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Abstract. Directly inspired by the well-known construction of a nonlinear
self-mapping of the unit ball of the Hilbert space `2 due to K. Goebel and
W.A. Kirk, we introduce a new class of uniformly lipschitzian fixed point free
mappings.

1. Introduction. A considerable part of metric fixed point theory is de-
voted to the study of nonexpansive mappings, (those which have Lipschitz
constant k = 1) in closed convex bounded subsets of Banach spaces. If C
is such a set and k > 0, a mapping T : C → C is k-uniformly lipschitzian
on C if all the iterates Tn of T have the same Lipschitz constant k. This
class of mappings was introduced by K. Goebel and W.A. Kirk [5], and it
is strictly larger than the class of nonexpansive mappings. They obtained a
fixed point theorem for k-uniformly lipschitzian mappings whenever k is suf-
ficiently close to 1 (but greater than 1) in uniformly convex Banach spaces,
and a bit later both authors together with R.E. Thele gave a similar result
in Banach spaces with characteristic of convexity less than 1.
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Other fixed point theorems for uniformly lipschitzian mappings were
given by Lifschitz [11], Casini–Maluta [1], and Domı́nguez Benavides [2]
among many others (see the survey [7] for details). Roughly speaking, all
of them claim that, under suitable geometrical conditions for the Banach
space (X, ‖·‖), there exists k(X) > 1 such that if λ < k(X), each uniformly
λ-lipschitzian self-mapping of any weakly compact convex subset of X has
a fixed point. A surprising characteristic of all these results is that none
of them seems to be sharp, that is, no maximal value for k(X) is known.
Even in the Hilbert spaces case, to fill this gap is a famous open problem:
the greatest value known for k(H) is

√
2 but no fixed point free k-uniformly

lipschitzian mapping is known with k < π
2 .

Thus, one can say that the fixed point theory for uniformly lipschitzian
mappings needs an enlargement of the class of the examples of the fixed
point free ones. The aim of these notes is to start this enlargement, by doing
certain modifications on a celebrated example due to K. Goebel, W.A. Kirk
and R.E. Thele given in [8].

2. Preliminaries. All the results of this paper are established in `2, the
classical real space of all sequences x = (xn) for which

∑∞
i=1 x2

i < ∞.
The Euclidean norm ‖x‖2 :=

√∑∞
i=1 x2

i is associated to the ordinary inner

product 〈x, y〉 =
∑∞

n=1 xnyn. The standard Schauder basis of (`2, ‖·‖2) will
be denoted by (en).
If ‖·‖ is a norm on `2 equivalent to ‖·‖2, we will say that ‖·‖ is a renorming
of `2.
We will denote the closed balls and the spheres as follows:

B‖·‖ := {x ∈ `2 : ‖x‖ ≤ 1}, S‖·‖ := {x ∈ `2 : ‖x‖ = 1}.

Also we will be concerned with the sets

B+
‖·‖ := {x ∈ B‖·‖ : xi ≥ 0, i = 1, 2, . . .}

and S+
‖·‖ := B+

‖·‖ ∩ S‖·‖.

In particular, B2 := B‖·‖2 , S2 := S‖·‖2 , B
+
2 := B+

‖·‖2 and S+
2 := S+

‖·‖2 .
If C is a closed convex subset of `2, ‖·‖ a renorming of `2 and T : C → C a
lipschitzian mapping, by Lip (T,C, ‖·‖) we will denote the Lipschitz constant
of T on C with respect to the metric associated to the norm ‖·‖. Moreover
if T is uniformly lipschitzian on C, the symbol Ulip (T,C, ‖·‖) will be used
instead of supn Lip (Tn, C, ‖·‖).
The right shift operator S : `2 → `2, is

S(x1, x2, . . .) = (0, x1, x2, . . .).

Of course B2, B+
2 , S2 and S+

2 are S-invariant sets.
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Recall that two non zero vectors v, w ∈ `2 are said to be isosceles orthog-
onal (with respect to the renorming ‖·‖), provided that ‖v + w‖ = ‖v−w‖.
We complete this preliminary section giving a summary of well-known
results (although we include some proof for the sake of readability).

2.1. The Kakutani mapping. Let ε ∈ (0, 1]. By Kakutani mapping we
will mean the transformation ϕε : B2 → B2 given by

ϕε(x) = ε(1− ‖x‖2)e1 + S(x)

where e1 = (1, 0, . . .) ∈ `2. In fact, the original example given by Kakutani
in [10] was ϕ 1

2
. Note that

ϕε(x) =

{
(1− ‖x‖2)(εe1) + ‖x‖2S

(
1

‖x‖2 x
)

, x 6= 0`2

εe1, x = 0`2 .

It is straightforward to see that the map ϕε has the ‖·‖2-Lipschitz con-
stant

√
1 + ε2. Moreover, the following facts are well-known.

(1) The mapping ϕε is fixed-point free.
(2) The set B+

2 is ϕε-invariant.
(3) The Lipschitz constant of ϕε in B2 with respect to any other renorm-
ing is greater or equal to

√
1 + ε2 (see [14]).

(4) inf{‖x− ϕε(x)‖ : x ∈ B+
2 } = 0. In fact, one can say a bit more:

inf{‖x− ϕε(x)‖ : x ∈ S+
2 } = 0

(hence inf{‖x− S(x)‖ : x ∈ S+
2 } = 0).

(5) The mapping ϕε is not uniformly lipschitzian in B+
2 (see [15]).

(6) ‖ϕε(x)‖2 =
[
(1 + ε2)‖x‖2

2 − 2ε2‖x‖2 + ε2
]1/2 ≥ ε√

1+ε2
.

2.2. The K. Goebel, W.A. Kirk and R.L. Thele mapping. By
Goebel–Kirk–Thele mapping we shall refer to the one defined in [8] as R :
B+

2 → S+
2 given by

R(x) =
1

‖ϕ1(x)‖2
ϕ1(x).

It was claimed in [8] that R is uniformly-2-lipschitzian on B+
2 (with re-

spect to the Euclidean norm).
For convenience we will slightly modify this mapping here and we will
consider the self-mappings of B+

2 given by

Rε(x) =
1

‖ϕε(x)‖2
ϕε(x).
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It is straightforward to see that every mapping Rε is fixed point free.

Lemma 1. If x, y ∈ `2, x 6= 0`2 6= y, and ‖·‖ is a norm in this space
associated to a scalar product 〈·, ·〉, then∥∥∥∥ 1

‖x‖
x− 1

‖y‖
y

∥∥∥∥ ≤ 1
‖x‖ ∧ ‖y‖

‖x− y‖.(1)

Proof. If x, y ∈ `2, x 6= 0`2 6= y,∥∥∥∥ 1
‖x‖

x− 1
‖y‖

y

∥∥∥∥2

= 2− 2
‖x‖‖y‖

〈x, y〉

=
2‖x‖‖y‖ − 2 〈x, y〉

‖x‖‖y‖

=
2‖x‖‖y‖+ (‖x− y‖2 − ‖x‖2 − ‖y‖2)

‖x‖‖y‖

=
‖x− y‖2 − (‖x‖ − ‖y‖)2

‖x‖‖y‖

≤ ‖x− y‖2

‖x‖‖y‖

≤ ‖x− y‖2

(‖x‖ ∧ ‖y‖)2
.

�

Proposition 1. For every x, y ∈ B2 and n ∈ N,

‖Rn
ε (x)−Rn

ε (y)‖2 ≤
1 + ε2

ε
‖x− y‖2(2)

Proof.

‖Rε(x)−Rε(y)‖2 =
∥∥∥∥ 1
‖ϕε(x)‖2

ϕε(x)− 1
‖ϕε(y)‖2

ϕε(y)
∥∥∥∥

≤ 1
‖ϕε(x)‖2 ∧ ‖ϕε(y)‖2

‖ϕε(x)− ϕε(y)‖2

≤ 1
ε√

1+ε2

‖ϕε(x)− ϕε(y)‖2

≤
√

1 + ε2

ε

√
1 + ε2‖x− y‖2

=
1 + ε2

ε
‖x− y‖2 .
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Since
Rn+1

ε = Sn ◦Rε.

for n ≥ 1 we see that all the iterates Rn
ε have the same Lipschitz constant

as Rε. �

One can check that the real function ε 7→ 1+ε2

ε , (ε > 0) attains its mini-
mum value 2 at ε = 1. Therefore, in this sense, the original GKT mapping
R1 is the best choice among all that may be constructed in this way.

3. Modifying the norm. In this section we will introduce a class of non-
linear mappings in `2, which is, in fact, an elementary generalization of the
Kakutani and GKT mappings.

3.1. The generalized Kakutani mappings. For ε > 0 and ‖·‖ an
arbitrary renorming of `2, let ϕε,‖·‖ : `2 → `2 be the mapping given by

ϕε,‖·‖(x) := ε(1− ‖x‖)e1 + S(x).

If x 6= 0`2 , one can write

ϕε,‖·‖(x) := (1− ‖x‖)(εe1) + ‖x‖S
(

1
‖x‖

x

)
.

Hence, ‖ϕε,‖·‖(x)‖ ≤ 1 whenever ‖εe1‖ ≤ 1, ‖S‖ ≤ 1 and ‖x‖ ≤ 1. Thus,
ϕε,‖·‖ leaves invariant the unit ball of (`2, ‖·‖), (as well as its positive part
B+
‖·‖), provided that the above first two conditions are fulfilled.
Again it is straightforward to see that ϕε,‖·‖ has no fixed points.

Proposition 2. There exists m > 0 (depending on ε and ‖·‖), such that
for every x ∈ B‖·‖,

‖ϕε,‖·‖(x)‖ ≥ m.

Proof. Assuming it is not so, there exists a sequence (xn) in B‖·‖ such that
‖ϕε,‖·‖(xn)‖ → 0, that is,

ε(1− ‖xn‖)e1 + S(xn) → 0`2 .

If P1 is the projection P1(x1, x2, . . .) = x1, then

P1[ε(1− ‖xn‖)e1 + S(xn)] → 0,

which implies that ‖xn‖ → 1. Therefore,

‖S(xn)‖ ≤ ‖ε(1− ‖xn‖)e1 + S(xn)‖+ ‖ε(1− ‖xn‖)e1‖
= ‖ϕε,‖·‖(x

n)‖+ ‖ε(1− ‖xn‖)e1‖ → 0,

and this forces that ‖xn‖2 = ‖S(xn)‖2 → 0, a contradiction. �
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It is easy to see that Lip
(
ϕε,‖·‖, B‖·‖, ‖·‖

)
≤ ε‖e1‖ + ‖S‖. Nevertheless,

it is shown in [15] that the mapping ϕ1,‖·‖2 is not uniformly lipschitzian on
B2. We do not know if the same is true for an arbitrary ϕε,‖·‖ on B‖·‖.

3.2. The Goebel–Kirk–Thele generalized mappings. For ε > 0 and
‖·‖ an arbitrary renorming of `2 we define the mapping Rε,‖·‖ : B‖·‖ → S‖·‖
as

Rε,‖·‖(x) :=
1

‖ε(1− ‖x‖)e1 + S(x)‖
[ε(1− ‖x‖)e1 + S(x)]

=
1

‖ϕε,‖·‖(x)‖
ϕε,‖·‖(x).

Notice that this mapping is well-defined, because m := inf{‖ϕε,‖·‖(x)‖ : x ∈
B‖·‖} > 0, as it was noted in Proposition 2. Even for ε > 1 these mappings
are well-defined too. In fact, Rε,‖·‖(B

+
‖·‖) ⊂ S+

‖·‖.
These mappings have not fixed points in B‖·‖. Indeed, if Rε,‖·‖(x) = x
for some x ∈ B‖·‖ then one has that ‖x‖ = 1 and hence

x =
1

‖S(x)‖
S(x).

If x = (x1, x2, x3, . . .) then

x1 = 0,

x2 =
1

‖S(x)‖
x1 = 0,

x3 =
1

‖S(x)‖
x2 = 0,

...

It follows that x = 0`2 , a contradiction.
On the other hand,

R2
ε,‖·‖(x) =

1
‖S(Rε,‖·‖(x))‖

S(Rε,‖·‖(x)).

If S is a ‖·‖-isometry then ‖S(Rε,‖·‖(x))‖ = ‖Rε,‖·‖(x)‖ = 1 and

Ulip
(
Rε,‖·‖, B‖·‖, ‖·‖

)
= Lip

(
Rε,‖·‖, B‖·‖, ‖·‖

)
.

(Of course, it is impossible that ‖S‖ < 1 because, under this assumption, S
would be a strict contraction leaving invariant the closed set S2, and then
S must have a fixed point in S2, which is absurd). If ‖S‖ > 1 then the
mapping Rε,‖·‖ is still well-defined, as well as if ε > 1, but it is unclear
whether or not Rε,‖·‖ is uniformly lipschitzian in this case.
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Remark 1. If the right shift S is an isometry then the restriction of the
mapping Rε,‖·‖ to the sphere S‖·‖ is in fact the shift S. This right shift is
fixed point free and has minimal displacement dS := inf{‖x−S(x)‖ : x ∈ S2}
equal to 0. We surely can expect a similar behavior of Rε,‖·‖ on S‖·‖. For
some interesting comments about the minimal displacement of uniformly
lipschitzian mappings one can see [9].

Let us to point out that from the Massera–Schaffer inequality (see [12]),
for x, y ∈ B‖·‖ we have

‖Rε,‖·‖(x)−Rε,‖·‖(y)‖ =
∥∥∥∥ ϕε,‖·‖(x)
‖ϕε,‖·‖(x)‖

−
ϕε,‖·‖(y)
‖ϕε,‖·‖(y)‖

∥∥∥∥
≤ 2

max{‖ϕε,‖·‖(x)‖, ‖ϕε,‖·‖(y)‖}
‖ϕε,‖·‖(x)− ϕε,‖·‖(y)‖.

Since
‖ϕε,‖·‖(x)− ϕε,‖·‖(y)‖ ≤ (ε‖e1‖+ ‖S‖)‖x− y‖,

we conclude that

Lip
(
Rε,‖·‖, B‖·‖, ‖·‖

)
≤ 2(ε‖e1‖+ ‖S‖)

m
.

where m := inf{‖ϕε,‖·‖(y)‖ : y ∈ B‖·‖}.
The following result will give us lower bounds for the Lipschitz constant
of Rε,‖·‖. We will show that it is hard to improve the Lipschitz constant 2,
just the one which has R1,‖·‖ in the Euclidean case.
With more precision, depending on the existence of a vector in the ‖·‖-
sphere such that S(v) is in some sense orthogonal to e1, all these mappings
have a bad Lipschitz constant k with respect to ‖·‖ in the unit ball, in the
sense that this is greater or equal to 2.

Theorem 1. Let Rε,‖·‖ : B+
‖·‖ −→ S+

‖·‖ be the Goebel–Kirk–Thele type map-
ping given by

Rε,‖·‖(x) :=
1

‖ϕε,‖·‖(x)‖
ϕε,‖·‖(x).

If there exists v ∈ S+
‖·‖ such that

1) S(v) is isosceles orthogonal to εe1,
2) for all positive real numbers a, b,

‖aεe1 + bS(v)‖ = ‖bεe1 + aS(v)‖,

then
Lip

(
Rε,‖·‖, B‖·‖, ‖·‖

)
≥ 2.
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Proof. Let v ∈ S+
‖·‖ be the vector whose existence is assumed.

Then, if k is the Lipschitz constant of Rε,‖·‖, for η > 0 small enough,

k ≥
‖Rε,‖·‖

(
(1/2 + η)v

)
−Rε,‖·‖((1/2− η)v

)
‖

‖(1/2 + η)v − (1/2− η)v‖

=
1
2η
‖Rε,‖·‖

(
(1/2 + η)v

)
−Rε,‖·‖

(
(1/2− η)v

)
‖

=
1
2η

∥∥∥∥ ε(1/2− η)e1+(1/2 + η)S(v)
‖(1/2− η)εe1+(1/2 + η)S(v)‖

− ε(1/2 + η)e1+(1/2− η)S(v)
‖(1/2 + η)εe1+(1/2− η)S(v)‖

∥∥∥∥
=
‖((1/2− η)εe1 + (1/2 + η)S(v))− ((1/2 + η)εe1 + (1/2− η)S(v))‖

2η‖(1/2− η)εe1 + (1/2 + η)S(v)‖

=
‖2η(S(v)− εe1)‖

2η‖(1/2− η)εe1 + (1/2 + η)S(v)‖

=
‖S(v)− εe1‖

‖(1/2− η)εe1 + (1/2 + η)S(v)‖
.

Letting η → 0,

k ≥ 2
‖S(v)− εe1‖
‖S(v) + εe1‖

.

If S(v) is orthogonal to εe1 in the isosceles sense, then k ≥ 2 which completes
the proof. �

The existence of such a vector v satisfying conditions (1) and (2) of The-
orem 1 is unclear, in the sense that it depends on the norm considered in
`2. In any case, condition (2) implies that ε‖e1‖ = ‖S(v)‖.

Example 1. If we consider the James norms on `2

|x|β := max{‖x‖2, β‖x‖∞},

(where β > 1), then taking v = e1 we see that S(v) = e2 is isosceles
orthogonal to e1, because

‖e2 + e1‖2 =
√

2 = ‖e2 − e1‖2,

‖e2 + e1‖∞ = 1 = ‖e2 − e1‖β .

Hence,
|e2 + e1|β = max{

√
2, β} = |e2 − e1|β .

On the other hand, for positive a, b,

‖ae2 + be1‖2 =
√

a2 + b2 = ‖be2 + ae1‖2,

‖ae2 + be1‖∞ = max{|a|, |b|} = ‖be2 + ae1‖∞.



Some remarks about the Goebel–Kirk–Thele mapping 107

Hence |ae2 + be1|β = |be2 + ae1|β . Thus, Lip
(
R1,|·|β , B|·|β , |·|β

)
≥ 2.

Remark 2. The key fact in the proof of Theorem 1 is that the GKT type
mappings have their highest expansivity around the sphere of radius 1

2 . For
example, if e1, e2 ∈ S+

‖·‖, and ‖εe1+e2‖ = ‖εe1+e3‖, with the same notation
as in the above proof we have,

k ≥
‖Rε,‖·‖

(
(1/2)e1

)
−Rε,‖·‖

(
(1/2)e2

)
‖

‖(1/2)e1 − (1/2)e2‖

=

∥∥∥ ε(1/2)e1+(1/2)e2

‖(1/2)εe1+(1/2)e2)‖ −
ε(1/2)e1+(1/2)e3

‖(1/2)εe1+(1/2)e3‖

∥∥∥
‖(1/2)e1 − (1/2)e2‖

=

∥∥∥ εe1+e2
‖εe1+e2‖ −

εe1+e3
‖εe1+e3‖

∥∥∥
‖(1/2)e1 − (1/2)e2‖

= 2
‖e2 − e3‖

‖εe1 + e2‖‖e1 − e2‖
.

This bound is in general smaller than 2. In fact, one can say a bit more
concerning the expansivity of the GKT type mappings: it is greater if we
consider pairs of vectors with norm near to 1

2 , and both vectors belonging
to a straight line passing through the origin.

Recall that a Banach space (X, ‖·‖) has the WORTH property [16] if

lim
n→∞

|‖xn − x‖ − ‖xn + x‖| = 0

for all x in X and for all weakly null sequences (xn).
If we have in B+

‖·‖ a weakly null sequence (vn) satisfying condition (2)
of the above theorem, then removing condition (1) we still can get a lower
bound of the Lipschitz constant k.

Theorem 2. Let Rε,‖·‖ : B+
‖·‖ −→ S+

‖·‖ be the Goebel–Kirk–Thele type map-
ping given by

Rε,‖·‖(x) :=
1

‖ϕε,‖·‖(x)‖
ϕε,‖·‖(x).

If there exists a weakly null sequence (vn) in S+
‖·‖ such that

2’) for all positive real numbers a, b, and positive integer n,

‖aεe1 + bS(vn)‖ = ‖bεe1 + aS(vn)‖

and if (`2, ‖·‖) has the WORTH property then

Lip
(
Rε,‖·‖, B

+
‖·‖, ‖·‖

)
≥ 2.



108 E. Llorens-Fuster

Proof. Repeating the same argument as in the above proof, we obtain

k ≥ 2
‖S(vn)− εe1‖
‖S(vn) + εe1‖

.

By passing to subsequences if necessary we may suppose that there exist
the real numbers limn ‖S(vn)− εe1‖ and limn ‖S(vn)− εe1‖.
Since S is a bounded operator, (S(vn)) is a weakly null sequence. More-
over, WORTH property implies that

lim
n
‖S(vn)− εe1‖ = lim

n
‖S(vn) + εe1‖.

Thus,

k ≥ 2 lim
n

‖S(vn)− εe1‖
‖S(vn) + εe1‖

= 2.

�

4. Behavior under renormings. If T : C −→ C is fixed point free and
uniformly lipschitzian on C with respect to ‖·‖, one could imitate the well-
known Bielecki’s approach, looking for a renorming |·| of X for which T
becomes nonexpansive (and of course fixed point free) on C or, at least,
with a smaller Lipschitz constant.
That was the underlying purpose of the authors of the recent papers [4],
[14], [15], although they did not succeed.
The set C under consideration could be at least as relevant as the norm,
in order to obtain reductions of the Lipschitz constant of a mapping. To
illustrate this, we can regard a celebrated example due to T.C. Lim ([13]).
He defined a mapping T in the classical space `1, such that

Lip (T , B`1 [0`1 , 1], ‖·‖1) = 2

but

Lip
(
T , B+

1 , ‖·‖
)

= 1

where

B+
1 :=

{
x ∈ `+

1 : xn ≥ 0,

∞∑
n=1

xn ≤ 1

}
and ‖x‖ := max{‖x+‖1, ‖x−‖1}. (Here x+, x− is respectively the positive
and the negative part of x ∈ `1).
These facts show that dramatic reductions of the Lipschitz constant of
a mapping T are possible by renormings of the underlying space, mainly
when T is restricted to a suitable T -invariant subset of its domain.
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Nevertheless, for the Kakutani mapping ϕε,‖·‖2 , it was shown in [14] that
its Lipschitz constant on B2,

√
1 + ε2, can not be reduced after renorm-

ings. But the following example shows that for the generalized Kakutani
mappings some reductions are possible.

Example 2. Let ‖·‖ be the norm on `2 defined as

‖x‖ := |x1|+ ‖(x2, x3, . . .)‖2.

It is straightforward to see that ‖x‖2 ≤ ‖x‖ ≤
√

2‖x‖2 for each x ∈ `2.
We have that Lip

(
ϕ1,‖·‖, B‖·‖, ‖·‖

)
= 2 . Indeed, for x, y ∈ B‖·‖,

‖ϕ1,‖·‖(x)− ϕ1,‖·‖(y)‖ = ‖(‖y‖ − ‖x‖)e1 + S(x− y)‖
≤ |(‖y‖ − ‖x‖)|‖e1‖+ ‖S(x− y)‖
≤ ‖y − x‖+ ‖x− y‖2

≤ 2‖y − x‖.

Moreover,∥∥∥∥ϕ1,‖·‖(e1)− ϕ1,‖·‖

(
1
2

e1

)∥∥∥∥ =
∥∥∥∥e2 −

((
1− 1

2

)
e1 +

1
2
e2

)∥∥∥∥
=

1
2
‖e2 − e1‖

= 2‖e1 −
1
2
e1‖.

But Lip
(
ϕ1,‖·‖, B‖·‖, ‖·‖2

)
=
√

3. Indeed, for x, y ∈ B‖·‖,

‖ϕ1,‖·‖(x)− ϕ1,‖·‖(y)‖2
2 = ‖(‖y‖ − ‖x‖)e1 + S(x− y)‖2

= |(‖y‖ − ‖x‖)|2 + ‖S(x− y)‖2
2

≤ ‖y − x‖2 + ‖x− y‖2
2

≤ 3‖y − x‖2
2,

and ∥∥∥∥ϕ1,‖·‖

(
1
2
,
1
2
, 0, . . .

)
− ϕ1,‖·‖(0`2)

∥∥∥∥
2

=
∥∥∥∥(

−1,
1
2
,
1
2
, 0, . . .

)∥∥∥∥
2

=

√
3
2

=
√

3
∥∥∥∥(

1
2
,
1
2
, 0, . . .

)∥∥∥∥
2

.

Unfortunately, for the GKT type mappings these reductions have lower
bounds, at least when the norm has some kind of regularity.
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Theorem 3. Let Rε,‖·‖ : B+
‖·‖ −→ S+

‖·‖ be the Goebel–Kirk–Thele type map-
ping given by

Rε,‖·‖(x) :=
1

‖ϕε,‖·‖(x)‖
ϕε,‖·‖(x).

Let us suppose that |·| is a renorming of `2 such that

‖w‖ ≤ |w| ≤ β‖w‖

for each w ∈ `2.

If there exists v ∈ S+
‖·‖ such that

1) S(v) is ‖·‖-isosceles orthogonal to εe1,
2) ‖aεe1 + bS(v)‖ = ‖bεe1 + aS(v)‖ for all positive real numbers a, b,
then

Lip
(
Rε,‖·‖, B‖·‖, |·|

)
≥ 2
|v|

.

Proof. Let v ∈ S‖·‖ be the vector whose existence is assumed.
Then, if k is the Lipschitz constant of Rε,‖·‖, for η > 0 small enough,

k ≥
|Rε,‖·‖

(
(1/2 + η)v

)
−Rε,‖·‖

(
(1/2− η)v

)
|

|(1/2 + η)v − (1/2− η)v|

=
|Rε,‖·‖

(
(1/2 + η)v

)
−Rε,‖·‖

(
(1/2− η)v

)
|

2η|v|

=
1

2η|v|

∣∣∣∣ ε(1/2− η)e1+(1/2 + η)S(v)
‖(1/2− η)εe1+(1/2 + η)S(v)‖

− ε(1/2+η)e1+(1/2− η)S(v)
‖(1/2+η)εe1+(1/2− η)S(v)‖

∣∣∣∣
=
|((1/2− η)εe1 + (1/2 + η)S(v))− ((1/2 + η)εe1 + (1/2− η)S(v))|

2η‖(1/2− η)εe1 + (1/2 + η)S(v)‖|v|

=
|2η(S(v)− εe1)|

2η‖(1/2− η)εe1 + (1/2 + η)S(v)‖|v|

=
|S(v)− εe1|

‖(1/2− η)εe1 + (1/2 + η)S(v)‖|v|
.

Letting η → 0, we obtain

k ≥ 2
|S(v)− εe1|

‖S(v) + εe1‖|v|
.

Since S(v) is ‖·‖-orthogonal to εe1 in the isosceles sense, then

k ≥ 2
|S(v)− εe1|

‖S(v) + εe1‖|v|
≥ 2

‖S(v)− εe1‖
‖S(v) + εe1‖|v|

=
2
|v|

.

�
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Note that Theorem 1 can be obtained as a particular case of Theorem 3
by taking |·| = ‖·‖.
Let us recall the following results (see [14] for details).

Theorem 4. Let (X, ‖·‖) be a Banach space with an equivalent norm |·|,
and let T : B‖·‖[x0, R] → X, where x0 ∈ X and R > 0. Then for all
ρ ∈ (0, R]

Lip
(
T,B‖·‖[x0, R], |·|

)
≥ dT (ρ)

ρ
,

where

dT (ρ) := inf{‖T (y)− T (x0)‖ : ‖y − x0‖ = ρ}.

In the case of the GKT mapping R1,‖·‖2 we obtain

Corollary 1.

Lip
(
Rε,‖·‖2 , B2, |·|

)
≥ 1

ρ

√
2− 2(1− ρ)ε√

ε2(1− ρ)2 + ρ2
.

In particular for ε = 1, Lip
(
Rε,‖·‖2 , B2, |·|

)
≥ 1.57780.

Remark 3. It should be noted that Theorem 4 does not hold in general if
the domain of the mapping T is not a ball.

5. Further remarks on the Kakutani type mappings. It was shown
in [15] that the mapping ϕ1,‖·‖2 is not uniformly lipschitzian on B2. In fact
we do not know whether the same fact is true for the generalized mappings
ϕ1,‖·‖, that is we do not know whether

Ulip
(
ϕ1,‖·‖, B‖·‖, ‖·‖

)
< +∞

for some renorming ‖·‖. Nevertheless, under quite natural assumptions if
they have a uniform Lipschitz constant k with respect to the Euclidean
norm (which in turn implies that the same is true with respect to any other
equivalent norm), then this constant must be large enough. With more
precision we have

Theorem 5. Let ‖·‖ be a renorming of `2 such that ‖S‖ ≤ 1. Let δ(·) be the
Clarkson modulus of convexity of (`2, ‖·‖). Suppose that ‖en‖ = 1 for each
positive integer n. Then, if the mapping ϕ1,‖·‖ admits the uniform Lipschitz
constant k on B‖·‖ with respect to the norm ‖·‖2, one has

k ≥
√

2 + (2δ(‖e1 − e2‖))2.
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Proof. Since ‖e1‖ ≤ 1 and ‖S‖ ≤ 1 we can assure that ϕ1,‖·‖(B‖·‖) ⊂ B‖·‖.
Moreover, for every x ∈ B‖·‖,

‖ϕ1,‖·‖(x)‖2 =
√

(1− ‖x‖)2 + ‖S(x)‖2
2 ≥ ‖S(x)‖2 = ‖x‖2.

Hence the sequence
(
‖ϕn

1,‖·‖(x)‖2

)
is nondecreasing. In particular for λ ∈

[0, 1] it is well-defined f(λ) := limn→∞ ‖ϕn
1,‖·‖(λe1)‖2. Moreover,

(3)

f(λ) ≥ ‖ϕ2
1,‖·‖(λe1)‖2

=
∥∥(1− ‖ϕ1,‖·‖(λe1)‖)e1 + S(ϕ1,‖·‖(λe1))

∥∥
2

=
∥∥(1− ‖ϕ1,‖·‖(λe1)‖)e1 + (1− λ)e2 + λe3

∥∥
2

=
√

(1− λ)2 + λ2 + (1− ‖ϕ1,‖·‖(λe1)‖)2.

On the other hand, our assumption ‖en‖ = 1 (n ≥ 1) implies that ϕn
1,‖·‖(e1)

= en+1. Moreover, we claim that for every positive integer n〈
ϕn

1,‖·‖(e1), ϕn
1,‖·‖(λe1)

〉
= λ.

Indeed, it is obvious for n = 1, and〈
ϕn+1

1,‖·‖(e1), ϕn+1
1,‖·‖(λe1)

〉
=

〈
en+2, ϕ

n+1
1,‖·‖(λe1)

〉
=

〈
en+2, (1− ‖ϕn

1,‖·‖(λe1)‖)e1 + S(ϕn
1,‖·‖(λe1))

〉
=

〈
en+2, S(ϕn

1,‖·‖(λe1))
〉

=
〈
en+1, ϕ

n
1,‖·‖(λe1)

〉
=

〈
ϕn

1,‖·‖(e1), ϕn
1,‖·‖(λe1)

〉
.

If there exists k > 0 such that

‖ϕn
1,‖·‖(x)− ϕn

1,‖·‖(y)‖2 ≤ k‖x− y‖2

for all positive integer n and for all x, y ∈ B‖·‖, in particular one has that

‖ϕn
1,‖·‖2(e1)− ϕn

1,‖·‖(λe1)‖2 ≤ k(1− λ),

that is,√
‖en+1‖2

2 + ‖ϕn
1,‖·‖(λe1)‖2

2 − 2
〈
en+1, ϕn

1,‖·‖(λe1)
〉
≤ k(1− λ).
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Hence, √
1 + ‖ϕn

1,‖·‖(λe1)‖2
2 − 2λ ≤ k(1− λ)

and then

lim
n→∞

√
1 + ‖ϕn

1,‖·‖(λe1)‖2
2 − 2λ ≤ k(1− λ).

It follows that

1 + f(λ)2 − 2λ ≤ k2(1− λ)2.(4)

Bearing in mind the inequality (3), we have that

(5) 1+[(1−‖ϕ1,‖·‖(λe1)‖)2+(1−λ)2+λ2]−2λ ≤ 1+f(λ)2−2λ ≤ k2(1−λ)2

and hence
2(1− λ)2 + (1− ‖ϕ1,‖·‖(λe1)‖)2

(1− λ)2
≤ k2,

or, in other words,

2(1− λ)2 + (1− ‖(1− λ)e1 + λe2‖)2

(1− λ)2
≤ k2.

In particular for λ = 1/2,

2 + 4(δ(‖e1 − e2‖))2 =
1
2 + (δ(‖e1 − e2‖))2

1
4

≤
1
2 + (1− 1

2‖e1 + e2‖)2
1
4

≤ k2

which yields the conclusion. �

Remark 4. The above theorem is not sharp in the following sense. Let ‖·‖
be the renorming of `2 considered in the Example 2, and δ(·) its modulus
of convexity. Since ‖e1− e2‖ = 2 = ‖e1 + e2‖ one has that δ(‖e1− e2‖) = 0.
Hence by Theorem 5

Ulip
(
ϕ1,‖·‖, B‖·‖, ‖·‖2

)
≥

√
2 + (2δ(‖e1 − e2‖))2 =

√
2,

whereas we know that Lip
(
ϕ1,‖·‖, B‖·‖, ‖·‖2

)
=
√

3.

If we remember that the mapping ϕ1,‖·‖2 has uniform Lipschitz constant
+∞ on B2, the following result can be considered as a kind of stability of this
constant. When a norm is close enough to ‖·‖2 then Ulip

(
ϕ1,‖·‖, B‖·‖, ‖·‖

)
,

if it exists, must be very large.
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Theorem 6. Let ‖·‖ be a renorming of `2 such that ‖S‖ ≤ 1. Let α > 0,
β > 1 such that for every v ∈ `2

α‖v‖2 ≤ ‖v‖ ≤ β‖v‖2.

Suppose that ‖en‖ = 1 for each positive integer n. Then, if the mapping
ϕ1,‖·‖ is uniformly k-lipschitzian on B‖·‖ with respect to the Euclidean norm
‖·‖2, one has

k >

√
β2

β2 − 1
.

Proof. We can repeat word by word the first part of the proof of Theorem 5.
Let us observe that for every x ∈ B‖·‖

‖ϕn+1
1,‖·‖(x)‖2

2 = (1− ‖ϕn
1,‖·‖(x)‖)2 + ‖S(ϕn

1,‖·‖(x))‖2
2

= (1− ‖ϕn
1,‖·‖(x)‖)2 + ‖ϕn

1,‖·‖(x)‖2
2

and that the sequence (‖ϕn
1,‖·‖(x)‖2) is nondecreasing. Taking limits when

n tends to ∞ we obtain that

lim
n
‖ϕn

1,‖·‖(x)‖ = 1.

Since
α‖ϕn

1,‖·‖(λe1)‖2 ≤ ‖ϕn
1,‖·‖(λe1)‖ ≤ β‖ϕn

1,‖·‖(λe1)‖2,

we have that
αf(λ) ≤ 1 ≤ βf(λ).

From inequalities (4) and (5) it follows that

1 +
1
β2

− 2λ ≤ 1 + f(λ)2 − 2λ ≤ k2(1− λ)2.

In particular for λ = 1/β2,

1− 1
β2

≤ k2

(
β2 − 1

β2

)2

which yields the conclusion. �

Questions

1. Does the conclusion of Theorem 1 hold without requirements (1)
and/or (2)?
2. Is any mapping ϕε,‖·‖ uniformly lipschitzian on B‖·‖? If the answer
were yes, characterize the renormings with this property.
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3. In (L1([0, 1]), ‖·‖1) there exist a weakly compact convex subset C and
a fixed point free nonexpansive self-mapping T of C. By a result due to van
Dulst, given ε > 0 there exists an equivalent norm ‖·‖ in L1([0, 1]) such that
‖f‖1 ≤ ‖f‖ ≤ (1 + ε)‖f‖1 for every f ∈ L1([0, 1]). Moreover the norm ‖·‖
has a very nice geometrical property, namely the so called Opial condition,
which in turns implies the fixed point property for nonexpansive mappings.
Thus, the Alspach mapping T is fixed point free and (1 + ε)-uniformly
lipschitzian with respect to a well-behaved norm. (Similar arguments can
be repeated for each separable Banach space lacking the weak fixed point
property). This seems to give a support to the following statement: a weakly
compact convex subset C of a Banach space (X, ‖ · ‖) lacks the fixed point
property for nonexpansive mappings if and only if for every ε > 0 there
exists a (1 + ε)-uniformly lipschitzian fixed point free self-mapping of C.
Our final question is whether (or not) this statement is true.
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