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Abstract. Let zf be starlike of order λ ∈ [ 1
2
, 1), and denote by sn(f, z)

the n-th partial sum of the Taylor expansion of f about the origin. We then

prove that
sn(f, z)

f(z)
≺ (1− z)2λ−2, n ∈ N.

Applications to Gegenbauer polynomial sums are mentioned, and a new

concept of “stable” functions is briefly discussed.

1. Introduction. Let A0 be the analytic functions f in the unit disk D,
normalized by f(0) = 1. If f ∈ A we say that zf is starlike of order λ < 1,
in symbols zf ∈ Sλ, if

Re
(zf(z))′

f(z)
> λ, z ∈ D.
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Extremal elements (in various ways) in Sλ are the functions zfλ = z
(1−z)2−2λ .

For f(z) =
∑∞

k=0 akzk ∈ A0 we set sn(f, z) :=
∑n

k=0 akzk, the nth partial
sum of f . Then it is known (compare [6]) that

(1.1)
sn(f, z)

f(z)
≺ 1

f 1
2

(= 1− z), zf ∈ S 1
2

n ∈ N,

where ≺ stands for the subordination in the unit disk. This result was the
crucial ingredient in the extension of the Kakeya-Enestroem Theorem in [6],
and therefore it is of interest to ask in which sense it can be generalized.
Trivial examples show that (1.1) does not hold for any value λ < 1

2 . Starlike
functions of order λ ∈ ( 1

2 , 1) have apparently never found much interest in
the past, probably since they seem to be comparably narrow classes. Our
main result here is that, indeed, (1.1) remains valid when 1

2 is replaced by
λ in that range.

Theorem 1.1. Let λ ∈ [ 12 , 1), zf ∈ Sλ. Then

(1.2)
sn(f, z)

f(z)
≺ 1

fλ
, n ∈ N,

A consequence of (1.1) was the following result from [6]: Let zf ∈ S 1
2
,

but f(·) 6= f 1
2
(x·), |x| = 1. Then for any system µ1, ..., µn of non-negative

numbers,
∑n

k=1 µk = 1, we have

(1.3)
n∑

k=1

µksk(f, z) 6= 0, z ∈ D.

Our Theorem 1.1 adds to this:

Corollary 1.2. Let zf ∈ Sλ for some λ ∈ [ 12 , 1). Then, with the notation
from above,

(1.4)

∣∣∣∣∣arg
n∑

k=1

µksk(f, z)

∣∣∣∣∣ ≤ 2π(1− λ), z ∈ D.

In particular, we have for zf ∈ Sλ, λ ∈ [ 34 , 1):

(1.5) Re sn(f, z) > 0, z ∈ D, n ∈ N.

Natural candidates to which these results can be applied are the Gegen-
bauer polynomial sums

Pλ
n (z, x) := sn((1− 2xz + z2)−λ, z)



On starlike functions of order λ ∈ [ 1
2
, 1) 119

for 0 < λ < 1
2 , −1 ≤ x ≤ 1, since

z

(1− 2xz + z2)λ
= z

∞∑
k=0

Cλ
k (x)zk ∈ S1−λ.

Cλ
k are the Gegenbauer polynomials of degree k and order λ. Koumandos [1]

proved that the Pλ
k are non-vanishing in the closed unit disk for 0 < λ < 1

2 .
This result, however, is already contained in (1.3) (with µn = 1), and can
now be sharpened using Corollary 1.2. In particular, we get

Corollary 1.3. For 0 < λ ≤ 1
4 , n ∈ N, −1 ≤ x ≤ 1 we have

Re
n∑

k=0

Cλ
k (x)zk > 0, z ∈ D .

This estimate is not sharp with respect to the upper bound for λ. It
follows from the theory of starlike functions that the correct upper bound
λ0 will come from the cases x = 1, and numerical experiments indicate
that it will be obtained from large n. A reasonable estimate seems to be
λ0 < .35, but no proof for this is available, and the determination of λ0

seems to be a technically hard problem.

Since zf ∈ Sλ if and only if zfα ∈ S1+α(λ−1), we obtain yet another form
of this generalization of (1.1):

Corollary 1.4. Let zf ∈ S 1
2
, n ∈ N, and 0 < λ ≤ 1. Then

(1.6)
sn(fλ, z)

1
λ

f(z)
≺ 1− z.

Taking the limit λ → 0 results in the somewhat surprising relation

(1.7)
esn(log(f),z)

f(z)
≺ 1− z, n ∈ N,

valid for any zf ∈ S 1
2
. For f = f 1

2
= (1− z)−1 this turns into

(1.8)
∣∣∣(1− z)e

∑n
k=1

zk

k − 1
∣∣∣ ≤ 1, z ∈ D, n ∈ N.

Relation (1.8) is well-known: it is the standard estimate for the elementary
factors which is instrumental in the theory of the Weierstraß product repre-
sentation of entire functions (cf. [4, Lemma 15.8]). Therefore, Theorem 1.1
turns out to be just a generalization of this classical inequality of function
theory.

Corollary 1.4 can be slightly amended. Using the notations rn(f, z) :=
f(z)− sn−1(f, z) and C for the set of normalized convex univalent functions
in D we arrive at
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Theorem 1.5. Let g ∈ C, and h ≺ g. Then

(1.9) rn

(∫ z

0

h(t)
t

dt, z

)
≺

∫ z

0

g(t)
t

dt, n ∈ N.

A simple application of this result is the following general inequality:

Corollary 1.6. For all n ∈ N, τ ≥ 1, θ ∈ R we have
∞∑

k=n

cos kθ

kτ
≥

∞∑
k=1

(−1)k

kτ
.

This follows from the fact that the functions g =
∑∞

k=1 k1−τzk belong to
C (Lewis [3]). We use h = g here.

In the following section we give the proofs for our results, while in the
concluding Sect. 3 we introduce and briefly discuss a new concept of “stable”
functions.
2. Proofs. We first prove Theorem 1.1 for the cases f = fλ. Setting
α := 2− 2λ, α ∈ (0, 1], we arrive at an equivalent statement:

Lemma 2.1. For α ∈ (0, 1], n ∈ N, z ∈ D we have

(2.1)

∣∣∣∣∣(1− z)
(

sn(
1

(1− z)α
, z)

) 1
α

− 1

∣∣∣∣∣ ≤ 1.

Note that the partial sums involved are non-vanishing by (1.3), so that
the expressions under the exponents are non-ambiguous if we assume (and
we shall do so in the sequel) that the exponentiated expressions evaluate to
1 in the origin.

We further remark that (2.1) remains valid for −1 ≤ α < 0 as well. As
in our present context we do not have use for that relation, whose proof is
somewhat more delicate than for the range presently under consideration,
we do not go into the details here. But we refer to Sect. 3.

Proof. For α, n fixed set

gα(z) :=
1

(1− z)α
, h(z) := 1− (1− z)sn(gα, z)

1
α .

The relations

sn(gα, z)′ = sn−1(g′α, z), zsn(gα, z)′ = sn(zg′α, z),

are of a formal nature, and have nothing to do with the special form of gα.
They are readily verified and imply
(2.2)

(1− z)sn(gα, z)′ = sn−1(g′α, z)− sn(zg′α, z) = sn−1((1− z)g′α, z)−n
(α)n

n!
zn.
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Furthermore we make use of the differential equation

gα +
(1− z)

α
g′α = 0.

Now using (2.2) and other proper rearrangements we get the following re-
presentation

h′(z) = sn(gα, z)
1
α−1

(
sn(gα, z)− 1− z

α
sn(gα, z)′

)
= sn(gα, z)

1
α−1

(
sn−1(gα, z) +

(α)n

n!
zn − sn−1(

(1− z)
α

g′α, z) + n
(α)n

αn!
zn

)
= sn(gα, z)

1
α−1

(
sn−1(gα −

1− z

α
g′α, z) +

(α + 1)n

n!
zn

)
=

(α + 1)n

n!
znsn(gα, z)

1
α−1.

Since the Taylor coefficients of gα are all positive, we find |sn(gα, z)| ≤
sn(gα, |z|) and consequently

|h′(z)| ≤ h′(|z|), z ∈ D.

Using h(0) = 0 and h(1) = 1, we now get

(2.3) |h(z)| =
∣∣∣∣∫ z

0

h′(t)dt

∣∣∣∣ ≤ ∫ 1

0

|h′(tz)|dt ≤
∫ 1

0

h′(t)dt = 1, z ∈ D,

the assertion. �
A function zf with f ∈ A0 is said to be pre-starlike of order λ < 1 if the

function zf ∗ zfλ is in Sλ. Here, and in the sequel the operator ∗ indicates
the Hadamard product (convolution) of two analytic functions in D. We
shall need the following lemma.

Lemma 2.2. Let λ < 1, F pre-starlike of order λ, G ∈ Sλ, and H analytic
in D. Then

(2.4)
F ∗ (GH)

F ∗G
(D) ⊂ co(H(D)).

Here co(A) stands for the convex hull of a set A. Lemma 2.2 was proved,
in various steps of increasing generality, by Ruscheweyh [5], Ruscheweyh &
Sheil-Small [8], Suffridge [11], Sheil-Small [10], Lewis [2], and Ruscheweyh
[7].
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Proof. (Theorem 1.1) There exists a unique F pre-starlike of order λ
with zf = F ∗ zfλ. Using this and Lemma 2.2 we get

(2.5)
sn(f, z)

f(z)
=

F (z) ∗
(

zfλ(z)
sn(fλ, z)

fλ(z)

)
F (z) ∗ zfλ(z)

∈ co
(

sn(fλ)
fλ

(D)
)

.

The function 1/fλ is in A0 and convex univalent in D. Furthermore, its
range contains the set on the right hand side of (2.5) by Lemma 2.1. Hence
we get

sn(f, z)
f(z)

≺ 1
fλ

, n ∈ N,

the assertion. �
Proof. (Corollary 1.2) Taking convex combinations of the left hand

side of (1.2) we find

n∑
k=1

µksk(f, z) =
(

1− w(z)
1− z

)2−2λ

, z ∈ D,

where w is analytic in D with |w(z)| ≤ |z|. The relation (1.4) follows readily,
and so does (1.5) for λ ≥ 3

4 . �
For the proof of Theorem 1.5 we shall need the following lemma.

Lemma 2.3 (Ruscheweyh & Stankiewicz [9]). Let f1, f2 ∈ C, and
hj ≺ fj, for j = 1, 2. Then h1 ∗ h2 ≺ f1 ∗ f2.

Proof. (Theorem 1.5) The relation (1.8) is equivalent to

rn

(
log

1
1− z

)
≺ log

1
1− z

, n ∈ N.

The result follows from Lemma 2.3 using the facts that log 1
1−z ∈ C, and

h ∗ log
1

1− z
=

∫ z

0

h(t)
t

dt. �

3. Stable functions. Inspired by Theorem 1.1 and related results for
other functions we call a function F ∈ A0 n-stable with respect to G ∈ A0 if

(3.1)
sn(F, z)

F (z)
≺ 1

G(z)
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holds for some n ∈ N. In particular, we call F n-stable if it is n-stable with
respect to itself. If F is n-stable (w.r.t. G) for every n then we call it just
stable (w.r.t. G).

Our results show that the functions fλ, λ ∈ [ 12 , 1) are stable, while f/z
is stable with respect to fλ for any f ∈ Sλ in that same range. It is an
interesting question to find other examples of stable functions. For instance,
the extension to α ∈ [−1, 0) in Lemma 2.1 reveals that (1−z)α is stable for

−1 ≤ α ≤ 1. Another function which is known to be stable is f(z) =
√

1+z
1−z ,

and it is conjectured that the same holds for
(

1+z
1−z

)α

, 0 < α < 1
2 . These

questions and some related ones will be discussed in a forthcoming paper.
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