)\right| \leq\left(R^{n}+1\right)\left\{\max _{|z|=1}|p(z)|\right\}, \\
& R \geq 1 \text { and } 0 \leq \theta \leq 2 \pi \text {, where } \\
& \qquad q(z)=z^{n} \overline{p(1 / \bar{z})} .
\end{aligned}
$$

We obtain a refinement, as well as a generalization, of this inequality.

1. Introduction and statement of results. For an arbitrary entire function $f(z)$, let $M(f, r)=\max _{|z|=r}|f(z)|$. For a polynomial $p(z)$ of degree n, it is known ([4, section 5], [1, Lemma]) that
(1.1) $\left|p\left(R e^{i \theta}\right)\right|+\left|q\left(R e^{i \theta}\right)\right| \leq\left(R^{n}+1\right) M(p, 1), R \geq 1$ and $0 \leq \theta \leq 2 \pi$, where

$$
\begin{equation*}
q(z)=z^{n} \overline{p(1 / \bar{z})} . \tag{1.2}
\end{equation*}
$$

In this note, we obtain a refinement, as well as a generalization, of inequality (1.1). More precisely, we prove

[^0]Theorem 1. If $p(z)$ is a polynomial of degree n, $n \geq 3$, then for every positive integer s, we have

$$
\begin{align*}
& \left|p\left(R e^{i \theta}\right)\right|^{s}+\left|q\left(R e^{i \theta}\right)\right|^{s} \leq\left(R^{n s}+1\right)\{M(p, 1)\}^{s} \\
& -\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)| | p^{\prime}(0)\left|-\left|q^{\prime}(0)\right|\right| s\{M(p, 1)\}^{s-1}, \tag{1.3}\\
& R \geq 1 \text { and } 0 \leq \theta \leq 2 \pi .
\end{align*}
$$

Remark. For $s=1$, inequality (1.3) becomes

$$
\begin{aligned}
\left|p\left(R e^{i \theta}\right)\right|+\left|q\left(R e^{i \theta}\right)\right| & \leq\left(R^{n}+1\right) M(p, 1) \\
& -\left(\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2}\right)\left\|p^{\prime}(0)|-| q^{\prime}(0)\right\|,
\end{aligned}
$$

and is therefore a refinement of inequality (1.1), as

$$
\frac{R^{n}-1}{n}-\frac{R^{n-2}-1}{n-2} \geq 0
$$

Further, by (1.3), we obviously have

$$
\left|p\left(R e^{i \theta}\right)\right|^{s}+\left|q\left(R e^{i \theta}\right)\right|^{s} \leq\left(R^{n s}+1\right)\{M(p, 1)\}^{s},
$$

suggesting a generalization of inequality (1.1).
2. Lemmas. For the proof of Theorem 1, we require the following lemmas.

Lemma 1. If $p(z)$ is a polynomial of degree at most $n, n \geq 2$, then for $R>1$

$$
M(p, R) \leq R^{n} M(p, 1)-\left(R^{n}-R^{n-2}\right)|p(0)| .
$$

The coefficient of $|p(0)|$ is best possible for each R.
This lemma is due to Frappier, Rahman and Ruscheweyh, cf. [2, Theorem 2].

Lemma 2. If $p(z)$ is a polynomial of degree n, then for $|z|=1$

$$
\left|p^{\prime}(z)\right|+\left|q^{\prime}(z)\right| \leq n M(p, 1) .
$$

This lemma is due to Malik [3, inequality 17].
3. Proof of Theorem 1. The polynomial

$$
G(z)=p^{\prime}(z)+\alpha q^{\prime}(z),|\alpha|=1
$$

is of degree at most $n-1(\geq 2)$. Hence, if $|\alpha|=1, t \geq 1$ and $0 \leq \theta \leq 2 \pi$, then applying Lemma 1 followed by Lemma 2, we obtain

$$
\begin{aligned}
\left|p^{\prime}\left(t e^{i \theta}\right)+\alpha q^{\prime}\left(t e^{i \theta}\right)\right| & \leq t^{n-1} \max _{|z|=1}\left|p^{\prime}(z)+\alpha q^{\prime}(z)\right| \\
& -\left(t^{n-1}-t^{n-3}\right)\left|p^{\prime}(0)+\alpha q^{\prime}(0)\right| \\
& \leq t^{n-1} n M(p, 1) \\
& -\left(t^{n-1}-t^{n-3}\right)\left|p^{\prime}(0)+\alpha q^{\prime}(0)\right|
\end{aligned}
$$

and so

$$
\begin{align*}
\left|p^{\prime}\left(t e^{i \theta}\right)\right|+\left|q^{\prime}\left(t e^{i \theta}\right)\right| & \leq n t^{n-1} M(p, 1) \\
& -\left(t^{n-1}-t^{n-3}\right)| | p^{\prime}(0)\left|-\left|q^{\prime}(0)\right|\right| . \tag{3.1}
\end{align*}
$$

Since

$$
\begin{aligned}
\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s} & =\int_{1}^{R} \frac{d}{d t}\left\{p\left(t e^{i \theta}\right)\right\}^{s} d t \\
& =\int_{1}^{R} s\left\{p\left(t e^{i \theta}\right)\right\}^{s-1} p^{\prime}\left(t e^{i \theta}\right) e^{i \theta} d t,
\end{aligned}
$$

we see that

$$
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p^{\prime}\left(t e^{i \theta}\right)\right|\left|p\left(t e^{i \theta}\right)\right|^{s-1} d t
$$

which, by virtue of Lemma 1 , implies

$$
\begin{equation*}
\left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right| \leq s \int_{1}^{R}\left|p^{\prime}\left(t e^{i \theta}\right)\right| t^{n(s-1)}\{M(p, 1)\}^{s-1} d t \tag{3.2}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
\left|\left\{q\left(R e^{i \theta}\right)\right\}^{s}-\left\{q\left(e^{i \theta}\right)\right\}^{s}\right| & \leq s \int_{1}^{R} t^{n(s-1)}\left|q^{\prime}\left(t e^{i \theta}\right)\right|\{M(q, 1)\}^{s-1} d t \\
& =s \int_{1}^{R}\left|q^{\prime}\left(t e^{i \theta}\right)\right|\{M(p, 1)\}^{s-1} t^{n(s-1)} d t
\end{aligned}
$$

which together with (3.2) gives

$$
\begin{aligned}
& \left|\left\{p\left(R e^{i \theta}\right)\right\}^{s}-\left\{p\left(e^{i \theta}\right)\right\}^{s}\right|+\left|\left\{q\left(R e^{i \theta}\right)\right\}^{s}-\left\{q\left(e^{i \theta}\right)\right\}^{s}\right| \\
& \leq s\{M(p, 1)\}^{s-1} \int_{1}^{R} t^{n(s-1)}\left(\left|p^{\prime}\left(t e^{i \theta}\right)\right|+\left|q^{\prime}\left(t e^{i \theta}\right)\right|\right) d t \\
& \leq \operatorname{sn}\{M(p, 1)\}^{s} \int_{1}^{R} t^{n s-1} d t \\
& -s\{M(p, 1)\}^{s-1}| | p^{\prime}(0)\left|-\left|q^{\prime}(0)\right|\right| \int_{1}^{R}\left(t^{n s-1}-t^{n s-3}\right) d t
\end{aligned}
$$

where at the last step we have used (3.1). Since $\left|p\left(e^{i \theta}\right)\right|=\left|q\left(e^{i \theta}\right)\right| \leq M(p, 1)$, we obtain

$$
\begin{aligned}
& \left|p\left(R e^{i \theta}\right)\right|^{s}+\left|q\left(R e^{i \theta}\right)\right|^{s} \leq\left(R^{n s}+1\right)(M(p, 1))^{s} \\
& -s(M(p, 1))^{s-1}| | p^{\prime}(0)\left|-\left|q^{\prime}(0)\right|\right|\left(\frac{R^{n s}-1}{n s}-\frac{R^{n s-2}-1}{n s-2}\right)
\end{aligned}
$$

which is what we wanted to prove.

References

[1] Aziz, A., Q.G. Mohammad, Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc. 81 (1981), 549-553.
[2] Frappier, C., Q.I. Rahman and S. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1985), 69-99.
[3] Malik, M.A., On the derivative of a polynomial, J. London Math. Soc. (2) 1 (1969), 57-60.
[4] Rahman, Q.I., Functions of exponential type, Trans. Amer. Math. Soc. 135 (1969), 295-307.

Mathematics Department
received February 21, 2000
I.I.T.

Kharagpur - 721302 (W.B), India

[^0]: 1991 Mathematics Subject Classification. 30C10
 Key words and phrases. Polynomial of degree n.

