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Abstract. In this paper we consider some problems for zero sets of Bloch
functions and Ap functions. We improve some necessary conditions for or-

dered zero sequences and show that they are best possible.

1. Introduction. Let Ap , 0 < p < ∞, denote the Bergman space of
functions f analytic in the unit disc D satisfying

‖f‖p =
(

1
π

∫∫
D
|f(z)|p dx dy

)1/p

< ∞

A function f analytic in D is said to be a Bloch function if

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| < ∞ .
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The space of all Bloch functions will be denoted by B . The little Bloch
space B0 consists of those f ∈ B for which

(1− |z|)|f ′(z)| → 0, as |z| → 1.

For 0 < r < 1, set
M∞(r, f) = max

|z|=r
|f(z)|.

and let us define A0 as the space of all functions f analytic in D and such
that

M∞(r, f) = O
(

log
1

1− r

)
, as r → 1.

The following inclusions are well known

B0 ⊂ B ⊂ A0 ⊂
⋂

0<p<∞
Ap.

If f is an analytic function in D, f(0) 6= 0, and {zk}∞k=1 is the sequence
of its zeros, repeated according to multiplicity and ordered so that |z1| ≤
|z2| ≤ |z3| . . . , then {zk} is said to be the sequence of ordered zeros of f . In
1974 Horowitz [H1] proved that if {zk} is the sequence of ordered zeros of
f ∈ Ap, then

(1)
N∏

k=1

1
|zk|

= O
(
N1/p

)
, as N →∞.

The result in [GNW, Theorem 1] shows that O
(
N1/p

)
can be replaced by

o
(
N1/p

)
.

Moreover, Horowitz [H1] obtained the following necessary condition for
ordered zeros of Ap functions

Theorem H. Assume that f ∈ Ap, 0 < p < ∞, {zk} is the ordered zero
set of f and bk = 1− |zk|. Then for all ε > 0

∑
bk 6=1

bk

(
log
(

1
bk

))−1−ε

< ∞.

Horowitz also proved that this result is best possible in the sense that
the series ∑

bk 6=1

bk

(
log
(

1
bk

))−1
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may diverge for f ∈ Ap. The analogous result for the space A0 was obtained
in [GNW], that is, if f ∈ A0 and bk are as in Theorem H, then for all ε > 0∑

|zk|>1− 1
e

bk

(
log log

(
1
bk

))−1−ε

< ∞.

This result is also best possible in the sense that there exists a function
f ∈ B0 for which ∑

|zk|>1− 1
e

bk

(
log log

(
1
bk

))−1

= ∞.

In Section 1 of this paper we improve the above mentioned necessary
conditions for ordered zeros of Ap functions and A0 functions.

It follows from (1) that, if f ∈ Ap and {zk} are the ordered zeros of f ,
then

lim sup
n→∞

n(1− |zn|)
log n

≤ 1
p

.

E. Beller in [B] proved that the constant 1
p is best possible. Namely, for

given ε > 0 he constructed a function f ∈ Ap such that

lim sup
n→∞

n(1− |zn|)
log n

>
1

p(1 + ε)
.

For A0 space and for the Bloch space, by Theorem 2 in [GNW], we get the
analogous inequalities

(2) lim sup
n→∞

n(1− |zn|)
log log n

≤ 1 if f ∈ A0 ,

(3) lim sup
n→∞

n(1− |zn|)
log log n

≤ 1
2

if f ∈ B .

Theorem 2 in [GNW] does not imply the sharpness of (2) and (3). It does
not even exclude the possibility that lim sup in (2) and (3) are always 0.
Actually, for the function f ∈ A0 constructed in the proof of Theorem 3
[GNW] we have lim supn→∞

n(1−|zn|)
log log n = 0 In Section 2 we give an example

of the function f ∈ A0 for which lim supn→∞
n(1−|zn|)
log log n ≥ 1

4 . The sharpness
of (2) and (3) is still an open problem.

Acknowledgment. The author is very grateful to Professor D. Prokhorov
for helpful conversation and pointing out Theorem 1.

2. Necessary conditions for zeros of Ap functions. Define log1 x =
log x, logn x = log(logn−1 x), for n = 2, 3 . . . and sufficiently large x. For a
given positive integer n let rn denote the solution of the equation logn−1 x =
0. We have the following
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Theorem 1. Let f ∈ Ap and {zk} be the ordered zero set of f . Let bk =
1− |zk|. Then for all positive integers n and all ε > 0∑

|zk|>rn

bk

log
(

1
bk

)
log log

(
1
bk

)
. . . logn−1

(
1
bk

)(
logn

(
1
bk

))1+ε < ∞.

Proof. We will apply the arguments analogous to that in the proof of
Theorem H [H1, p.697]. In this proof and in what follows C denotes a
positive constant which may be different at each occurrence. Condition (1)
implies that for N sufficiently large

NbN ≤
N∑

k=1

bk ≤ C log(N + 1)

and consequently,

1

logi

(
1

bN

) ≤ 1
C logi(N + 1)

, 1 ≤ i ≤ n− 1,

and
1[

logn

(
1

bN

)]1+ε ≤
1

cn [logn(N + 1)]1+ε .

Multiplying the above inequalities we get

1∏n−1
i=1 logi

(
1

bN

) [
logn

(
1

bN

)]1+ε ≤
1

C
∏n−1

i=1 logi (N + 1) [logn (N + 1)]1+ε .

Hence it suffices to show that

∞∑
k=k0

bk∏n−1
i=1 logi (k + 1) [logn (k + 1)]1+ε < ∞.

Set

φn(x) =

(
n−1∏
i=1

logi x

)−1

(logn x)−1−ε
.

Then

φ′n(x)=−
∏n

i=2 logi x +
∏n

i=3 logi x + · · ·+
∏n

i=n−1 logi x + logn x + 1 + ε

x
(∏n−1

i=1 logi x
)2

(logn x)2+ε
.
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By the mean value theorem, φn(k + 2) − φn(k + 1) = φ′n(x0), where
x0 ∈ [k + 1, k + 2]. Hence

φn(k + 1)− φn(k + 2)

=
∏n

i=2 logi x0 +
∏n

i=3 logi x0 + · · ·+
∏n

i=n−1 logi x0 + logn x0 + 1 + ε

x0

(∏n−1
i=1 logi x0

)2

(logn x0)2+ε

<
n
∏n

i=2 logi x0

x0

(∏n−1
i=1 logi x0

)2

(logn x0)2+ε

=
n

x0 (log x0)2
(∏n−1

i=2 logi x0

)
(logn x0)1+ε

<
n

(k + 1) (log(k + 1))2
(∏n−1

i=2 logi(k + 1)
)

(logn(k + 1))1+ε
.

Summing by parts gives

∞∑
k=k0

bk∏n−1
i=1 logi (k + 1) [logn (k + 1)]1+ε

≤ lim
k→∞

C log(k + 1)∏n−1
i=1 logi (k + 1) [logn (k + 1)]1+ε

+ C

∞∑
k=k0

log(k + 1)

(k + 1) (log(k + 1))2
(∏n−1

i=2 logi(k + 1)
)

(logn(k + 1))1+ε

= C

∞∑
k=k0

1

(k + 1)
(∏n−1

i=1 logi(k + 1)
)

(logn(k + 1))1+ε
< ∞. �

Remark 1. In [H1] Horowitz constructed a function f ∈ Ap whose zeros
satisfy the inequality

bk ≥
c

k

where c > 0 is independent of k. For this function we have∑
|zk|>rn

bk

log
(

1
bk

)
log log

(
1
bk

)
. . . logn−1

(
1
bk

)
logn

(
1
bk

) = ∞.

This means that Theorem 1 is best possible in the sense that ε > 0 cannot
be omitted.

Using the result in [Theorem 2, GNW] and the reasoning as in the proof
of the preceding theorem one can get
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Theorem 2. Let f ∈ A0 and {zk} be the ordered zero set of f . Let bk =
1− |zk|. Then for all positive integers n and all ε > 0

∑
|zk|>rn

bk

log log
(

1
bk

)
. . . logn−1

(
1
bk

)(
logn

(
1
bk

))1+ε < ∞.

Remark 2. The result of Theorem 2 is best possible in the sense that there
exists a function f ∈ B0 for which

(4)
∑

|zk|>rn

bk

log log
(

1
bk

)
. . . logn

(
1
bk

) = ∞.

Proof. For an analytic function f in D such that f(0) 6= 0, let n(r, f)
denote the number of zeros of f in the disc {|z| ≤ r}, where each zero is
counted according to its multiplicity. We define also

N(r, f) =
∫ r

0

n(t, f)
t

dt.

It was proved in [O], (see also [GNW]) that there exists f ∈ B0, f(0) 6= 0,
such that for some β > 0

(5) N(r, f) ≥ β log log
1

1− r
, r0 < r < 1.

Let {zn} be the ordered sequence of zeros of f . We will show that for such a
function f , (4) holds. For simplicity, set n(r, f) = n(r) and N(r, f) = N(r).
Integrating by parts we obtain

∑
|zk|>rn

bk

log log
(

1
bk

)
. . . logn

(
1
bk

) ≥ ∫ 1

r0

1− r∏n
i=2 logi

1
1−r

dn(r) + O(1)

=
∫ 1

r0

r

[
n∏

i=2

logi

(
1

1−r

)]−1
1+

1+
∑n

j=3

∏n
i=j logi

(
1

1−r

)
∏n

i=1 logi

(
1

1−r

)
n(r)

r
dr+O(1)

≥
∫ 1

r0

r

[
n∏

i=2

logi

(
1

1− r

)]−1
n(r)

r
dr + O(1).
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Another integration by parts and (5) give

∫ 1

r0

r

[
n∏

i=2

logi

(
1

1− r

)]−1
n(r)

r
dr

=
∫ 1

r0

−[ n∏
i=2

logi

(
1

1− r

)]−1

+
r
(

1 +
∑n

j=3

∏n
i=j logi

(
1

1−r

))
(1− r) log

(
1

1−r

) [∏n
i=2 logi

(
1

1−r

)]2


×N(r)dr + O(1)

≥
∫ 1

r0

−[ n∏
i=2

logi

(
1

1− r

)]−1

+
r
(∏n

i=3 logi

(
1

1−r

))
(1− r) log

(
1

1−r

) [∏n
i=2 logi

(
1

1−r

)]2


×N(r)dr + O(1)

=
∫ 1

r0

−[ n∏
i=2

logi

(
1

1− r

)]−1

+
r

(1− r) log2

(
1

1−r

)∏n
i=1 logi

(
1

1−r

)


×N(r)dr + O(1)

≥C

∫ 1

r0

r

1− r

1∏n
i=1 logi

(
1

1−r

)dr + O(1) = ∞,

which ends the proof of Remark 2. �

3. Zeros of A0 functions. If f ∈ A0 and {zk} are the ordered zeros of f ,
then by Theorem 2 in [GNW]

n∏
k=1

1
|zk|

≤ c log n.

Since {|zn|} is nondecreasing, we have

n(1− |zn|) ≤
n∑

k=1

(1− |zk|) <

n∑
k=1

− log |zk| ≤ log c + log log n,

which implies (2).
Now we prove

Theorem 3. There exists f ∈ A0 such that

lim sup
n→∞

n(1− |zn|)
log log n

≥ 1
4
,
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where {zn} are the ordered zeros of f .

Proof. The reasoning we are going to apply in our proof is related to that
used by Horowitz [H2,p. 330]. Let nk = 222k

. Set

Fk(z) =
1 + 22k−2

znk−nk−1

1 + 2−2k−2znk−nk−1

and

f(z) =
∞∏

k=1

Fk(z) .

For every k, the function Fk has exactly nk − nk−1 zeros on the circle

|z| = 2−
2k−2

nk−nk−1 = e
− 2k−2 log 2

nk−nk−1 .

Moreover, we have

nk(1− |znk
|)

log log nk
=

nk

(
1− e

− 2k−2 log 2
nk−nk−1

)
log log nk

=
nk

(
2k log 2

4(nk−nk−1)
− 1

2

(
2k log 2

4(nk−nk−1)

)2

+ . . .

)
2k log 2 + log log 2

→ 1
4

, k →∞ ,

since nk−1
nk

→ 0 , as k →∞. Hence

lim sup
n→∞

n(1− |zn|)
log log n

≥ 1
4

.

Now we will prove that f ∈ A0.
If |z| = rN = 2−1/nN , then

|f(z)| =

∣∣∣∣∣
N∏

k=1

Fk(z)

∣∣∣∣∣
∣∣∣∣∣

∞∏
k=N+1

Fk(z)

∣∣∣∣∣
and∣∣∣∣∣

N∏
k=1

Fk(z)

∣∣∣∣∣ =
N∏

k=1

22k−2

∣∣∣∣∣ 2−2k−2
+ znk−nk−1

1 + 2−2k−2znk−nk−1

∣∣∣∣∣ < 22−1+20+···+2N−2
< 22N−1

.
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Since nk−nk−1 > 1
2nk and g(x) = a+x

1+ax is increasing, a ∈ (0, 1), for |z| = rN

we get ∣∣∣∣∣
∞∏

k=N+1

Fk(z)

∣∣∣∣∣ =
∞∏

k=N+1

22k−2

∣∣∣∣∣ 2−2k−2
+ znk−nk−1

1 + 2−2k−2znk−nk−1

∣∣∣∣∣
≤

∞∏
k=N+1

22k−2 2−2k−2
+ |z|nk−nk−1

1 + 2−2k−2 |z|nk−nk−1

<
∞∏

k=N+1

1 + 22k−2
2−

1
2

nk
nN

1 + 2−2k−22−
1
2

nk
nN

.

It suffices to show that
∞∑

k=N+1

2−( 1
2

nk
nN

−2k−2)
< C,

where C is independent of N . To this end, put

pk = 222k
−22N

−1 − 2k−2.

For k > N , {pk} is an increasing subsequence of positive integers, so

∞∑
k=N+1

2−pk <
∞∑

k=N+1

2−k = 2−N < 1 .

Hence |f(z)| < C22N

, if |z| = rN . Note that

rN = e
− log 2

222
N = 1− log 2

222N +
1
2

(
log 2

222N

)2

− . . .

and consequently,

log
1

1− |z|
∼ log

222N

log 2
∼ 22N

.

This means that

|f(z)| = O

(
log

1
1− |z|

)
, |z| = rN .

Now, if rN ≤ |z| ≤ rN+1 we get

|f(z)| ≤ M∞(rN+1, f) ≤ 22N

≤ C log
1

1− rN
≤ C log

1
1− |z|

.

Hence f ∈ A0. This finishes the proof. �
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