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Polynomial approximation of outer functions

Abstract. We are interested in finding the polynomial approximants which
retain the zero free property of a given analytic function in the unit disk. We
show using convolution methods that the classical Cesáro means of order α, as
an approximant, retains the zero free property of the derivatives of bounded
convex functions in the unit disk. A cone-like conditions is also derived. These
results generalizes the earlier results obtained in [1]. We extend this result for
other source functions and suitable polynomial approximants.

1. Introduction. Let D denote the unit disk {z : |z| < 1}. An outer
function for the class Hp (p > 0) is a function of the form

F (z) = eiγ exp
{

1
2π

∫ 2π

0

eit + z

eit − z
logψ(t)dt

}
, z ∈ D,

where γ ∈ R, ψ(t) ≥ 0, logψ(t) ∈ L1 and ψ(t) ∈ Lp. From the above
definition, it is not clear which functions are outer functions. One way
of generating outer functions is by considering Smirnov domains. It can
also be shown that the derivatives of bounded convex functions are outer
functions. An extensive study of outer functions can be found in [4] and [8]
and references therein.

2000 Mathematics Subject Classification. 30C15, 30C45.
Key words and phrases. Outer functions, polynomial approximations, Cesáro sums,
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Problem 1. If f is given as an infinite series, to find a suitable finite
(polynomial) approximation so that the approximant retains the zero-free
property of f .

For the present problem, it is natural to consider the Taylor series approx-
imation or partial sums. It was shown in [1] that the Taylor approximating
polynomials to outer functions in general can vanish on D, even if fairly
restrictive geometric conditions such as convexity are imposed on the outer
functions. This is only the case of lower order approximants whereas Hur-
witz’s theorem guarantees the existence of the solution in case of higher
order Taylor approximating polynomials. We are interested in the zero-free
property inherited by all approximants. So, a search is on for considering
various polynomial (polynomial operators) so that they maintain the zero-
free property of f . One of the polynomial best suited in the situation are
Cesáro polynomials. The Cesáro sums (see [10, p. 142]) of order α ∈ N∪{0}
of a series

∑∞
n=0 anz

n can be defined as

σα
n(z, f) =

n∑
k=0

(
n−k+α

n−k

)(
n+α

n

) akz
k,

where
(
a
b

)
= a!

b!(a−b)! . We write σ
α
n(z, f) = σα

n ∗ f(z) where ∗ denotes the
Hadamard product or convolution given in the following way. For f, g ana-
lytic with f(z) = a0 + a1z+ a2z

2 + . . . and g(z) = b0 + b1z+ b2z
2 + . . ., the

(Hadamard) convolution of f and g is defined by (f ∗g)(z) = a0b0 +a1b1z+
a2b2z

2 + . . .. It is natural to use the notation f(z) ∗ g(z) for (f ∗ g)(z) and
vice versa frequently. In [1], the Cesáro means of order one are considered
and the problem was solved for the derivatives of bounded convex functions.
So, we are interested in investigating the present problem with some other
outer functions and Cesáro means of higher order and other polynomial
approximants. The outer functions play a vital role in the discussion and
a careful analysis is needed to find the outer functions. Jentzsch’s (see [3,
p. 352]) classical result shows that the circle of convergence for a Taylor
series is a subset of the set of limit points of the zero sets of the sequence
of Taylor approximants (partial sums). In [1], it was shown that Jentzsch’s
theorem can be extended to the first order Cesáro sums of order one. It
is observed in [2] that the limit set to the zeros of Cesáro means of higher
order contains much more than the circle of convergence and this is stated
as

Theorem 1 ([2]). Let σα
n be the Cesáro sums of order αof f(z)=

∑∞
k=0 anz

n,
z ∈ D, where {an} is a positive monotonically decreasing sequence such that

an
an+1

→ 1, and a0
am

≤ a mb for some a, b ∈ R. Then



Polynomial approximation of outer functions 119

lim
σα

n(z)
n!α!

(n+α)!anzn
=

1(
1− 1

z

)α+1

uniformly for |z| ≥ 1 + δ, δ > 0.

We require some basic facts and notations for further discussion.
Let A denote the class of functions analytic in D and S denote the class
of functions in A such that f is one-to-one in D and f(0) = 0 = f ′(0) − 1.
We recall the following subclasses of S.
A function f ∈ A is starlike of order α for some 0 < α < 1, if

Re
zf ′(z)
f(z)

> α, z ∈ D.

S∗(α) denotes the class of these functions. By C(α) we mean the class of
convex functions of order α, 0 < α < 1, defined as

f ∈ C(α) ⇐⇒ zf ′ ∈ S∗(α), z ∈ D.

S∗(0) = S∗ and C(0) = C denote the well-known class of functions that map
D onto starlike and convex domains respectively.
It is known that the class K(α) ⊂ A of close-to-convex functions f of
type α satisfying

∃ g ∈ S∗(α), φ ∈ R : Re
eiφzf ′(z)
g(z)

> 0, z ∈ D,

are univalent for α ≥ 0.
By P(α), we mean the class of functions f satisfying the condition Re f(z)

> α, z ∈ D. For a detailed study of the above subclasses and various other
classes we refer to [5].
A function f ∈ A is in the class of prestarlike functions of order α denoted
by R∗(α) (see [10, p. 48]), if and only iff ∗

z
(1−z)2−2α ∈ S∗(α), α < 1

Re f(z)
z > 1

2 , α = 1

for z ∈ D.
Note that the factor z/(1 − z)2−2α itself is in S∗(α). Thus we have

R∗(1/2) = S∗(1/2) and R∗(0) = C.
The Cesáro sums of order α, α ≥ 1 play an important role in geometric
function theory (see e.g. [9], [10] and [11]). In particular, we give the
following results.

Lemma 1 ([11]). For n ∈ N, we have
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(i) zσα
n ∈ R∗ (

3−α
2

)
for α ≥ 1, z ∈ D.

(ii) zσα
n ∈ S∗

(
1
2

)
for α ≥ 2, z ∈ D.

(iii) zσα
n ∈ C for α ≥ 3, z ∈ D.

Lemma 2 ([10]).
(i) For 0 < β < α ≤ 1 we have R∗(β) ⊂ R∗(α).
(ii) Let 0 ≤ α ≤ 1 and f ∈ R∗(α), g ∈ S∗(α). Then f ∗ g ∈ S∗(α).
A corresponding result holds with S∗(α) replaced by either of C(α),
K(α), R∗(α).

We now give a slight reformulation of a theorem given in [10].

Lemma 3 ([10]). Let 0 ≤ α ≤ 1. Then for f ∈ R∗(α), g ∈ S∗(α) and
p ∈ P(α), there exist p1 ∈ P(α) such that f ∗ gp = (f ∗ g)p1, where p1(z) ∈
P(α).

2. Main results.

Theorem 2. Let f ∈ A be such that f(D) is convex. Then, the Cesáro
means σα

n(z, f ′) of order α ≥ 1 of f ′ are zero-free on D for all n.

Proof. Consider σα
n(z, f ′). Let k be defined as k(z) = z/(1− z)2 and note

that zf ′(z) = k(z) ∗ f(z). Then,

σα
n(z, f ′) = σα

n(z) ∗ f ′(z)

=
1
z

{
zf ′(z) ∗ zσα

n(z)
}

=
1
z

{
f(z) ∗ z (zσα

n(z))′
}
.

We know that zσα
n(z) ∈ K(0). Therefore, there exists g ∈ S∗ such that by

the definition of K(0), z (zσα
n(z))′ = g(z)p(z), where p(z) ∈ P(0). So,

σα
n(z, f ′) =

f(z) ∗ g(z)p(z)
z

.

Now, by Lemma 3, f ∈ C = R∗(0) and g ∈ S∗ we have f(z) ∗ g(z)p(z) =
(f(z) ∗ g(z))p1(z) to give

σα
n(z, f ′) =

[f(z) ∗ g(z)] p1(z)
z

.

We know that Re p1(z) > 0 and f ∗ g = 0 if and only if z = 0. Hence,
σα

n(z, f ′) 6= 0 and the proof is complete. �

Recall that h ∈ C implies that h(z)/z ∈ P(1/2) and h(z) ∈ S∗(1/2). Now,
we try to find some cone condition on the boundary for the approximants
of Cesáro means of order α.



Polynomial approximation of outer functions 121

Theorem 3. Let f ∈ C. Then for α ≥ 1, σα+1
n (z, f ′) have their ranges

contained in a cone (from 0) with opening 2βπ, where β < 1.

Proof. We note that Marx–Strohhäcker theorem states that (see [5] for
details) f ∈ C ⇒ f ∈ S∗(1/2). We write,

σα+1
n (z, f ′) = σα+1

n (z) ∗ f ′(z)

=
1
z

{
zf ′(z) ∗ zσα+1

n (z)
}

=
1
z

{
f(z) ∗ z

(
zσα+1

n (z)
)′}

=
1
z

{
f(z) ∗ zσα+1

n (z)
z

(
zσα+1

n (z)
)′

zσα+1
n (z)

}
.

Now, by Lemma 1, we have

zσα+1
n (z) ∈ S∗(1/2) ⇐⇒

z
(
zσα+1

n (z)
)′

zσα+1
n (z)

=: p(z)

where p(z) ∈ P(1/2). By using an argument similar to Theorem 2, we get

σα+1
n (z, f ′) =

f(z) ∗
(
zσα+1

n (z)
)
p(z)

z

=
f(z) ∗ zσα+1

n (z)p1(z)
z

, p1(z) ∈ P(1/2).

As f ∈ S∗(1/2) and zσα+1
n (z) ∈ S∗(1/2), by Lemma 2, we have f(z) ∗

zσα+1
n (z) ∈ S∗(1/2). From [7, p. 57], we get 1

z{f(z) ∗ zσα+1
n (z)} ∈ P(1/2).

Since 1
z{f(z) ∗ zσα+1

n (z)} is a polynomial, it is bounded, and hence there
exists β1 < 1 such that∣∣∣∣arg

f(z) ∗ zσα+1
n (z)

z

∣∣∣∣ < β1π

2
.

Therefore, we have

∣∣arg σα+1
n (z, f ′)

∣∣ =
∣∣∣∣arg

f(z) ∗ zσα+1
n (z)

z
· p1(z)

∣∣∣∣
≤

∣∣∣∣arg
f(z) ∗ zσα+1

n (z)
z

∣∣∣∣ + |arg p1(z)|

≤ β1π

2
+
π

2
= βπ.

�



122 A. Swaminathan

We note that the above result is valid for f ∈ S∗(1/2) as well and cannot
be improved in general for f ∈ S∗ using the above method.
In Theorem 2, we verified that zero-free property of f is retained by the
approximant σα

n(z). We are interested in looking for various other source
functions and suitable polynomial approximation (Cesáro sums or other
polynomial) which makes the approximant zero-free. We are not aware
whether the source functions are outer functions (zero-free). The source
functions in Theorem 2 and Theorem 3 are derivatives of bounded convex
functions and hence zero-free.
Now we consider the general case f ∈ R∗(α). To get a result similar to
Theorem 2 and Theorem 3 we need to have convolution results related to
the class R∗(α). For this we might prefer a polynomial which is in K(α).
Hence we look at the following polynomial.
Consider the polynomial qα

n(z) defined by

zqα
n(z) =

∞∑
k=0

(1, n)
(2− 2α, n)

(2− 2α, k)
(1, k)

(2− 2α, n− k)
(1, n− k)

zk+1

k + 1
, z ∈ D.

Here the Pochhammer symbol (a, r) is defined by (a, r) = a(a + 1) · · · (a +
r − 1) and (a, 0) = 1. It is known that zqα

n(z) ∈ K(α) for α ≤ 1/2 (see [6,
p. 1118]). We write z qα

n(z, f) = z qα
n(z) ∗ f(z) where f ∈ A.

Theorem 4. Let f ∈ R∗(α), α ≤ 1/2. Then, qα
n(z, f ′) are zero-free in D.

Proof. Proceeding similarly to Theorem 2, we get

(1)

qα
n(z, f ′) = qα

n(z) ∗ f ′(z)

=
1
z

{
zf ′(z) ∗ zqα

n(z)
}

=
1
z

{
f(z) ∗ z (zqα

n(z))′
}
.

zqα
n(z) ∈ K(α) implies that there exists g(z) ∈ S∗(α) such that z(zqα

n(z))′ =
g(z)p(z) where p(z) ∈ P(0). Therefore, using Theorem 3, (1) gives

qα
n(z, f ′) =

1
z
{f(z) ∗ g(z)p(z)}

=
1
z
{f(z) ∗ g(z)} p1(z), p1(z) ∈ P(0).

Now by Theorem 2 we get f ∈ R∗(α), g ∈ S∗(α) =⇒ f(z) ∗ g(z) ∈ S∗(α)
and f(z) ∗ g(z) = 0 if and only if z = 0. Since Re p1(z) > 0 we deduce
qα
n(z, f ′) 6= 0 and the proof is complete. �
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