
ANNALES
U N I V E R S I T A T I S M A R I A E C U R I E { S K � O D O W S K A

L U B L I N { P O L O N I A

VOL. L V, 4 SECTIO A 2001

ZDZIS LAW GRODZKI and JERZY MYCKA

n-dimensional Markov - like algorithms

Abstract. New class MAk1,... ,kn
n , n ≥ 1, of n-dimensional Markov-like

algorithms is introduced. The equivalence of this class of algorithms and
the class MNA of Markov normal algorithms is discussed.

1. Introduction. The intensive studies on the formalization of the no-
tion of algorithm were conducted from 1930 on [2,7,10,12]. The majority of
classical algorithms, such as partial recursive functions, Turing machines,
Herbrand-Gödel computability, Markov normal algorithms are collected in
Mendelson’s monograph [9]. The equivalence of particular classes of al-
gorithms were shown earlier by several authors [1,4,7] but all results are
collected in Mendelson’s monograph [9]. The next class of algorithms, for
example the unlimited register machines (URM), was also introduced[3].
The equivalence of the class URM and the class PRF of partial recursive
functions was shown in [3].

A few classes of Markov-like algorithms were introduced by the authors
in [5] where also the equivalence of these algorithms to the class MNA
of Markov normal algorithms were shown. Only a few papers related to

1991 Mathematics Subject Classification. Primary 03D10, Secondary 68Q05.
Key words and phrases. Effective computabilty, Markov normal algorithms, equiva-

lence of classes of algorithms.

40 Z. Grodzki and J. Mycka

algorithms of higher dimension were published [6,10]. The equivalence of
the class of two-dimensional Markov-like algorithms and the class MNA
was shown in [6].

This paper deals with the class MAk1,... ,kn
n of n-dimensional Markov-like

algorithms with respect to the order xk1 , . . . , xkn
of axes. Every algorithm

of MAk1,... ,kn
n is defined by means of a set {P1, . . . , Pm} of n-dimensional

equally shaped productions which are labelled by elements of any set L
(for simplicity we assume that L = {1, . . . ,m}). The succession of the
use of n-dimensional productions to the transformed words is almost the
same as for classical Markov normal algorithms, but the manner of use of
the productions depends on the choice of the subwords in the transformed
words. We choose a production Pi : xi −→ (·)yi, with the least label i ≤ m,
such that its left-hand side word xi occurs in a transformed n-dimensional
word t1. If such a production exists then we replace the first occurrence of
xi with respect to the order xk1 , . . . , xkn

of axes by yi of Pi. If a production
Pi is final then the algorithm stops, otherwise we should proceed with the
newly obtained word t2 analogously as with t1.

Notice that every labelled set of n-dimensional productions determines
n! different algorithms of the classes MAk1,... ,kn

n with respect to the choice
of the orders xk1 , . . . , xkn of axes.

In this paper only the concept of the proof of a theorem relating to the
equivalence of the above class of n-dimensional Markov-like algorithms to
the class of MNA of Markov normal algorithms is given. The complete
proof is very long and troublesome. Therefore we omit the proof.

This paper is the first step in the description of n-dimensional Markov-
like algorithms.

The following reasons motivate the introduction of this class of algo-
rithms:

(1) This paper is the first step of developments on n-dimensional formal
algorithms, which can be used to study the complexity problems of
n-dimensional structures.

(2) One is able to define n-dimensional partial recursive functions by
analogy with word or graph recursive functions;

(3) The formalism used here allows to introduce other classes of n-di-
mensional Markov-like algorithms, for example parallel algorithms;

(4) One can define n-dimensional (not necessarily Markov-like) algo-
rithms by a slight modification of the transformation and control
functions. These algorithms may be useful for the description of
real processes (biological, chemical, physical, medical and some oth-
ers).

n–dimensional Markov–like algorithms 41

2. n-dimensional words and productions. Let Σ be a nonempty
(finite) alphabet. By a n-dimensional word in an alphabet Σ we mean a
partial function ψ : Nn −→ Σ (N is the set of all nonnegative integers)
satisfying the following conditions:

(1) 0 < Dom(ψ) <∞, where Dom(ψ) denotes the domain of ψ;

(2) (0, i2, . . . , in) ∈ Dom(ψ), (j1, 0, j3 . . . jn) ∈ Dom(ψ), . . ., (k1, . . . ,
kn−1, 0) ∈ Dom(ψ);

(3) for arbitrary (i1, . . . , in) ∈ Dom(ψ) and (k1, . . . , kn) ∈ Dom(ψ)
there exists a sequence (js

1 , . . . , j
s
n) ∈ Dom(ψ), 1 ≤ s ≤ m) where

(j11 , . . . , j
1
n) = (i1, . . . , in), (jm

1 , . . . , j
m
n) = (k1, . . . , kn), and for ev-

ery s ∈ {1, . . . ,m − 1} and for all t ∈ {1, . . . , n} we have: (js
t =

js+1
t or js

t = js+1
t ± 1).

Statements given in (1) and (2) mean that we consider only finite n-
dimensional words having at least one coordinate on particular axis, condi-
tion (3) means that every point of a word is connected with another arbitrary
one.

Let Σ∗
n denote a class of all n-dimensional words in an alphabet Σ in-

cluding the empty n-dimensional word λn (the function ψ describing λn has
the empty domain).

In the majority of cases the n-dimensional words of Σ∗
n will be denoted

by lower case Latin letters t, u, v, w, x, y, z (possibly with subscripts). If a
word t is described by a function ψ then we will write t(i1, . . . , in) or ti1,...,in

instead of ψ(i1, . . . , in) and Dom(t) instead of Dom(ψ).
A n-dimensional word t will be called over an alphabet Σ iff t is in an

alphabet Σ′, where Σ is a subset of Σ′.
Let us define a shape of a n-dimensional word t ∈ Σ∗

n. The n-tuple
(m1, . . . ,mn) is said to be a shape of a n-dimensional word t (sh(t)) iff

mj = sup{ij ∈ N : ∃(i1 . . . ij . . . in) ∈ Dom(t)}+ 1

for every 1 ≤ j ≤ n
We assume the sh(λn) = (0, . . . , 0).

Let us consider two arbitrary n-dimensional words u and v of Σ∗
n and let

P = {(i1, . . . , in) ∈ Dom(v) : ∃(i′1, . . . , i
′
n) ∈ Dom(u)∃(k1, . . . , kn) ∈ Nm

∀(j ≤ n)[ij = i′j + kj]}.

Then a restricted function v|P is said to be an occurrence of u in v.

42 Z. Grodzki and J. Mycka

A restricted function v|P is said to be the first occurrence of u in v with
respect to the order of axes xk1 , . . . , xkn iff the following conditions are
satisfied1:

(1) (k1, . . . , kn) is any permutation of (1, . . . , n);

(2) v|P is an occurrence of u in v;

(3) For every P ′ ⊂ Dom(v) such that v|P ′ is an occurrence of u in v
there exists (i1, . . . , in) ∈ P such that for every (i′1, . . . , i

′
n) ∈ P we

have:
ik1 < i′k1

or if there exists m ≤ n such that

ikj = i′kj
, for all 1 ≤ j < m, then ikm

< i′km
.

Example 2.1. Let us consider the 2-dimensional word v in the following
form:2

a
a b

b a b a
a b a b

.

Then the word u such that u(0, 0) = a, u(1, 0) = b, u(1, 1) = a has
three occurrences in the word v. Namely, the restricted sequences v|P , v|P ′ ,
and v|P ′′ are the occurrences of u in v, where P = {(1, 1), (2, 1), (2, 2)},
P ′ = {(2, 2), (3, 2), (3, 3)} and P ′′ = {(3, 0), (4, 0), (4, 1)}.
v|P is the first occurrence of u in v with respect to the order of axes

(x1, x2) but v|P ′ is the first occurrence of u in v with respect to the order
of axes (x2, x1).

Now let us define the concatenation of n-dimensional words u and v of
shapes (p1, . . . , pn) and (q1, . . . , qn), respectively.

By a concatenation u ◦j v of the words u and v in the direction of j-th
axis we mean a n-dimensional word w which is defined as follows:

(4) sh(w) = (max(p1, q1), . . . , pj + qj , . . . ,max(pn, qn));

(5) For every (i1, . . . , ij , . . . in) ∈ Dom(u) we have (i1, . . . , ij , . . . in) ∈
Dom(w) and ui1,... ,ij ,... ,in

= wi1,... ,ij ,... ,in
;

(6) For every (s1, . . . , sj , . . . , sn)∈Dom(v) we have (s1, . . . , sj+pj , . . . ,
sn) ∈ Dom(w) and vs1,... ,sj ,... ,sn = ws1,... ,sj+pj ,... ,sn .

1The axes of the n-dimensional Cartesian space Nn will be denoted by x1, . . . , xn
2We assume the convention that all n-dimensional words and productions will be

written without axes.

n–dimensional Markov–like algorithms 43

Example 2.2. Let us consider the 2-dimensional word v of Example 2.1.
Then the concatenations u1 = v ◦1 v and u2 = v ◦2 v have the forms:

u1 =

a a
a b a b

b a b a b a b a
a b a b a b a b

, u2 =

a
a b

b a b a
a b a b

a
a b

b a b a
a b a b

.

Now let us introduce a notion of n-dimensional production in an alphabet
Σ.

By an n-dimensional production in an alphabet Σ we mean a pair (x, y)
of n-dimensional words x, y in an alphabet Σ, (m1, . . . ,mn) is a shape of x
and (p1, . . . , pn) is a shape of y, with the properties:
Dom(x) = {(i1, . . . , in) : 0 ≤ ik ≤ mk, 1 ≤ k ≤ n}
Dom(y) = {(j1, . . . , jn) : 0 ≤ jk ≤ pk, 1 ≤ k ≤ n}

and mk ≤ pk for all 1 ≤ k ≤ n or mk ≥ pk for all 1 ≤ k ≤ n.
The above conditions mean that we consider only such productions,

whose left-hand side word x and right-hand side word y are ”full” n-dimen-
sional cubes and domain of one word contains the domain of the second
one.

The set of all n-dimensional productions in an alphabet Σ will be denoted
by Pn

Σ. Let us distinguish a nonempty subset Pn
Σ whose elements are called

final whereas of Pn
Σ\Pn

Σ -nonfinal ones.
As in Markov’s monograph [8] the elements of Pn

Σ will be denoted by
x −→ ·y (possibly with subscripts) while of Pn

Σ\Pn
Σ - by x −→ y. Regardless

of the fact that a production is final or nonfinal it will be written in the
form x −→ (·)y.

Now let us define an extending function exδ : Σ∗
n −→ {Σ ∪ δ}∗n, δ 6∈ Σ as

follows:
for arbitrary words u ∈ Σ∗

n, v ∈ {Σ ∪ δ}∗n we have:

exδ(u) = v

iff the following conditions hold:

(7) if (i1, . . . , in) ∈ Dom(u) then vi1,... ,in
= ui1,... ,in

;

(8) if (i1, . . . , in) 6∈ Dom(u) then vi1,... ,in
= δ for all (i1, . . . , in) : 0 ≤

ik ≤ mk, 1 ≤ k ≤ n, (m1, . . . ,mn) is a shape of u.

44 Z. Grodzki and J. Mycka

Now let us define a cuting function ctδ : {Σ ∪ δ}∗n −→ Σ∗
n as follows:

for arbitrary words v ∈ Σ∗
n, u ∈ {Σ ∪ δ}∗n we have:

ctδ(u) = v

iff the following conditions hold:
(9) if (i1, . . . , in) ∈ Dom(u) and u(i1,... ,in) 6= δ then ui1,... ,in = vi1,... ,in ;

(10) if (i1, . . . , in)∈Dom(u) and ui1,... ,in = δ then (i1, . . . , in) 6∈Dom(v),
for all (i1, . . . , in) ∈ Dom(u).

Example 2.3. Let us consider the 2-dimensional word

t =

b a b a a a
a b a b a

b a b a
b a a b

.

Then exδ(t) =

b a b a a a
δ a b a b a
δ δ b a b a
b a a b δ δ

and ctδ(exδ(t)) = t.

Now let us define a resulting function Resk1...kn
n : Pn

Σ × Σ∗
n −→ Σ∗

n as
follows:
For arbitrary n-dimensional production x −→ (·)y∈Pn

Σ and a n-dimensional
word t ∈ Σ∗

n we have:

Resk1...kn
n (x −→ (·)y, t) =

{
u if x occurs in t

t otherwise,

where u is a n-dimensional word of Σ∗
n which is obtained from t in such a

way that

u = ctδ(t′pk1
◦k1 t

′p
k2
◦k2 . . . t

′p
kn
◦kn y ◦kn t

′s
kn
◦kn−1 . . . ◦k1 t

′s
k1

)

where
t′ = exδ(t)

t′ = t′
p
k1
◦k1 t

′p
k2
◦k2 . . . t

′p
kn
◦kn

t|P ◦kn
t′

s
kn
◦kn−1 . . . ◦k1 t

′s
k1
,

t′
p
ki
, t′

s
ki

for all 1 ≤ i ≤ n are maximal ”prefix” and ”sufix” subwords and
t|P is the first occurrence of x in t with respect to the order of the axes
(xk1 , . . . , xkn

), δ 6∈ Σ.
We can distinguish in the above construction of u a few steps:

(1) extending the word t to the ”full” n-dimensional cube t′;

n–dimensional Markov–like algorithms 45

(2) distinguishing all t′pki
, t′

s
ki

, which are ”prefix” and ”sufix” subwords of t′

in all n dimensions surrounding the occurrence of x in t′;
(3) replacing the occurrence x by y;
(4) creating u by cutting all additonal symbols in the word which is result
of step (3).

In the first case (if x occurs in t) the production is said to be effectively
used, whereas in the second one noneffectively used to a word t.

Example 2.4. Let us present here an example of action of the function
Resk1...kn

n : Pn
Σ×Σ∗

n −→ Σ∗
n. Let us consider the 2-dimensional word t from

Example 2.3 and the production:

P : a b
a b

−→
c c c
c c c
c c c

.

Then we have

t′
p
1 = δ a b

δ δ b

t′
s
1 = a

a

t′
s
2 = b a b a a a

t′
p
2 = b a a b δ δ

Hence

Res2,1
2 (P, t) = ctδ(t′p2 ◦2 t′

p
1 ◦1 y ◦1 t′

s
1 ◦2 t′

s
2) =

b a b a a a
c c c

a b c c c a
b c c c a

b a a b

.

3. The n-dimensional Markov-like algorithms. New classMAk1,... ,kn
n ,

n ≥ 1 of n-dimensional Markov-like with respect to the order (xk1 , . . . , xkn
)

of the axes will be introduced.

By a n-dimensional Markov-like algorithm of the class MAk1,... ,kn
n (the

order of the axes xk1 , . . . , xkn
is fixed) in an alphabet Σ we mean a sixtuple

A = (Pn
Σ , L, Li, Lf ,Contr k1,... ,kn

n ,Tr k1,... ,kn
n),

where
Pn

Σ is a finite (nonempty) subset of PΣ of n-dimensional productions in
an alphabet Σ,

46 Z. Grodzki and J. Mycka

L is a set of labels of Pn
Σ (we assume L = {1, . . . |PΣ|});

Li = {1} and Lf are the subsets of L whose elements are called initial
and final labels, respectively3.

A partial function Contr k1,... ,kn
n : Σ∗

n × L 7→ L, called a control of A,
and a total function Tr k1,... ,kn

n : Σ∗
n × L 7→ Σ∗

n, called a transformation of
A, are defined as follows:

For arbitrary n-dimensional words t, u ∈ Σ∗
n and i ∈ L we have4:

Contr k1,... ,kn
n (t, i) =

1 if xi occurs in t and i 6∈ Lf

i+ 1 if xi doesn’t occur in t and i ≤ |L|
undefined if xi occurs in t and i ∈ Lf

or xi doesn’t occur in t and i = |L|,

Tr k1,... ,kn
n (t, i) =

{
Resk1,... ,kn

n (xi −→ (·)yi, t) if xi occurs in t

t otherwise.
We denote some production from Pn

Σ by Pi iff φ(i) = Pi, where φ is
one-to-one mapping of Pn

Σ onto L.
Thus if a production Pi has been effectively used to a word t and it is

nonfinal then Contr k1,... ,kn
n (t, i) = 1 or if xi doesn’t occur in t and i < |L|

then Contr k1,... ,kn
n (t, i) = i+ 1. Contr k1,... ,kn

n is undefined if a production
Pi has been effectively used to a word t and it is final (i ∈ Lf) or if xi

doesn’t occur in t and i = |L|.
If a production Pi : xi −→ (·)yi has been effectively used to a word t

then Tr k1,... ,kn
n transforms a word t in a such way that the first occurrence

with respect to the order xk1 , . . . , xkn
of the axes of xi of a production Pi

in t is replaced by yi. If a production Pi has been noneffectively used to
a word t then Tr k1,... ,kn

n (t, i) = t and we continue a computation in every
case (if Pi is final or nonfinal) with such only a restriction that i < |L|. Let
us observe that the process stops iff the effectively used lately production
is final or if the used lately production Pj has been noneffectively used and
j = |L|.

In some examples there is a need to introduce some additional letters
(separators, parenthesis). This leads to the following definition.

A n-dimensional Markov-like algorithm is said to be over an alphabet Σ
iff it is an algorithm in some alphabet Σ′ such that Σ ⊂ Σ′.

Now let us introduce a notion of a computation of a n-dimensional
Markov-like algorithm.

A sequence T = t1, t2, . . . ∈ (Σ∗
n)ω (finite or infinite) is said to be a com-

putation of a n-dimensional algorithm A = (Pn
Σ , L, Li, Lf ,Contr k1,... ,kn

n ,

3We will sometimes identify labelled productions with their labels.
4Statement xi occurs in t means that exists P ⊂ Dom(t) such that t|P is an occurrence

of xi in t

n–dimensional Markov–like algorithms 47

Tr k1,... ,kn
n) of the class MAk1,... ,kn

n iff there exists a sequence I= i1, i2, . . . ∈
L∞, called a trace of T , such that the following conditions hold:

(1) Both sequences T and I are infinite, i1 ∈ Li, and for every j ≥ 1 we
have: tj+1 = Tr k1,... ,kn

n (tj , ij) and ij+1 = Contr k1,... ,kn
n (tj , ij);

(2) Both sequences T and I are finite of lengths equal to m for some
m > 1, i1 ∈ Li and for every 1 ≤ j < m we have: tj+1 = Tr k1,... ,kn

n (tj , ij)
and ij+1 = Contr k1,... ,kn

n (tj , ij). We additionally assume that im = |L|+ 1
and this label indicates the fact that a computation T stops.

Two cases imply that T is finite. The first one is when a production Pim−1

with the label im−1 has been effectively used to a word tm−1 and it is final
or if Pim−1 has been noneffectively used to a word tm−1 and im−1 = |L|.

The set of all computations of a n-dimensional Markov-like algorithm A
is said to be its computation set and denoted by C(A).

As for all algorithms of MAk1,... ,kn
n the control Contr k1,... ,kn

n and trans-
formation Tr k1,... ,kn

n are defined in the same manner therefore to define an
algorithm A ∈MAk1,... ,kn

n it is sufficient to define a sequence of productions
in (or over) an alphabet Σ by omitting their labels (such a sequence will be
called a schema of productions).

Example 3.1. Let us consider the 2-dimensional algorithms A ∈ MA1,2
2

and A′ ∈ MA2,1
2 in the alphabet Σ = {a, b, c, d} with the same schema of

productions:

P1 : d c
d c

−→ · a a
a a

P2 : c c
d d

−→ a a
a a

P3 : c c
a b

−→ d d
d d

Let us consider the word v of the following form:

c c c c
a b c c

a b
.

Then the computation of A with the initial word v has the form:

c c c c
a b c c

a b
,

d d c c
d d c c

a b
,

d a a c
d a a c

a b
.

48 Z. Grodzki and J. Mycka

The computation of A′ with the same initial word v has the form:

c c c c
a b c c

a b
,

c c c c
a b d d

d d
,

c c a a
a b a a

d d
,

d d a a
d d a a

d d
.

4. The permutation n-dimensional words and algorithms. Let us
give at the beginning the necessary definitions connected with permutations
of axis of n-dimensional words and productions.

A word v′ of Σ∗
n will be called a (j1, . . . , jn)-permutation word of the word

v ∈ Σ∗
n (and denoted vj1,... ,jn) iff the following conditions are satisfied:

(1) for all (i1, . . . , in) ∈ Dom(v) we have (ij1 , . . . , ijn
) ∈ Dom(v′) and

vi1,... ,in = v′ij1 ,... ,ijn
;

(2) for all (ij1 , . . . , ijn) ∈ Dom(v′) we have (i1, . . . , in) ∈ Dom(v) and
vi1,... ,in

= v′ij1 ,... ,ijn
;

Example 4.1. Let us consider the 2-dimensional word v from Example
3.1. Then the word v′ which is (2,1)-permutations word of v has the form:

v′ =

b c c
a c c

b c
a c

.

Let (x, y) be an arbitrary n-dimensional production and let (j1, . . . , jn)
be a permutation of (1, . . . , n).

Then a production P ′ = (x′, y′) is said to be a n-dimensional (j1, . . . , jn)-
permutation production in an alphabet Σ of the production P = (x, y) in an
alphabet Σ (P ′ is denoted as P j1,... ,jn) iff x′ = xj1,... ,jn and y′ = yj1,... ,jn .

A n-dimensional algorithm A′ ∈ MAkj1 ,... ,kjn
n in an alphabet Σ is said

to be a n-dimensional (j1, . . . , jn)-permutation algorithm of the algorithm
A ∈ MAk1,... ,kn

n in an alphabet Σ iff L = L′, Li = L′i, Lf = L′f , |Pn
Σ | =

|P ′nΣ| and P ′i = P j1,... ,jn

i , 1 ≤ i ≤ |Pn
Σ | (Contr and Tr of A’ are the same as

for the whole class of algorithms MAkj1 ,... ,kjn
n).

Example 4.2. Let us consider the algorithm A ∈MA1,2
2 from the Example

3.1. Then the schema of productions of 2, 1-permutation algorithm A′ ∈
MA2,1

2 in the alphabet Σ = {a, b, c, d} has the form:

P ′1 : c c
d d

−→ · a a
a a

P ′2 : d c
d c

−→ a a
a a

n–dimensional Markov–like algorithms 49

P ′3 : b c
a c

−→ d d
d d

.

Then computation of A′ for the word v′ from Example 4.1 has the form:

b c c
a c c

b c
a c

,

b c c
a c c

d d
d d

,

b c c
a a a

a a
d d

.

Let us point that the computation of A′ for the initial word v′ is ”sym-
metrical” to the computation of A for the initial word v.

So, we can give here the following lemma.

Lemma 4.4. For every A ∈MAk1,... ,kn
n and the word v ∈ Σ∗

n we have

A′(vj1,... ,jn) = [A(v)]j1,... ,jn

where (j1, . . . , jn) is a permutation of (1, . . . , n) and A′ ∈ MAkj1 ,... ,kjn
n is

an permutation algorithm of A.

Proof is obvious.

5. The equivalence of the classes MAk1,...,kn
n and MNA. We will

use in this section the notion of a representation of n-dimensional word t
by n − 1 dimensional word u. Intuitively, to create a representation of a
given word t ∈ Σ∗

n, we will place t in a n-dimensional cube v whereas in
empty places any element outside the alphabet Σ will be located. Then a
cube covering a word t is cut into (n − 1)-dimensional layers with respect
to direction of the xkn

axis. The representation of a word t will be equal to
the concatenation v = θ1v1, . . . , θnvn (vi is the i-th layer of v, θi- (n − 1)-
dimensional separators).

Of course, a notion of representation can be inductively extended to
representation of n-dimensional word by 1-dimensional word.

We can also represent n − 1-dimensional word t by n-dimensional word
u by extending word t to u in such a way that the (n−1)-dimensional layer
of u with respect to direction of the xkn

axis on the zero coordinate is equal
t and other layers of u with respect to xkn are empty.

Now we can say about equivalence of two classes A1, A2 of n-dimensional
algorithms and m-dimensional algorithms, when:

1) for every algorithm A1 ∈ A1 there exists A2 ∈ A2 such that for each
n-dimensional word t the m-dimensional representant of A1(t) is equal to
the value of A2 for m-dimensional representant of t

and
2) for every algorithm A2 ∈ A2 there exists A1 ∈ A1 such that for each

m-dimensional word u the n-dimensional representant of A2(u) is equal to
the value of A1 for n-dimensional representant of u.

50 Z. Grodzki and J. Mycka

Theorem 5.1. For every order xk1 , . . . , xkn
of the axes the classes

MAk1,... ,kn
n and MNA (where MNA denotes the class of Markov nor-

mal algorithms) are equivalent.

We shall give only a short outline of the proof of a lemma relating to
the equivalence of the classes MAk1,... ,kn

n and MAk1,... ,kn−1
n−1 of Markov-like

algorithms, which is a main part in the inductive proof of Theorem 5.1.
This proof is supported of two lemmas.

Lemma 5.2. For arbitrary algorithm A ∈ MAk1,... ,kn
n in an alphabet Σ

there exists an algorithm B ∈ MAk1,... ,kn−1
n−1 over an alphabet Σ such that

A(v) = B(v), for every v ∈ Σ∗
n where v is a representation of n-dimensional

word v ∈ Σ∗
n in (n−1)-dimensional word of Σ∗

n−1. Analogously A(v) denotes
a representation of n-dimensional word A(v) in (n − 1)-dimensional word
of Σ∗

n−1;

Lemma 5.3. For arbitrary algorithm B ∈ MAk1,... ,kn−1
n−1 in an alphabet

Σ there exists an algorithm A ∈ MAk1,... ,kn
n over an alphabet Σ such that

B(v′) = A(v′) for every v′ ∈ Σ∗
n−1.

The Lemma 5.3 can be easily proved by transformation of every word
v′ ∈ Σ∗

n−1 into a word w ∈ Σ∗
n by adding a new xkn

coordinate and by
extending word v to v′ by locating v on the zero coordinate of the new xkn

axis.
We proceed analogously with (n− 1)-dimensional productions.
The proof of Lemma 5.2 is more complicated. Two problems should be

solved:

(1) Representation of all n-dimensional words of Σ∗
n by means of (n−1)-

dimensional words over Σ∗
n−1, and analogously we follow n-dimen-

sional productions;

(2) We have to transform a schema of n-dimensional productions into a
schema of (n− 1)-dimensional productions.

The problem (1) can be solved in the following way. A given word t ∈ Σ∗
n

is placed in a n-dimensional cube whereas in free places any element outside
the alphabet Σ is located. Then a cube covering a word t is cut into (n−1)-
dimensional layers with respect to direction of the xkn

axis. Then we assign
to a pair of n-dimensional cubes corresponding to n-dimensional production
Pi : xi −→ (·)yi the sequence of (n − 1)-dimensional cubes corresponding
to the successive layers. The transformed n-dimensional word t should be
replaced by a concatenation v = θ1v1, . . . , θnvn (vi is the i-th layer of v, θi-
(n− 1)-dimensional separators).

n–dimensional Markov–like algorithms 51

The problem (2) can be solved by adding to productions of a sequence
Pi(1 ≤ i ≤ m) new symbols outside Σ and some additional productions
transforming these additional symbols such as following conditions hold:

(2.1) If a sequence Pi has been effectively used to a transformed word t
then we must return to first element of P1 if i 6∈ LF or an algorithm
stops if i ∈ LF ;

(2.2) If a sequence Pi corresponding to a production Pi has not been
effectively used to a transformed word then we have to go to Pi+1

(if i < m).

Let us add that the complete proof of theorem relating to the equivalence
of 2-dimensional Markov-like algorithms and Markov normal algorithms has
been given in [6].

Open problems. Let us put forward some open problems relating to n-
dimensional algorithms:

(1) One is able to define classes MAk1,... ,kn

j,n of n-dimensional Markov-
like j-algorithms for which the j-th left-hand side occurrence of the
left side of the productions in the transformed words is replaced
by the right side of the respective productions (taking into account
some order of axes);

(2) A class of n-dimensional weighed Markov-like algorithms can be
introduced that to every production Pi a weight wi is assigned,
indicating that the wi-occurrence of the left-hand side of productions
with respect to some order of axes is replaced by the right-hand side
of Pi.

(3) One is able to introduce other classes of n-dimensional algorithms
(not necessarily Markov-like) only insignificantly modifying the
transformation and control functions.

(4) There is a need to study different aspects of complexity of n-dimen-
sional algorithms.

(5) By analogy with n-dimensional algorithms one is able to define n-
dimensional word recursive functions.

52 Z. Grodzki and J. Mycka

References

[1] Asser, G., Turing Maschinen und Markovsche Algorithmen, Z. Math. Logik Grundl.

Math. 5 (1959), 326–359.
[2] Church, A., An unsolvable problem for elementary number theory, J. of Math. 58

(1936), 345–363.

[3] Cutland, N.J., Computability and introduction to recursive function theory, Cam-
bridge University Press, Cambridge, London, New York, Sydney, Melbourne, 1980.

[4] Dietlows W.K., Equivalence of Markov normal algorithms and recursive functions,
Trudy Mat. Inst. Steklov. IV (1952), 66–69.

[5] Grodzki, Z., J. Mycka, The equivalence of some classes of algorithms, Ann. Univ.

Mariae Curie-Sk lodowska Sect. A 49 (1995), no. 6, 85–99.
[6] Grodzki, Z., J. Mycka, Two-dimensional Markov-like algorithms, Ann. Univ. Mariae

Curie-Sk lodowska Sect. A 50 (1996).

[7] Kleene, S.C., λ-definability and recursivennes, Duke Math. J. 2 (1936), 340–358.
[8] Markov, A., The Theory of Algorithms, Trudy Mat. Inst. Steklov. XLII (1954).

(Russian)

[9] Mendelson, E., Introduction to Mathematical Logic, The University Series in Math-
ematics, Princeton, 1964.

[10] Priese, L., A note of asynchronous cellular automata, J. Comput. System Sci. 17

(1978), 237–252.
[11] Robinson J., General recursive functions, Proc. Amer. Math. Soc. I (1950), 703–718.

[12] Turing A., On computable numbers with an application to the Entscheidungsproblem,
Proc. London Math. Soc. 42 (1936), 230–265, (correction ibid., 43 (1937), 544–546).

Department of Applied Mathematics received November 10, 1999
Technical University of Lublin
ul. Bernardyńska 13
20-950 Lublin, Poland

Institute of Mathematics
M. Curie–Sk lodowska University
pl. M. Curie–Sk lodowskiej 1
20-031 Lublin, Poland

