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Abstract. We give sufficient coefficient conditions for complex-valued har-

monic functions that are multivalent, sense-preserving, and starlike in the

unit disk. These coefficient conditions are also shown to be necessary if the
coefficients of the analytic part of the harmonic functions are negative and

the coefficients of the co-analytic part of the harmonic functions are positive.
We also determine the extreme points, distortion and covering theorems,

convolution and convex combination conditions for these functions.

1. Introduction. A continuous complex valued function f = u+iv defined
in a simply connected domain D is said to be harmonic in D if u and v are
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real harmonic in D. There is a close interrelation between analytic functions
and harmonic functions. For example, for real harmonic functions u and v
there exist analytic functions H and G so that u = Re(H) and v = Im(G).
Consequently, we can write

f = u+ iv = Re(H) + i Im(G) =
1
2
(H + H̄) + i

1
2i

(G− Ḡ)

=
H +G

2
+
H̄ − Ḡ

2
= h+ ḡ.

An elementary calculation gives the Jacobian of f as Jf = |h′|2 − |g′|2.
A harmonic function f is sense-preserving at a point zo if h′(z) 6≡ 0 and
w = g′/h′ is analytic at zo (possibly with a removable singularity), and
|w(zo)| < 1. Examples of sense-preserving harmonic functions are all non-
constant analytic functions, and the functions αzn + βz̄m for |z| < 1, with
n ≤ m and m|β| < n|α|. Notice that we do not require f to be univalent in
D.

For a sense-preserving harmonic function f, the order of a zero can be
defined in terms of the local decomposition f = h+ ḡ. Suppose f(zo) = 0 at
some zo where f is sense-preserving, and write the power series expansion
of h and g as

h(z) = ao +
∞∑

k=1

ak(z − zo)k , g(z) = bo +
∞∑

k=1

bk(z − zo)k.

Actually, bo = −ao because f(zo) = 0. Some ak (k ≥ 0) must be non-zero
since h′(z) 6≡ 0.

Let am be the first such non-zero coefficient. Then bk = 0 for 0 ≤ k < m,
since w = g′/h′ is analytic at zo and |bm| < |am| because |w(zo)| < 1. In this
case, we will say that f has a zero of order m at zo. Now, for 0 < |z−zo| < δ
it is possible to write

f(z) = h(z) + g(z) = am(z − zo)m{1 + ψ(z)}

where

ψ(z) =
b̄m
am

(z̄ − z̄o)m(z − zo)−n +O(z − zo).

But it is clear that |ψ(z)| < 1 for z sufficiently close to zo, since |bm/am| < 1.
Hence f(z) 6= 0 near zo.

Recently, Duren, Hengartner, and Laugesen [3] proved the following ar-
gument principle for harmonic functions which is formulated as a direct
generalization of the classical result for analytic functions.
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Theorem A. Let f be a harmonic function in a Jordan domain D with
boundary C. Suppose f is continuous in D and f(z) 6= 0 on C. Suppose f
has no singular zeros in D, and let m be the sum of the orders of the zeros of
f in D. Then ∆C arg(f(z)) = 2πm, where ∆C arg(f(z)) denotes the change
in argument of f(z) as z traverses C.

In [3] it is also shown that if f is a sense-preserving harmonic function near
a point where f(zo) = wo, and if f(z)−wo has a zero of order m (m ≥ 1) at
zo, then to each sufficiently small ε > 0 there corresponds a δ > 0 with the
following property. For each α ∈ Nδ(wo) = {w : |w−wo| < δ}, the function
f(z)− α has exactly m zeros, counted according to multiplicity, in Nε(zo).
In particular, f has the open mapping property, that is, it carries open sets
to open sets.

Without loss of generality, we let D be the open unit disk D = {z : |z| < 1}.
We also let ak = bk = 0 for 0 ≤ k < m and am = 1. Denote by H(m) the set
of all multivalent harmonic functions f = h+ ḡ that are sense-preserving in
D and h and g are of the form
(1)

h(z) = zm +
∞∑

n=2

an+m−1z
n+m−1 , g(z) =

∞∑
n=1

bn+m−1z
n+m−1, |bm| < 1.

According to Theorem A and the above argument, functions in H(m) are
harmonic and sense-preserving in D if Jf > 0 in D. The class H(1) of
harmonic univalent functions was studied in details by Clunie and Sheil-
Small [2]. In this note, we look at two subclasses of H(m), m ≥ 1, and
provide coefficient conditions, extreme points, and distortion bounds for
functions in these classes. We also examine their convolution and convex
combination properties.

For m ≥ 1, let SH(m) denote the subclass of H(m) consisting of harmonic
starlike functions that map each circle |z| = r < 1 onto a closed curve that
is starlike with respect to the origin. A function with such a property must
satisfy the condition (e.g. see [6], p. 244)

(2)
∂

∂θ

(
arg(f(reiθ))

)
≥ 0,

for each z = reiθ, 0 ≤ θ < 2π, and 0 ≤ r < 1.

Also let T H(m), m ≥ 1, denote the class of functions f = h+ ḡ in SH(m)
so that h and g are of the form

(3) h(z) = zm −
∞∑

n=2

|an+m−1|zn+m−1 , g(z) =
∞∑

n=1

|bn+m−1|zn+m−1 .
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2. Coefficient bounds. It was shown by Sheil-Small [6, Theorem 7]
that |an| ≤ (n+ 1)(2n+ 1)/6 and |bn| ≤ (n− 1)(2n− 1)/6 if f ∈ SHo(1).
The subclass of SH(m) where m = 1 and b1 = 0 is denoted by SHo(1).
These bounds are sharp and thus give necessary coefficient conditions for the
class SHo(1). Avci and Zlotkiewicz [1] proved that the coefficient condition∑∞

n=2 n(|an|+ |bn|) ≤ 1 is sufficient for functions in SHo(1). Silverman
[7] showed that this coefficient condition is also necessary for m = 1 and
harmonic functions of the form (3). Jahangiri [5] and Silverman and Silvia
[8] extended this result to the case b1 not necessarily zero. The arguments
presented in this section provide sufficient coefficient bounds for functions
f = h + ḡ of the form (1) to be in SH(m), m ≥ 1. It is also shown that
these bounds are necessary if f ∈ T H(m).

Theorem 1. Let f = h+ ḡ be given by (1). If

(4)
∞∑

n=1

(n+m− 1) (|an+m−1|+ |bn+m−1|) ≤ 2m

where am = 1 and m ≥ 1, then the harmonic function f is sense-preserving
in D and f ∈ SH(m).

Proof. Write z = reiθ where 0 ≤ r < 1 and θ is real. For h and g given by
(1) we have

|h′(z)| − |g′(z)|

=

∣∣∣∣∣mzm−1+
∞∑

n=2

(n+m−1)an+m−1z
n+m−2

∣∣∣∣∣−
∣∣∣∣∣
∞∑

n=1

(n+m−1)bn+m−1z
n+m−2

∣∣∣∣∣
≥
∣∣mzm−1

∣∣−∣∣∣∣∣
∞∑

n=2

(n+m−1)an+m−1z
n+m−2

∣∣∣∣∣−
∣∣∣∣∣
∞∑

n=1

(n+m−1)bn+m−1z
n+m−2

∣∣∣∣∣
≥ mrm−1 −

∞∑
n=2

(n+m−1)|an+m−1|rn+m−2 −
∞∑

n=1

(n+m−1)|bn+m−1|rn+m−2

= rm−1

[
m−

∞∑
n=2

(n+m−1)|an+m−1|rn−1−
∞∑

n=1

(n+m−1)|bn+m−1|rn−1

]

> rm−1

[
m−

∞∑
n=2

(n+m−1)|an+m−1|−
∞∑

n=1

(n+m−1)|bn+m−1|

]

= rm−1

{
2m−

[ ∞∑
n=1

(n+m−1) (|an+m−1|+|bn+m−1|)

]}
≥ 0,

by (4).
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Therefore, by Theorem A, the harmonic function f = h + ḡ is sense-
preserving in D.

Now we show that f ∈ SH(m). According to the required condition (2), we
only need to show that

∂

∂θ

(
arg(f(reiθ))

)
= Im

(
∂

∂θ
log(f(reiθ))

)
= Re

(
zh′(z)− zg′(z)
h(z) + g(z)

)
≥ 0.

The case r = 0 is obvious. For 0 < r < 1, it follows that

∂

∂θ

(
arg(f(reiθ))

)
= Re

(
zh′(z)− zg′(z)
h(z) + g(z)

)

=
mzm+

∞∑
n=2

(n+m−1)an+m−1z
n+m−1 −

∞∑
n=1

(n+m−1)b̄n+m−1z̄
n+m−1

zm+
∞∑

n=2
an+m−1zn+m−1 +

∞∑
n=1

b̄n+m−1z̄n+m−1

= Re
[
m+A(z)
1 +B(z)

]
.

For z = reiθ we have

A(reiθ)=
∞∑

n=2

(n+m−1)an+m−1r
n−1e(n−1)θi−

∞∑
n=1

(n+m−1)b̄n+m−1r
n−1e−(n+2m−1)θi

and

B(reiθ) =
∞∑

n=2

an+m−1r
n−1e(n−1)θi +

∞∑
n=1

b̄n+m−1r
n−1e−(n+2m−1)θi.

Setting
m+A(z)
1 +B(z)

= m
1 + w(z)
1− w(z)

the proof will be complete if we can show that |w(z)| ≤ r < 1. This is the
case since, by the condition (4), we can write

|w(z)| =
∣∣∣∣ A(z)−mB(z)
A(z) +mB(z) + 2m

∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

n=2
(n−1)an+m−1r

n−1e(n−1)θi−
∞∑

n=1
(n+2m−1)b̄n+m−1r

n−1e−(n+2m−1)θi

2m+
∞∑

n=2
(n+2m−1)an+m−1rn−1e(n−1)θi−

∞∑
n=1

(n−1)b̄n+m−1rn−1e−(n+2m−1)θi

∣∣∣∣∣∣∣∣
≤

∞∑
n=2

(n−1)|an+m−1|rn−1 +
∞∑

n=1
(n+2m−1)|bn+m−1|rn−1

2m−
∞∑

n=2
(n+2m−1)|an+m−1|rn−1 −

∞∑
n=1

(n−1)|bn+m−1|rn−1
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=

∞∑
n=1

[(n−1)|an+m−1|+(n+2m−1)|bn+m−1|] rn−1

4m−
∞∑

n=1
[(n+2m−1)|an+m−1|+(n−1)|bn+m−1|] rn−1

<

∞∑
n=1

[(n−1)|an+m−1|+(n+2m−1)|bn+m−1|]

4m−
∞∑

n=1
[(n+2m−1)|an+m−1|+(n−1)|bn+m−1|]

≤ 1 . �

For
∑∞

n=2 |xn|+
∑∞

n=1 |yn| = m, we use the starlike harmonic mappings

(5) f(z) = zm +
∞∑

n=2

xn

n+m− 1
zn+m−1 +

∞∑
n=1

ȳn

n+m− 1
z̄n+m−1,

to show that the coefficient bound given by (4) is sharp.

The functions of the form (5) are in SH(m) because
∞∑

n=1

(n+m− 1) (|an+m−1|+ |bn+m−1|) = m+
∞∑

n=2

|xn|+
∞∑

n=1

|yn| = 2m.

The restriction in Theorem 1 placed on the moduli of the coefficients of
f = h+ ḡ enables us to conclude for arbitrary rotation of the coefficients of
f that the resulting functions would still be a member of SH(m). Our next
theorem establishes that such coefficient bounds cannot be improved.

Theorem 2. Let f = h+ ḡ be given by (3). Then f ∈ T H(m) if and only
if

(6)
∞∑

n=1

(n+m− 1) (|an+m−1|+ |bn+m−1|) ≤ 2m

where am = 1 and m ≥ 1.

Proof. The “if” part follows from Theorem 1 upon noting that T H(m) ⊂
SH(m), m ≥ 1.

For the “only if” part, we show that f /∈ T H(m) if the condition (6) does
not hold. We examine the required condition (2) for f = h+ ḡ ∈ T H(m).
This is equivalent to

Re
zh′(z)−zg′(z)
h(z)+g(z)

= Re
mzm−

∞∑
n=2

(n+m−1)|an+m−1|zn+m−1−
∞∑

n=1
(n+m−1)|bn+m−1|z̄n+m−1

zm−
∞∑

n=2
|an+m−1|zn+m−1 +

∞∑
n=1

|bn+m−1|z̄n+m−1

≥ 0.
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The above condition must hold for all values of z, |z| = r < 1. Upon
choosing the values of z on the positive real axis where 0 ≤ z = r < 1 we
must have

(7)
m−

∞∑
n=2

(n+m−1)|an+m−1|rn−1 −
∞∑

n=1
(n+m−1)|bn+m−1|rn−1

1−
∞∑

n=2
|an+m−1|rn−1+

∞∑
n=1

|bn+m−1|rn−1

≥ 0 .

If the condition (6) does not hold then the numerator in (7) is negative
for r sufficiently close to 1. Thus there exists a zo = ro in (0, 1) for which
the quotient in (7) is negative. This contradicts the required condition for
f ∈ T H(m) and so the proof is complete. �

3. Extreme points and distortion bounds. Next we determine the
extreme points of the closed convex hull of T H(m), denoted by clcoT H(m).

Theorem 3. f = h+ ḡ ∈ clcoT H(m) if and only if f can be expressed in
the form

(8) f =
∞∑

n=1

(Xn+m−1hn+m−1 + Yn+m−1 gn+m−1)

where hm(z)=zm, hn+m−1(z) = zm− m
n+m−1z

n+m−1 (n=2, 3, ...), gn+m−1(z) =
zm+ m

n+m−1 z̄
n+m−1 (n=1, 2, 3, ...),

∑∞
n=1 (Xn+m−1+Yn+m−1)=1, Xn+m−1 ≥ 0,

and Yn+m−1 ≥ 0. In particular, the extreme points of T H(m) are {hn+m−1}
and {gn+m−1} .

Proof. For functions f of the form (8) we have

f(z) = zm −
∞∑

n=2

m

n+m−1
Xn+m−1z

n+m−1+
∞∑

n=1

m

n+m−1
Yn+m−1z̄

n+m−1

= zm−
∞∑

n=2

an+m−1z
n+m−1 +

∞∑
n=1

bn+m−1z̄
n+m−1 .

Then

∞∑
n=1

(n+m−1) (|an+m−1|+|bn+m−1|) =m+
∞∑

n=2

m|Xn+m−1|+
∞∑

n=1

m|Yn+m−1|

=m+m(1−Xm)≤2m,

and so f ∈ clcoT H(m).
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Conversely, suppose that f ∈ clcoT H(m). Set

Xn+m−1 =
n+m−1

m
|an+m−1| (n = 2, 3, ...),

Yn+m−1 =
n+m−1

m
|bn+m−1| (n = 1, 2, 3, ...),

and

Xm = 1−
∞∑

n=2

Xn+m−1 −
∞∑

n=2

Yn+m−1.

Then, as required, we obtain

f(z) = zm −
∞∑

n=2

|an+m−1|+
∞∑

n=1

|bn+m−1| z̄n+m−1. �

Our next theorem is on the distortion bounds for functions in T H(m), which
yields a covering result for the family T H(m).

Theorem 4. If f ∈ T H(m), then

|f(z)| ≤ (1 + |bm|) rm +
m(1− |bm|)
m+ 1

rm+1, |z| = r < 1,

and

|f(z)| ≥ (1− |bm|) rm − m(1− |bm|)
m+ 1

rm+1, |z| = r < 1.

Proof. In view of Theorem 2, we have

m(1+|bm|)+(m+1)
∞∑

n=2

(|an+m−1|+|bn+m−1|)≤
∞∑

n=1

(n+m−1) (|an+m−1|+|bn+m−1|)

≤ 2m,

so that

(9)
∞∑

n=2

(|an+m−1|+|bn+m−1|) ≤
m(1−|bm|)
m+1

.
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Now, taking the absolute values of f in T H(m) we obtain

|f(z)| =

∣∣∣∣∣zm−
∞∑

n=2

an+m−1z
n+m−1+

∞∑
n=1

bn+m−1z̄
n+m−1

∣∣∣∣∣
≤ rm+

∞∑
n=2

|an+m−1|rn+m−1+
∞∑

n=1

|bn+m−1|rn+m−1

= (1+|bm|)rm+
∞∑

n=2

(|an+m−1|+|bn+m−1|) rn+m−1

≤(1+|bm|)rm+
∞∑

n=2

(|an+m−1|+|bn+m−1|) rm+1

≤(1+|bm|)rm+
m(1−|bm|)
m+ 1

rm+1, by (9)

and

|f(z)| =

∣∣∣∣∣zm−
∞∑

n=2

an+m−1z
n+m−1+

∞∑
n=1

bn+m−1z̄
n+m−1

∣∣∣∣∣
≥ rm−

∞∑
n=2

|an+m−1|rn+m−1−
∞∑

n=1

|bn+m−1|rn+m−1

= (1−|bm|)rm−
∞∑

n=2

(|an+m−1|+|bn+m−1|) rn+m−1

≥(1−|bm|)rm−
∞∑

n=2

(|an+m−1|+|bn+m−1|) rm+1

≥(1−|bm|)rm−m(1−|bm|)
m+ 1

rm+1, by (9).

The bounds given in Theorem 4 for the functions f = h + ḡ in T H(m)
also hold for functions in SH(m) if the coefficient condition (4) is satisfied.
The function

f(z) = zm + |bm|z̄m +
m(1− |bm|)
m+ 1

z̄m+1

and its rotations show that the bounds given in Theorem 4 are sharp. �

The following covering result follows from the left hand inequality in The-
orem 4.

Corollary. If f ∈ T H(m) then{
w : |w| < 1− |bm|

m+ 1

}
⊂ f(D).
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Remark 1. For m = 1 and b1 = 0 the covering result in the above corollary
coincides with that given in ([6] Theorem 5.9) for harmonic convex functions.

A harmonic function f is convex in D (see [4] or [6]) if for each z, |z| =
r < 1,

∂

∂θ
arg(

∂

∂θ
f(reiθ)) ≥ 0.

The corresponding definition for harmonic convex functions leads to analo-
gous coefficient bounds and extreme points.

4. Convolution and convex combination. For harmonic functions

(10) f(z) = zm−
∞∑

n=2

|an+m−1|zn+m−1+
∞∑

n=1

|bn+m−1|z̄n+m−1

and

(11) F (z) = zm−
∞∑

n=2

|An+m−1|zn+m−1+
∞∑

n=1

|Bn+m−1|z̄n+m−1

we define the convolution of f and F as
(12)

(f∗F )(z)=zm−
∞∑

n=2

|an+m−1An+m−1|zn+m−1+
∞∑

n=1

|bn+m−1Bn+m−1|z̄n+m−1.

In the following theorem we examine the convolution properties of the class
T H(m).

Theorem 5. If f and F are in T H(m), so is f ∗ F.

Proof. Let f and F of the forms (10) and (11) belong to T H(m). Then
the convolution of f and F is given by (12). Note that |An+m−1| ≤ 1 and
|Bn+m−1| ≤ 1 since F ∈ T H(m). Then we can write

∞∑
n=1

(n+m−1) (|an+m−1||An+m−1|+|bn+m−1||Bn+m−1|)

≤
∞∑

n=1

(n+m−1) (|an+m−1|+|bn+m−1|).

The right hand side of the above inequality is bounded by 2m because
f ∈ T H(m). Therefore f ∗ F ∈ T H(m). �

Our next result is on the convex combinations of the members of the family
T H(m).
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Theorem 6. The class T H(m) is closed under convex combination.

Proof. For i = 1, 2, 3, ... suppose that fi(z) ∈ T H(m) where fi is given by

fi(z) = zm −
∞∑

n=2

|ain+m−1 |zn+m−1 +
∞∑

n=1

|bin+m−1 |z̄n+m−1.

Then, by (6),

(13)
∞∑

n=1

(n+m− 1)
(
|ain+m−1 |+ |bin+m−1 |

)
≤ 2m.

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written
as

∞∑
i=1

tifi(z)=zm−
∞∑

n=2

( ∞∑
i=1

ti|ain+m−1 |

)
zn+m−1+

∞∑
n=1

( ∞∑
i=1

ti|bin+m−1 |

)
z̄n+m−1.

Then, by (13),

∞∑
n=1

(n+m−1)

(∣∣∣∣∣
∞∑

i=1

ti|ain+m−1 |

∣∣∣∣∣+
∣∣∣∣∣
∞∑

i=1

ti|bin+m−1 |

∣∣∣∣∣
)

=
∞∑

i=1

ti

{ ∞∑
n=1

(n+m−1)
(
|ain+m−1 |+|bin+m−1 |

)}
≤

∞∑
i=1

ti(2m) = 2m,

and so
∑∞

i=1 tifi(z) ∈ T H(m).

5. Positive order. We say that f of the form (1) is harmonic starlike of
order α, 0 ≤ α < 1, in D if

∂

∂θ
arg(f(reiθ)) ≥ mα

for each z, |z| = r < 1.

Denote by SH(m,α) and T H(m,α) the subclasses of SH(m) and T H(m),
respectively, that are starlike of order α, 0 ≤ α < 1.

Note that SH(m, 0) ≡ SH(m) and T H(m, 0) ≡ T H(m).

Many of our results can be generalized to multivalent harmonic starlike
functions of positive order. For instance, using arguments similar to those
already given for Theorems 1 and 2 leads to the following results.
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Theorem 7. Let f = h+ ḡ be given by (1). If

(14)
∞∑

n=1

[
n+m(1−α)−1

m− α
|an+m−1|+

n+m(1+α)−1
m− α

|bn+m−1|
]
≤ 2

where am = 1 and m ≥ 1 then the harmonic function f is sense-preserving,
m-valent, and f ∈ SH(m,α).

As an outline for the proof of Theorem 7, first note that

−mα+
∂

∂θ
arg(f(reiθ)) = Re

(
m(1− α) +A(z)−mαB(z)

1 +B(z)

)
≥ 0

where A(z) and B(z) are described in the proof of Theorem 1. Now, follow-
ing a similar line of proof which is used for Theorem 1, yields the required
coefficient condition (14).

Theorem 8. For f ∈ T H(m,α) the coefficient condition (14) is both ne-
cessary and sufficient.

As in Theorem 3, these necessary and sufficient coefficient conditions for
T H(m,α) lead to the extreme points, namely,

hm(z) = zm,

hn+m−1(z) = zm − m− α

n+m(1− α)− 1
zn+m−1 (n = 2, 3, ...),

and

gn+m−1(z) = zm +
m− α

n+m(1 + α)− 1
z̄n+m−1 (n = 1, 2, 3, ...).

Remark 2. The corresponding definition for harmonic functions convex
of order α, 0 ≤ α < 1 leads to analogous coefficient bounds and extreme
points.

Remark 3. The results of this paper, for m = 1 and 0 ≤ α < 1, coincide
with those given by the second author in [4] and [5].
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