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Abstract. Assume that A, B are non-empty convex subsets of a real linear
space and let f : A → R be a given convex function. When B is determined

by a finite number of convex constraints, there are known necessary and

sufficient conditions for p ∈ A∩B to be a solution of the constrained problem
f(p) = min f(A∩B) considered as the unconstrained problem for a suitable

Lagrange function over the set A. The purpose of this article, except a short
presentation of the mentioned convex programming, is to discuss in detail a

quite different problem of maximizing f over the set A ∩B.

1. Basic concepts. Let X be a real linear space and let [x; y] (resp. (x; y))
denote the closed (resp. open) line segment joining x, y ∈ X. A subset A
of X is said to be plane (resp. convex) if `(x; y) ⊂ A for all x, y ∈ A, x 6= y
(resp. [x; y] ⊂ A for all x, y ∈ A), where `(x; y) denotes the straight line
through the points x and y. Since the intersection of a family of plane
(resp. convex) sets is again plane (resp. convex), we define the affine (resp.
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convex) hull of B ⊂ X, written af(B) (resp. co(B)), to be the smallest
plane (resp. convex) set containing B:

af(B) =


n∑

j=1

λjxj : λj ∈ R, xj ∈ B,
n∑

j=1

λj = 1, n = 1, 2, . . .

 ,

con(B) =


n∑

j=1

λjxj : λj ≥ 0, xj ∈ B,
n∑

j=1

λj = 1

 ,

co(B) =
∞⋃

n=1

con(B) .

Clearly, `(x; y) = af({x, y}) for x 6= y and [x; y] = co2({x, y}) = co({x, y}).
By Carathéodory’s theorem [5, 14 (th. 6), 15, 16 p. 73], if ∅ 6= B ⊂ Rn,
then co(B) = con+1(B) and every point of the set [∂ co(B)] ∩ co(B) can be
expressed as a convex combination of at most n points of B. Moreover, if
B has at most n components, then co(B) = con(B).

When A ⊂ X is a non-empty convex set, we will consider the families
Conv(A), Qconv(A) and Aff(A) of all convex, quasi-convex and affine real-
valued functions defined on A. By definition, a function f : A→ R is said
to be in Conv(A) (resp. Qconv(A)) if f((1−λ)x+λy) ≤ (1−λ)f(x)+λf(y)
(resp. ≤ max{f(x), f(y)}) for all x, y ∈ A and 0 < λ < 1. Furthermore,
Aff(A) = Conv(A) ∩ [−Conv(A)]. An application of Kuratowski-Zorn’s
Lemma shows that every function f ∈ Aff(A) is the restriction of a func-
tional x′ + c to the set A, where x′ is in X ′, the algebraic dual of X,
and c ∈ R. However, there are compact convex sets A in every infinite
dimensional Hilbert space X and continuous f ∈ Aff(A) that have no con-
tinuous extension to a member of {x∗ + c : x∗ ∈ X∗, c ∈ R}, where X∗

is the topological dual of X. Geometrically speaking, f ∈ Conv(A) (resp.
f ∈ Qconv(A)) if and only if the set {(x, t) : t ≥ f(x), x ∈ A} is convex
in X × R (resp. {x ∈ A : f(x) ≤ t} is convex for every t ∈ R). Moreover,
every f ∈ Conv(A) is continuous on each open line segment contained in
A (with respect to one-dimensional Euclidean topology), and it is gener-
ally false for members of Qconv(A). A function f : A → R is said to be
concave (resp. quasi-concave) iff −f ∈ Conv(A) (resp. −f ∈ Qconv(A)).
Thus all the problems for concavity one can consider in terms of convexity.
Observe that if f ∈ Aff(A) and Φ ∈ Conv(R) (or only Φ ∈ Conv(f(A))),
then Φ ◦ f ∈ Conv(A).

Let ∅ 6= A ⊂ X. We will say that p belongs to the intrinsic core of A
(or to the relative algebraic interior of A), written p ∈ icr(A), if for each
x ∈ af(A) \ {p} there is a point y ∈ (p;x) such that [p; y] ⊂ A. When A is
convex, then

icr(A) = {p ∈ X : ∀x∈A\{p} ∃y∈A p ∈ (x; y)}.
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It is common known that in any infinite dimensional linear space X there
are non-empty convex sets A with icrA = ∅, for instance

A = {
∑
α∈I

λαeα : λα ≥ 0 for α ∈ I ⊂ Λ, card(I) <∞},

where {eα : α ∈ Ω} is a given Hamel basis for X.
A finite set {x0, x1, . . . , xn} ⊂ X is affinely independent if the set {x1 −

x0, . . . , xn − x0} is linearly independent. The convex hull of such a set
is called an n-simplex with vertices x0, x1, . . . , xn. Clearly, each point of
the n-simplex S(x0, x1, . . . , xn) with vertices x0, x1, . . . , xn is uniquely ex-
pressed as a convex combination of its vertices: if x ∈ S(x0, x1, . . . , xn),
then x =

∑n
j=0 λj(x)xj with unique 0 ≤ λj(x) ≤ 1,

∑n
j=0 λj(x) = 1.

The coefficients λj(x) are called the barycentric coordinates of x. For the
n-simplex S(x0, x1, . . . , xn),

icr(S(x0, x1, . . . , xn)) =


n∑

j=0

λjxj : λj > 0,
n∑

j=0

λj = 1

 .

Suppose now that X is a linear topological space. When X is complex,
then X is also a real linear topological space if we admit only multiplica-
tion by real scalars. Let A ⊂ X. By A, ∂A, int(A), ∂af(A) and rel-int(A)
we denote the closure of A, the boundary of A, the interior of A, the rela-
tive boundary of A and the relative interior of A, both the last mentioned
with respect to af(A). If A ⊂ X is convex, then rel-int(A) ⊂ icr(A) with
equality instead of inclusion whenever rel-int(A) 6= ∅. Of course, there
are locally convex Hausdorff spaces containing infinite-dimensional com-
pact convex subsets A with rel-int(A) = ∅ 6= icrA. However, every non-
empty convex set A ⊂ Rn has a non-empty relative interior and hence
rel-int(A) = icr(A). The same holds for all closed convex subsets A of every
Banach space (which is of second category).

In the theory of convex programming there are problems having a strictly
algebraic character. Namely, assume that A, B are non-empty convex sub-
sets of a real linear space X and let f ∈ Conv(A). Consider the minimum
of f(A ∩ B), i.e. the problem of minimizing f(x) for x ∈ A subject to
the constraint x ∈ B, which is usually written as a system of simultaneous
convex constraints:

x ∈ A , fj(x) ≤ 0 , j = 1, . . . , n+ s ,

with given f1, . . . , fn ∈ Conv(A) and fn+1, . . . , fn+s ∈ Aff(A). If p is
a point of local minimum for f |A∩B (with respect to all line segments
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[p; q] ⊂ A ∩ B), then p is a global one. In fact, for a given q ∈ A ∩ B
and a sufficiently small t > 0 we have

f(p) ≤ f((1− t)p+ tq) ≤ (1− t)f(p) + tf(q) , i.e. f(p) ≤ f(q) .

Extremum problems (local, global, existence, calculation) are not new in
mathematics. However, the demand of economics as well as a common use
of personal computers has made every numerical solving of such problems
to be an important method.

2. Minima of convex functions. We will touch only a few aspects of the
convex programming. For the convenience of the reader we adapt from [1,
9, 14, 15] the typical two results that have applications concerning necessary
and sufficient optimality conditions known as the Kuhn-Tucker theorems.

Proposition 1. Let n, s be non-negative integers and let A be a non-empty
convex subset of a real linear space. Choose arbitrary f0, . . . , fn ∈ Conv(A)
and, provided s ≥ 1, non-zero functions fn+1, . . . , fn+s ∈ Aff(A). Consider

Ak ={x ∈ A : fj(x) < 0 for k ≤ j ≤ n, fj(x) ≤ 0 for n+ 1 ≤ j ≤ n+ s},
Bk ={x ∈ A : fj(x) < 0 , j = k, . . . , n+ s}

and

C[k] ≡ there exist non-negative numbers λj , 0 ≤ j ≤ n+ s, such that
k∑

j=0

λj > 0 and inf
( n+s∑

j=0

λjfj

)
(A) ≥ 0.

Here, Ak = {x ∈ A : fj(x) < 0 , j = k, . . . , n} if s = 0, and An+1 =
{x ∈ A : fj(x) ≤ 0 , j = n+ 1, . . . , n+ s} if s ≥ 1.

Under the above notation we have
(i) If A0 = ∅, then C[n+ s].

(ii) If C[k] holds for some k ∈ {1, . . . , n}, then A0 = ∅.

(iii) Suppose Bk 6= ∅ for some k ∈ {1, . . . , n+ 1}. Then A0 = ∅ if and
only if C[k − 1].

(iv) Let s ≥ 1, Ak 6= ∅ for some k ∈ {1, . . . , n} and suppose Bn+1 6= ∅
or An+1 ∩ icr(A) 6= ∅. Then A0 = ∅ if and only if C[k − 1].

Remark 1. The proof of such general result is enough simple. The point (i)
is a consequence of the separation theorem for the following convex subsets
of Rn+s+1:

U ={(f0(x) + ε0, . . . , fn(x) + εn, fn+1(x), . . . , fn+s(x)) :x ∈ A, εj > 0,

j = 0, . . . , n}
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and
V = {(ζ0, . . . , ζn+s) : ζj ≤ 0 , j = 0, . . . , n+ s}

that are disjoint if and only if A0 = ∅. In the proof of (iii)–(iv) we observe a
special form of the set V so that there is a hyperplane H = {(ζ0, . . . , ζn+s) :∑n+s

j=0 λjζj = 0} separating U from V with C[n + s] and U \ H 6= ∅. In
fact, if U ⊂ H, then H cannot be of the form {(ζ0, . . . , ζn+s) : ζj = 0},
where j ∈ {0, . . . , n+ s}. Thus one can turn H about the origin preserving
separated U and V .

Remark 2. For given f, f1, . . . , fn ∈ Conv(A) and, provided s ≥ 1, for non-
zero fn+1, . . . , fn+s ∈ Aff(A), the general convex programming problem is
to decide whether any point p ∈ A is a solution in the sense that

(1) f(p) = min{f(x) : x ∈ A, fj(x) ≤ 0 , j = 1, . . . , n+ s}.

Put f0 = f − f(p). In the notation of Proposition 1, if A0 = ∅ 6= A1, then
inf f0(A1) ≥ 0 and also inf f0({x ∈ A : fj(x) ≤ 0 , j = 1, . . . , n+ s}) ≥ 0.
Indeed, if f0(x0) < 0 for some x0 ∈ A with fj(x0) ≤ 0, j = 1, . . . , n + s,
then for every x1 ∈ A1 and 0 < t < 1 we have (1 − t)x0 + tx1 ∈ A1, and
hence

0 ≤ f0((1− t)x0 + tx1) ≤ (1− t)f0(x0) + tf0(x1) → f0(x0) < 0

as t→ 0+, a contradiction. We have thus established:

If a point p ∈ A with fj(p) ≤ 0, j = 1, . . . , n+ s, is a solution of (1), then
A0 = ∅.

If a point p ∈ A with fj(p) ≤ 0, j = 1, . . . , n + s, satisfies C[0] or A0 =
∅ 6= A1, then p is a solution of (1).

This way Proposition 1 implies

Theorem 1 (Kuhn-Tucker). With the notation of Proposition 1, let
f ∈ Conv(A), f0 = f − f(p) and suppose that one of the following three
conditions holds:

(i) B1 6= ∅,

(ii) s ≥ 1, A1 6= ∅ and Bn+1 6= ∅,

(iii) s ≥ 1, A1 6= ∅ and An+1 ∩ icrA 6= ∅.
Then p is a solution of (1) if and only if C[0] holds and p ∈ {x ∈ A :
fj(x) ≤ 0 , j = 1, . . . , n + s}. In the necessary condition we may assume
that λjfj(p) = 0 for all j = 1, . . . , n+ s.



138 W. Szapiel

Proposition 2. Let n ≥ 0, s ≥ 1 and let A be a non-empty convex subset of
a real linear space. Take arbitrary f0, . . . , fn ∈ Conv(A), fn+1, . . . , fn+s ∈
Aff(A), and consider the following sets and conditions:

Ak ={x ∈ A : fj(x) < 0 for k ≤ j ≤ n, fj(x) = 0 for n+ 1 ≤ j ≤ n+ s},
B =(fn+1, . . . , fn+s)(A) ⊂ Rs

and

C[k] ≡ there exist real numbers λj , 0 ≤ j ≤ n+ s, such that

λj ≥ 0 for 0 ≤ j ≤ n,
k∑

j=0

|λj | > 0 and inf
( n+s∑

j=0

λjfj

)
(A) ≥ 0.

Under the above notation
(i) If A0 = ∅, then C[n+ s].

(ii) If C[k] holds for some k ∈ {0, . . . , n}, then A0 = ∅.

(iii) Suppose that Ak 6= ∅ for some k ∈ {1, . . . , n} and that int(B)
contains the origin of Rs. Then A0 = ∅ if and only if C[k − 1].

Remark 3. In the proof of (i) we have to separate the convex subsets of
Rn+s+1: U from Remark 1 and {θ}, where θ is the origin of Rn+s+1. Both
the sets are disjoint if and only if A0 = ∅.

Remark 4. Like in Remark 2, for given f, f1, . . . , fn ∈ Conv(A) and
fn+1, . . . , fn+s ∈ Aff(A), a necessary (resp. sufficient) condition for p ∈ A
to be a solution of the problem
(2)
f(p)=min{f(x) : x ∈ A, fj(x) ≤ 0, 1 ≤ j ≤ n, fj(x) = 0, n+1 ≤ j ≤ n+s}

is that

(3) p ∈ {x ∈ A : fj(x) ≤ 0 if 1 ≤ j ≤ n, fj(x) = 0 if n+1 ≤ j ≤ n+s}

and A0 = ∅ (resp. (3) and C[0]), where f0 = f − f(p), while A0 and C[0]
are defined in Proposition 2.

Hence we conclude

Theorem 2 (Kuhn-Tucker). With the notation of Proposition 2, let f ∈
Conv(A), f0 = f − f(p), and suppose that A1 6= ∅ and that the set int(B)
contains the origin of Rs. Then p is a solution of (2) if and only if (3)
and C[0] hold. For the necessity we may assume that λjfj(p) = 0 when
1 ≤ j ≤ n, and fj(p) = 0 when n+ 1 ≤ j ≤ n+ s.
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3. Some convexity techniques. Let A be a non-empty subset of a real
linear space. Denote by ext(A) the set of all extreme points of A. By
definition, ext(A) = {e ∈ A : ∀a,b∈A(e ∈ [a; b] =⇒ e = a or e = b)}
and ext(co(A)) ⊂ ext(A) ⊂ A. If A is convex, then ext(A) = {e ∈ A :
A \ {a} is convex}. The basic result asserts the relation between compact
convex subsets of a locally convex Hausdorff space and their extreme points.

Theorem 3 (Krein-Milman, see [3, 9, 13, 16]). Suppose X is a linear
topological space on which X∗ separates points, e.g. X is a locally convex
Hausdorff space. If A ⊂ X is non-empty compact, then ext(A) 6= ∅. If
moreover A is convex, then A = co(ext(A)) and max f(A) = max f(ext(A))
for every continuous f ∈ Qconv(A).

Remark 5.

(i) Suppose f : A→ R is strictly quasi-convex:

f((1− λ)x+ λy) < max{f(x), f(y)}

for all 0 < λ < 1, x ∈ A, y ∈ A, x 6= y . Under the assumptions of
Theorem 3, if p ∈ A is a solution in the sense that f(p) = max f(A),
then p ∈ ext(A).

(ii) Every finite dimensional subspace of a real linear topological Haus-
dorff space X is closed and topologically isomorphic to the Euclidean
space. If now A is a non-empty compact convex subset of X with
n = dimA = dim(af(A)), then A = con+1(ext(A)) = co(ext(A)),
the Minkowski-Carathéodory theorem, see [5, 9, 13].

A generalization of the Minkowski-Carathéodory theorem is contained in

Proposition 3. Let A be a non-empty compact convex subset of X. Con-
sider Φ = (f1, . . . , fn) : A→ Rn, where the functions f1, . . . , fn ∈ Aff(A)
and all are continuous on A. Then

(i) Φ(A) is a compact convex subset of Rn with ∅ 6= ext(Φ(A)) ⊂
Φ(ext(A)).

(ii) Φ(A) = con+1(ext(Φ(A))) = Φ(con+1(ext(A))) = co(Φ(ext(A))).

(iii) Φ(A) = Φ(con(ext(A))) when the set Φ(ext(A)) has at most n-
components.

Remark 6. For X = Rn and Φ = idA, the identity map on A, we get the
Minkowski-Carathéodory theorem. The point (i) is an easy consequence of
Theorem 3: ext(A) 6= ∅, ext(Φ(A)) 6= ∅ and ext(Φ−1(e)) ⊂ ext(A) for
every e ∈ ext(Φ(A)) .
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Remark 7. Assume that P is the set of all (regular Borel) probability
measures on a compact Hausdorff space T . In the real linear space af(P−P)
of all signed finite measures on T [3, 16, 17], exp(P) = {δs : s ∈ T} and P =
co{δs : s ∈ T} in the weak ∗-topology, where δs means the Dirac measure
concentrated at s. Let ϕ : T → R be continuous and τ ∈ ϕ(T ). In [2]
the authors solved the following problem from the constrained optimization:
the sets A = {α ∈ P :

∫
T
ϕdα = τ} and

co{(1− λ)δs + λδt : 0 ≤ λ ≤ 1, s, t ∈ T, (1− λ)ϕ(s) + λϕ(t) = τ}
are the same (originally T = [0; 1] and ϕ = idT ). A profound extension of
this solution is contained in the following proposition that states the case
when there is a non-trivial variation in the examined set preserving a given
system of affine constraints.

From now we regard X as a locally convex Hausdorff space.

Proposition 4 [18, 20]. Assume that A is a non-empty compact convex
subset of X and that f1, . . . , fn are arbitrary continuous members of Aff(A).
Consider Φ = (f1, . . . , fn) : A→ Rn. Then for every a ∈ A either

(i) a ∈ con+1(ext(A))
or

(ii) there is a non-zero b ∈ X such that for all −1 ≤ t ≤ 1 we have
a+ tb ∈ A and Φ(a+ tb) = Φ(a).

Remark 8. For X = Rn and Φ = idA we get A = con+1(ext(A)), once
more the Minkowski-Carathéodory theorem. To prove Proposition 4 we
have to use Remark 5 and a fact that if x ∈ A \ cok(ext(A)), then there is a
k-simplex S ⊂ A such that x ∈ icr(S). Therefore, if a ∈ A \ con+1(ext(A)),
then a =

∑n+1
j=0 λjxj for some λj > 0, xj ∈ A with λ0 + λ1 + · · ·+ λn+1 =

1 such that xj − x0, j = 1, . . . , n + 1, are linearly independent. Since
Φ(xj)−Φ(x0), j = 1, . . . , n+ 1, are always linearly dependent in Rn, there
are real numbers s0, s1, . . . , sn such that

∑n+1
j=0 sj = 0,

∑n+1
j=0 |sj | = 1 and∑n+1

j=0 sjΦ(xj) = (0, . . . , 0). Define b = ε
∑n+1

j=0 sjxj = ε
∑n+1

j=1 sj(xj − x0),
where 0 < ε < min{λj : 0 ≤ j ≤ n+ 1}/max{|sj | : 0 ≤ j ≤ n+ 1}.
Remark 9. Suppose A, B are given non-empty compact convex subsets of
X, f ∈ Qconv(A) and A ∩ B 6= ∅. If f is continuous on A, then for every
C ⊂ X with

(4) ext(A ∩B) ⊂ C ⊂ A ∩B
we have max f(A ∩B) = max f(C). Thus the main maximization problem
is how to describe a set C satisfying (4), as small as possible, knowing only
the set ext(A) and constraints determining the set B.

The next results are direct consequences of Proposition 4.
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Theorem 4 [18, 20]. . Assume A is a non-empty compact convex subset
of X and f1, . . . , fn are continuous members of Aff(A). If Φ = (f1, . . . , fn)
and W is a non-empty compact convex subset of Φ(A), then

ext(Φ−1(W )) ⊂ A1 ∪A2 ⊂ Φ−1(W ) ∩ con+1(ext(A)) ,

where A1 = Φ−1(W ) ∩ ext(A) and

A2 =
{
x=

n+1∑
j=1

λjej :

λj ≥ 0, ej ∈ ext(A),
n+1∑
j=1

λj =1,Φ(ej) 6=Φ(es) for j 6= s,Φ(x) ∈ ∂W
}
.

Theorem 5 [19, 20]. Let A be a non-empty compact convex subset of X.
Consider the set Z = {λx : λ ≥ 0, x ∈ A} and a linear continuous map
Φ : X → Rn. If (0, . . . , 0) 6∈ Φ(A), then

(i) Z is a closed convex cone in X,

(ii) for every compact convex set W ⊂ Φ(Z) the set (Φ|Z)−1(W ) is
compact convex and

ext((Φ|Z)−1(W )) ⊂ B ⊂ (Φ|Z)−1(∂W ) ,

where

B =
{
x =

n∑
j=1

λjej :

λj ≥ 0, ej ∈ ext(A), Φ(ej) 6= Φ(es) for j 6= s, Φ(x) ∈ ∂W
}
.

In the above representation we do not claim that λ1 + · · ·+ λn = 1.

Theorem 6 [6, 12, 20]. Suppose ϕ : X → C is positively homogeneous
(i.e. ϕ(λx) = λϕ(x) for all λ ≥ 0 and x ∈ X), c ∈ C \ {0} and A is
a compact convex subset of ϕ−1(c). Let ψ ∈ Aff(A) be continuous with
0 6∈ ψ(A) and let B = {a/ψ(a) : a ∈ A}. Then

(i) B is a compact convex subset of X,

(ii) the map a 7→ a/ψ(a) is a homeomorphism of A onto B,

(iii) ext(B) = {a/ψ(a) : a ∈ ext(A)}.
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Consider now a σ-algebra B in a set T . A countable collection {Ej} of
members of B is called a partition of E if E =

∑∞
j=1Ej and Ej ∩ Es = ∅

whenever j 6= s. Let (Y, ‖ · ‖) be a real normed linear space with dimY =
k < +∞. A vector measure µ on B with values in Y is then a set function
µ : B → Y such that

(5) µ(E) =
∞∑

j=1

µ(Ej) for E ∈ B and every partition {Ej} of E .

Since µ assumes only finite values, the series (5) converges absolutely
(each rearrangement of the series (5) is convergent). Therefore the set
function

(6) |µ|(E) = sup
{ ∞∑

j=1

‖µ(Ej)‖ : {Ej} is a partition of E
}
, E ∈ B ,

is correctly defined (we may use only finite partitions), for details see [17],
where real and complex measures are considered. Since any norm in Y is
equivalent to that of the Euclidean k-space, the set function |µ|, so-called
the total variation measure of µ, is a non-negative finite measure on B.
Denote by Mk the set of all vector measures on B with values in Y , and let
θ mean the zero measure, i.e. θ(A) is the zero element of Y for all A ∈ B.

Theorem 7 [7]. Let ∅ 6= V ⊂ Y ×R. If µ0 ∈ ext{µ ∈ Mk : (µ(T ), |µ|(T ))
∈ V }, then either µ0 = θ or µ0 is purely atomic with at most k+ 1 disjoint
atoms.

Theorem 8 [10]. Fix a non-negative µ ∈ M1 and let µA, A ∈ B, denote
the measure defined by the formula: µA(B) = µ(A ∩B) for all B ∈ B. For
the convex subsets

{ν ∈ M1 : θ ≤ ν ≤ µ} and {ν ∈ M1 : θ ≤ ν ≤ µ , ν(T ) = c}

we have
(i) ext{ν ∈ M1 : θ ≤ ν ≤ µ} = {µA : A ∈ B}.

(ii) If µ is non-atomic, then

ext{ν ∈ M1 : θ ≤ ν ≤ µ , ν(T ) = c} = {µA : A ∈ B, µ(A) = c} .

(iii) If µ has atoms, 0 ≤ c ≤ µ(T ), then

ext{ν ∈ M1 : θ ≤ ν ≤ µ , ν(T ) = c} = {µA + (c− µ(A))µD/µ(D) :

A ∈ B , D is an atom of µ , A ∩D = ∅ and µ(A) ≤ c ≤ µ(A ∪D)} .

For other sets of measures and their extreme points see [10–11]. For
applications of Theorems 4–6 to holomorphic and harmonic mappings see
[6, 8, 12, 19–20].
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4. Maxima of convex functions. We start with an application of The-
orem 4.

Theorem 9. Let k, n be non-negative integers, n ≥ 1, and let A be a non-
empty compact convex subset of X. Fix arbitrary continuous f ∈ Qconv(A)
and, provided k ≥ 1, continuous f1, . . . , fk ∈ Qconv(A), and also con-
tinuous fk+1, . . . , fk+n ∈ Aff(A). For any compact convex subset W of
Φ(A) = (fk+1, . . . , fk+n)(A) consider the following convex programming
problem

(7) f(p)=max{f(x) : x ∈ A, fj(x) ≤ 0, j = 1, . . . , k, Φ(x) ∈W}, p ∈A .

(i) Assume k = 0. For the problem (7) there is a solution p ∈ A1 ∪A2,
where A1, A2 are defined in Theorem 4. Furthermore, if f is strictly
quasi-convex on A, then every solution p of (7) belongs to the set
A1 ∪A2.

(ii) Assume k ≥ 1. For the problem (7) there is a solution p ∈ A1k∪A2k,
where

A1k = {x ∈ A0 : Φ(x) ∈W}

and

A2k =
{
x =

n+1∑
j=1

λjej :

λj ≥ 0, ej ∈ A0,
n+1∑
j=1

λj = 1, Φ(ej) 6= Φ(es) for j 6= s, Φ(x) ∈ ∂W
}

with arbitrary A0 satisfying

ext{x ∈ A : fj(x) ≤ 0, j = 1, . . . , k} ⊂ A0 ⊂ {e ∈ ext(A) :

fj(e) ≤ 0, j = 1, . . . , k} ∪ {x ∈ A : f1(x) · . . . · fk(x) = 0}.

Moreover, if f is strictly quasi-convex on A, then every solution p
of (7) belongs to the set A1k ∪A2k.

An application of Theorem 5 is contained in

Theorem 10. Let Z = {λx : λ ≥ 0, x ∈ A}, where A is a non-empty com-
pact convex subset of X. Assume that Φ : X → Rn is a linear continuous
mapping with (0, . . . , 0) 6∈ Φ(A). For arbitrary continuous f ∈ Qconv(Z)
and any compact convex set W ⊂ Φ(Z) consider the problem

(8) f(p) = max{f(x) : x ∈ Z, Φ(x) ∈W}, p ∈ Z .
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Then there is a solution p of (8) belonging to the set B, see Theorem 5.
Moreover, if f is strictly quasi-convex on Z, then each solution of (8) is in
B.

A direct conclusion from Theorem 7 gives

Theorem 11. Consider the set

I = {µ ∈ Mk : Φα(µ(T ), |µ|(T )) ≥ 0, α ∈ Λ} ,

where Φα : Y × [0;∞) → R, α ∈ Λ, are arbitrarily given. If µ0 ∈ ext(I),
then either µ0 = θ or µ0 is purely atomic with at most k+ 1 disjoint atoms.

Remark 10. Suppose that I is convex and f : I → R is strictly quasi-
convex on I. If there exists max f(I) = f(µ0), µ0 ∈ I, then µ0 ∈ ext(I).

5. Illustrative examples. The classical methods, see e.g. [4], applied
to both problems described below do not work well because of involved
boundary solutions.

Problem 1. Let

A = {(x, y, z, w) : x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0, x+ y + z + w ≤ 1} .

Determine all the elements in the set

B = {(x, y, z, w) ∈ A : (2x− 2y − 2z − w)2 + (x+ 2y + 2z − 3w)2 ≤ 1}

of maximal Euclidean norm.

Problem 2. Let

Z = {(x, y, z, w) : x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0} .

Determine all the elements in the set

B = {(x, y, z, w) ∈ Z : 2(y + 5z + 5w)2 + 3x− 2y − 3z − 3w ≤ 4}

of maximal Euclidean norm.

Solution of Problem 1. Observe first that A is a 4-simplex with vertices
E0 = (0, 0, 0, 0), E1 = (1, 0, 0, 0), E2 = (0, 1, 0, 0), E3 = (0, 0, 1, 0) and
E4 = (0, 0, 0, 1). Consider the linear map Φ from R4 onto R2 defined as
follows

Φ(x, y, z, w) = (2x− 2y − 2z − w, x+ 2y + 2z − 3w) .
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Since ext(A) = {E0, E1, E2, E3, E4}, we conclude from Proposition 3 that

Φ(A) = co{Φ(Ej) : j = 0, 1, 2, 3, 4} = co{(2, 1), (−2, 2), (−1,−3)}

so that B = (Φ|A)−1(W ), where W = {(u, v) : u2 + v2 ≤ 1} ⊂ Φ(A).
According to Theorem 4, every point e ∈ ext(B) has the form: e = sE1+tEj

for j = 2, 3, 4 or e = sEj +tE4 for j = 2, 3 or else e = (1−s−t)E1+sEj +tE4

for j = 2, 3, where s ≥ 0, t ≥ 0, s + t ≤ 1, and also Φ(e) ∈ ∂W except
e = E0 ∈ B. Thus, because of Theorem 9(i), we need to consider the
following four cases.

(i) e = sE1 + tEj , j = 2, 3. Then Φ(e) ∈ ∂W = {(cosϕ, sinϕ) : −π <
ϕ ≤ π} iff

‖(s, t, 0, 0)‖ = ‖(s, 0, t, 0)‖

= [(13 + 4 sin 2ϕ− 3 cos 2ϕ)/72]1/2 ≤ 0.5

with equality only for tanϕ = 2, 0 < ϕ < π/2, that is for s = 2t =
1/
√

5.

(ii) e = sE1 + tE4. Then Φ(e) ∈ ∂W iff

‖(s, 0, 0, t)‖ = [(3− 2 sinϕ+ cos 2ϕ)/10]1/2 ≤
√

(3 +
√

5)/10

with equality only for tanϕ = (1 −
√

5)/2, −π/2 < ϕ < 0, that is

for s =
√

5 + 2
√

5/5 and t =
√

10 + 2
√

5/10. Here
√

(3 +
√

5)/10
< 0.724.

(iii) e = sEj + tE4, j = 2, 3. Then Φ(e) ∈ ∂W iff

‖(0, s, 0, t)‖ = ‖(0, 0, s, t)‖ = [(9 + sin 2ϕ+ 4 cos 2ϕ)/64]1/2

≤
√

9 +
√

17/8

with equality only for tanϕ =
√

17 − 4, −π < ϕ < −π/2, that is

for s =
√

5 + 13/
√

17/8 and t =
√

1 + 1/
√

17/4. Here
√

9 +
√

17/8
< 0.453.

(iv) e = (1− s− t)E1 + sEj + tE4, j = 2, 3. Then Φ(e) ∈ ∂W iff

‖(1− s− t, s, 0, t)‖ = ‖(1− s− t, 0, s, t)‖

=
√

151 + F (cosϕ, sinϕ)/19 ,

where F (u, v) = 4u(4u+7)+2(1+3u)(−v). Since F (u, v) ≤ 4u(4u+
7) + 2|1 + 3u| ≤ 2 for −1 ≤ u ≤ 0, |v| ≤ 1, and F (1, 0) = 44, to find
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max{F (u, v) : u2 + v2 = 1} it is enough to consider 0 ≤ u ≤ 1 and
v = −

√
1− u2. The critical points of the function

(9) u 7→ F (u,−
√

1− u2) , 0 < u < 1 ,

satisfy the equation

L(u) = (14 + 16u)
√

1− u2 = 6u2 + u− 3 = R(u) ,

where L is strictly concave on [0; 1], R is strictly convex on [0; 1],
R(0) = −3 < L(0) = 14 and R(1) = 4 > L(1) = 0. Thus there
is only one critical point u0 of the function (9), u0 = 0.99148 . . . ,
F (0,−1) = 2, F (1, 0) = 44 and F (u0,−

√
1− u2

0) = 44.52537 . . . .
Thus the maximal norm in the current case is equal to 0.735949 . . .
and is attained only by two elements (1−s−t, s, 0, t), (1−s−t, 0, s, t),
with s = (5 − 4 cosϕ + 3 sinϕ)/19, t = (6 − cosϕ − 4 sinϕ)/19,
cosϕ = u0 and sinϕ = −

√
1− u2

0 = −0.13024 . . . . Because of
(i)–(iii), this is the maximal case.

Solution of Problem 2. Observe that Z = {(λx, λy, λz, λw) : λ ≥ 0 ,
(x, y, z, w) ∈ A}, where A = co{E1, E2, E3, E4}, see the solution of Problem
1. Define

Φ(x, y, z, w) = (y + 5z + 5w, 3x− 2y − 3z − 3w) ,

a linear map from R4 onto R2. Clearly, (0, 0) 6∈ Φ(A) = co{(0, 3), (1,−2),
(5,−3)}, Φ(Z) = {(u, v) : v ≥ −2u, u ≥ 0} and B = (Φ|Z)−1(W ), where
W = {(u, v) : −2u ≤ v ≤ 4− 2u2 , u ≥ 0} ⊂ Φ(Z). By Theorem 5,

ext(B) ⊂ {λE1 : 0 ≤ λ ≤ 4/3} ∪ {λE2 : 0 ≤ λ ≤ 2}

∪

{
3 +

√
809

100
Ej : j = 3, 4

}
∪

{
4 + 2t− 2t2

3
E1 + tE2 : 0 < t < 2

}

∪

{
4 + 3t− 50t2

3
E1 + tEj : 0 < t <

3 +
√

809
20

, j = 3, 4

}

∪
{

10u2 − 3u− 20
7

E2 +
4 + 2u− 2u2

7
Ej :

3 +
√

809
20

< u < 2 , j = 3, 4

}
.

Observe that 3+
√

809
100 < 0.315, u0 = 3+

√
809

20 > 1.572, and

(i) 4−
(

4 + 2t−2t2

3

)2

− t2 =
(2−t)(4t3 + 3(2−t) + 4)

9
> 0 for 0 < t < 2 ,
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(ii)
(

4 + 3t− 50t2

3

)2

+ t2 <
4.12

9
+ 0.3152 < 2 for 0 < t < 0.315 ,

(iii)
(10u2 − 3u− 20)2 + (4 + 2u− 2u2)2

49
< 4 for u0 < u < 2 ,

since u 7→ h(u) = (10u2 − 3u − 20)2 + (4 + 2u − 2u2)2 is strictly convex
on [1; 2]. In fact, we have h′′(0) < 0 < h′′(1), which means that h′′ > 0
on [1; 2]. Hence h(u) < max{h(u0), h(2)} = 142 = h(2) for u0 < u < 2, as
we have h(u0) = (4 + 2u0 − 2u2

0)2 = 49u2
0/25 < 4.9. Finally, in accordance

with Theorem 10, the point 2E2 = (0, 2, 0, 0) is the only element of the set
B with maximal norm.

Remark 11. Suppose now that M2 (resp. M1) is the collection of all
complex (resp. real) Borel measures on a compact metric space T . The
classes of measures

Iα = {µ ∈ Mk : |µ(T )− 1|+ |µ|(T ) ≤ α}, α ≥ 1 ,

and
Uα = {µ ∈ Mk : µ(T ) = 1, |µ|(T ) ≤ α}, α ≥ 1 ,

where k = 1, 2, are both convex and weak∗-compact. In [7] the sets ext(Iα)
and ext(Uα) have been determined as an application of Theorems 7, 11.
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