ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LVIII, 2004

SECTIO A

69 - 78

MISAKO KIKKAWA and WATARU TAKAHASHI

Weak and strong convergence of an implicit iterative process for a countable family of nonexpansive mappings in Banach spaces

Dedicated to W.A. Kirk on the occasion of His Honorary Doctorate of Maria Curie-Skłodowska University

ABSTRACT. In this paper, we introduce an implicit sequence for an infinite family of nonexpansive mappings in a uniformly convex Banach space and prove weak and strong convergence theorems for finding a common fixed point of the mappings.

1. Introduction. Let H be a Hilbert space and let C be a closed convex subset of H. Let $\{T_1, T_2, \ldots, T_N\}$ be nonexpansive mappings of C into itself such that $\bigcap_{i=1}^N F(T_i)$ is nonempty. In 2001, Xu and Ori [15] introduced an implicit iteration process $\{x_n\}$ for a finite family of nonexpansive mappings as follows: $x_0 \in C$ and

 $\begin{aligned} x_1 &= t_1 x_0 + (1 - t_1) T_1 x_1, \\ x_2 &= t_2 x_1 + (1 - t_2) T_2 x_2, \\ &\vdots \\ x_N &= t_N x_{N-1} + (1 - t_N) T_N x_N, \end{aligned}$

$$\begin{aligned} x_{N+1} &= t_{N+1} x_N + (1 - t_{N+1}) T_1 x_{N+1}, \\ x_{N+2} &= t_{N+2} x_{N+1} + (1 - t_{N+2}) T_2 x_{N+2}, \\ &\vdots \end{aligned}$$

where $\{t_n\}$ is a real sequence in (0,1) and they proved that this process converges weakly to a common fixed point of $\{T_1, T_2, \ldots, T_N\}$ in a Hilbert space setting. Further, Xu and Ori [15] pointed out that it is yet unclear what assumptions on the mappings $\{T_1, T_2, \ldots, T_N\}$ and/or the parameters $\{t_n\}$ are sufficient to guarantee the strong convergence of $\{x_n\}$. In 2002, Liu [5] gave an affirmative answer to that question as follows (see also [10]): Let E be a uniformly convex Banach space and let C be a nonempty bounded closed convex subset of E. Let $\{T_i : i = 1, 2, \ldots, N\}$ be a finite family of nonexpansive mappings of C into itself such that $\bigcap_{i=1}^{N} F(T_i)$ is nonempty. Let $\{x_n\}$ be a sequence generated by implicit iteration process. If $\{t_n\}$ and d satisfy 0 < d < 1 and $0 < t_n \leq d < 1$ and there exists some $T \in \{T_i : i = 1, 2, \ldots, N\}$ which is semi-compact, then, $\{x_n\}$ converges strongly to $z \in \bigcap_{i=1}^{N} F(T_i)$. Further, in 2003, Sun [9] proved that the modified implicit iteration process for a finite family of asymptotically quasinonexpansive mappings converges strongly to a common fixed point of the mappings in a uniformly convex Banach space, requiring one member T in the family to be semi-compact.

In this paper, we introduce an implicit sequence for an infinite family of nonexpansive mappings in a uniformly convex Banach space and prove weak and strong convergence theorems for finding a common fixed point of the mappings.

2. Preliminaries and lemmas. Let E be a real Banach space. Let C be a nonempty closed convex subset of E. Then a mapping T of C into itself is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for any $x, y \in C$. For a mapping T of C into itself, we denote by F(T) the set of fixed points of T, i.e., $F(T) = \{x \in C : Tx = x\}$. We also denote by \mathbb{N} the set of all natural numbers and by \mathbb{R} and \mathbb{R}^+ the sets of all real numbers and all nonnegative real numbers, respectively. A Banach space E is called uniformly convex if for any two sequences $\{x_n\}, \{y_n\}$ in E such that $||x_n|| = ||y_n|| = 1$ and $\lim_{n\to\infty} ||x_n + y_n|| = 2$, $\lim_{n\to\infty} ||x_n - y_n|| = 0$ holds. E is said to satisfy Opial's condition [6] if for any sequence $\{x_n\}$ in E such that $\{x_n\}$ converges weakly to $z \in E$, $\lim \inf_{n\to\infty} ||x_n - z|| < \liminf_{n\to\infty} ||x_n - y||$ holds for all $y \in E$ with $y \neq z$. All Hilbert spaces and l^p $(1 satisfy Opial's condition, while <math>L^p$ (1 do not.

Let T_1, T_2, \ldots be an infinite sequence of mappings of C into itself and let $\lambda_1, \lambda_2, \ldots$ be real numbers such that $0 \leq \lambda_i \leq 1$ for every $i \in \mathbb{N}$. Then, for any $n \in \mathbb{N}$, Takahashi [11] (see also [8], [13]) defined a mapping W_n of C

into itself as follows:

$$\begin{split} U_{n,n+1} &= I, \\ U_{n,n} &= \lambda_n T_n U_{n,n+1} + (1 - \lambda_n) I, \\ U_{n,n-1} &= \lambda_{n-1} T_{n-1} U_{n,n} + (1 - \lambda_{n-1}) I, \\ &\vdots \\ U_{n,k} &= \lambda_k T_k U_{n,k+1} + (1 - \lambda_k) I, \\ U_{n,k-1} &= \lambda_{k-1} T_{k-1} U_{n,k} + (1 - \lambda_{k-1}) I, \\ &\vdots \\ U_{n,2} &= \lambda_2 T_2 U_{n,3} + (1 - \lambda_2) I, \\ W_n &= U_{n,1} &= \lambda_1 T_1 U_{n,2} + (1 - \lambda_1) I. \end{split}$$

Such a mapping W_n is called the *W*-mapping generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$.

Using [8] and [1], we obtain the following two lemmas.

Lemma 1. Let C be a nonempty closed convex subset of a Banach space E. Let T_1, T_2, \ldots be nonexpansive mappings of C into itself such that $\bigcap_{i=1}^{\infty} F(T_i)$ is nonempty and let $\lambda_1, \lambda_2, \ldots$ be real numbers such that $0 < \lambda_1 \leq 1$ and $0 < \lambda_i \leq b < 1$ for any $i = 2, 3, \ldots$ Then for every $x \in C$ and $k \in \mathbb{N}$, the $\lim_{n\to\infty} U_{n,k}x$ exists.

Using Lemma 1, for $k \in \mathbb{N}$, we define mappings $U_{\infty,k}$ and U of C into itself as follows:

$$U_{\infty,k}x = \lim_{n \to \infty} U_{n,k}x$$

and

$$Ux = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Such a U is called the W-mapping generated by T_1, T_2, \ldots , and $\lambda_1, \lambda_2, \ldots$

Lemma 2. Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T_1, T_2, \ldots be nonexpansive mappings of C into itself such that $\bigcap_{i=1}^{\infty} F(T_i)$ is nonempty and let $\lambda_1, \lambda_2, \ldots$ be real numbers such that $0 < \lambda_1 \leq 1$ and $0 < \lambda_i \leq b < 1$ for any $i = 2, 3, \ldots$ Let W_n $(n = 1, 2, \ldots)$ be the W-mappings of C into itself generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$ and let U be the W-mapping generated by T_1, T_2, \ldots and $\lambda_1, \lambda_2, \ldots$ Then $F(W_n) = \bigcap_{i=1}^n F(T_i)$ and $F(U) = \bigcap_{i=1}^{\infty} F(T_i)$.

The following lemma was proved by Xu [14].

Lemma 3. Let E be a uniformly convex Banach space and let r > 0. Then, there exists a continuous, strictly increasing and convex function $g : \mathbb{R}^+ \to \mathbb{R}^+$ with g(0) = 0 such that

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)g(\|x-y\|)$$

for all $x, y \in B_r$ and $0 \le \lambda \le 1$, where $B_r = \{x \in E : ||x|| \le r\}$.

We also know the following lemma proved by Schu [7].

Lemma 4. Let *E* be a uniformly convex Banach space, let $\{t_n\}$ be a real sequence such that $0 < b \le t_n \le c < 1$ for $n \ge 1$ and let $a \ge 0$. Suppose that $\{x_n\}$ and $\{y_n\}$ are sequences of *E* such that $\limsup_{n\to\infty} ||x_n|| \le a$, $\limsup_{n\to\infty} ||y_n|| \le a$ and $\lim_{n\to\infty} ||t_nx_n + (1-t_n)y_n|| = a$. Then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

The following lemma was proved by Browder [2].

Lemma 5. Let C be a nonempty bounded closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of C into itself. If $\{x_n\}$ converges weakly to $z \in C$ and $\{x_n - Tx_n\}$ converges strongly to 0, then Tz = z.

3. Weak convergence theorem. In this section, we prove a weak convergence theorem of the implicit iteration process for finding a common fixed point of a countable family of nonexpansive mappings in a Banach space.

Theorem 6. Let *E* be a uniformly convex Banach space which satisfies Opial's condition. Let *C* be a nonempty closed convex subset of *E*. Let $\{T_n\}$ be a countable family of nonexpansive mappings of *C* into itself with a nonempty common fixed point set $\bigcap_{i=1}^{\infty} F(T_i)$. Let *b* be a real number with 0 < b < 1 and let $\lambda_1, \lambda_2, \ldots$ be real numbers such that $0 < \lambda_1 \leq 1$ and $0 < \lambda_i \leq b < 1$ for every $i = 2, 3, \ldots$ Let W_n $(n = 1, 2, \ldots)$ be *W*-mappings of *C* into itself generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$. Let *U* be the *W*-mapping generated by T_1, T_2, \ldots and $\lambda_1, \lambda_2, \ldots$, i.e.,

$$Ux = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ x_n = \alpha_n x_{n-1} + (1 - \alpha_n) W_n x_n, \quad n = 1, 2, \dots \end{cases}$$

where $\{\alpha_n\}$ and d satisfy 0 < d < 1 and $0 < \alpha_n \leq d < 1$. Then, $\{x_n\}$ converges weakly to $z \in \bigcap_{n=1}^{\infty} F(T_n)$.

Proof. From Lemma 2, we obtain $\bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{n=1}^{\infty} F(W_n) = F(U)$. Let $x \in C$. Then for $u \in \bigcap_{n=1}^{\infty} F(T_n)$, we obtain that $D = \{y \in C : \|y - u\| \le \|x - u\|\}$ is a bounded closed convex subset of C and $x \in D$. Further, for any $y \in D$, we have $T_n y \in C$ and

$$||T_n y - u|| \le ||y - u||$$

 $\le ||x - u||.$

Then D is invariant under T_n for all $n \in \mathbb{N}$. So, without loss of generality, we may assume that C is bounded.

Let $x_0 \in C$ and define S_1 by $S_1 x = \alpha_1 x_0 + (1 - \alpha_1) W_1 x$ for all $x \in C$. Then, we have, for all $x, y \in C$,

$$||S_1x - S_1y|| \le (1 - \alpha_1) ||W_1x - W_1y|| \le (1 - \alpha_1) ||x - y||.$$

So, we obtain that S_1 is a contraction mapping C into itself. By the Banach contraction principle, there exists a unique point x_1 such that $x_1 = S_1x_1$. Similarly, for $n \in \mathbb{N}$, we define S_n by $S_n x = \alpha_n x_0 + (1 - \alpha_n) W_n x$ for all $x \in C$ and obtain a unique point $x_n \in C$ such that $x_n = S_n x_n$. Let $u \in F(U)$. By the definition of $\{x_n\}$ and Lemma 3, we have

$$\begin{aligned} \|x_n - u\|^2 &= \|\alpha_n (x_{n-1} - u) + (1 - \alpha_n) (W_n x_n - u)\|^2 \\ &\leq \alpha_n \|x_{n-1} - u\|^2 + (1 - \alpha_n) \|W_n x_n - u\|^2 \\ &- \alpha_n (1 - \alpha_n) g(\|W_n x_n - x_{n-1}\|) \\ &\leq \alpha_n \|x_{n-1} - u\|^2 + (1 - \alpha_n) \|x_n - u\|^2 \\ &- \alpha_n (1 - \alpha_n) g(\|W_n x_n - x_{n-1}\|) \\ &\leq \alpha_n \|x_{n-1} - u\|^2 + (1 - \alpha_n) \|x_n - u\|^2 \end{aligned}$$

for some $g : \mathbb{R}^+ \to \mathbb{R}^+$, which is continuous, strictly increasing, convex and g(0) = 0. Therefore, we obtain $||x_n - u|| \le ||x_{n-1} - u||$, and hence the limit of $\{||x_n - u||\}$ exists for $u \in F(U)$. Since

$$\alpha_n(1-\alpha_n)g(\|W_nx_n-x_{n-1}\|) \le \alpha_n(\|x_{n-1}-u\|^2 - \|x_n-u\|^2)$$

for all $n \in \mathbb{N}$ and from $0 < \alpha_n \leq d < 1$, we have

$$(1-d)g(||W_nx_n - x_{n-1}||) \le ||x_{n-1} - u||^2 - ||x_n - u||^2$$

and hence $\lim_{n\to\infty} g(||W_n x_n - x_{n-1}||) = 0$. This implies

(1)
$$\lim_{n \to \infty} \|W_n x_n - x_{n-1}\| = 0.$$

Therefore, from $||x_n - x_{n-1}|| \le (1 - \alpha_n) ||W_n x_n - x_{n-1}||$, we have

(2)
$$\lim_{n \to \infty} \|x_n - x_{n-1}\| = 0$$

Further, from $||W_n x_n - x_n|| \le ||W_n x_n - x_{n-1}|| + ||x_{n-1} - x_n||$, (1) and (2), we obtain

(3)
$$\lim_{n \to \infty} \|W_n x_n - x_n\| = 0.$$

Since $\{x_n\}$ is bounded, we assume that there exists a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to w. Suppose that $w \neq Uw$. From Opial's condition, the definition of U and (3), we have

$$\begin{split} \liminf_{j \to \infty} \|x_{n_j} - w\| &< \liminf_{j \to \infty} \|x_{n_j} - Uw\| \\ &\leq \liminf_{j \to \infty} (\|x_{n_j} - W_{n_j} x_{n_j}\| \\ &+ \|W_{n_j} x_{n_j} - W_{n_j} w\| + \|W_{n_j} w - Uw\|) \\ &\leq \liminf_{j \to \infty} (\|x_{n_j} - W_{n_j} x_{n_j}\| \\ &+ \|x_{n_j} - w\| + \|W_{n_j} w - Uw\|) \\ &= \liminf_{j \to \infty} \|x_{n_j} - w\|. \end{split}$$

This is a contradiction. Hence, we obtain $w \in F(U)$. To complete the proof, we prove that $\{x_n\}$ has at most one weak subsequential limit. We assume that z_1 and z_2 are two distinct weak subsequential limits of the subsequences $\{x_{n_i}\}$ and $\{x_{n_j}\}$ of $\{x_n\}$, respectively. From Opial's condition, we obtain

$$\lim_{n \to \infty} \|x_n - z_1\| = \lim_{i \to \infty} \|x_{n_i} - z_1\| < \lim_{i \to \infty} \|x_{n_i} - z_2\| = \lim_{n \to \infty} \|x_n - z_2\|$$
$$= \lim_{j \to \infty} \|x_{n_j} - z_2\| < \lim_{j \to \infty} \|x_{n_j} - z_1\| = \lim_{n \to \infty} \|x_n - z_1\|.$$

This is a contradiction. So, $\{x_n\}$ converges weakly to $z \in \bigcap_{n=1}^{\infty} F(T_n)$. This completes the proof.

As a direct consequence of Theorem 6, we obtain the following result.

Corollary 7. Let X be a Hilbert space. Let C be a nonempty closed convex subset of X. Let $\{T_n\}$ be a countable family of nonexpansive mappings of C into itself such that $\bigcap_{i=1}^{\infty} F(T_i)$ is nonempty. Let b be a real number with 0 < b < 1 and let $\lambda_1, \lambda_2, \ldots$ be real numbers such that $0 < \lambda_1 \leq 1$ and $0 < \lambda_i \leq b < 1$ for every $i = 2, 3, \ldots$ Let W_n $(n = 1, 2, \ldots)$ be W-mappings of C into itself generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$. Let U be the W-mapping generated by T_1, T_2, \ldots and $\lambda_1, \lambda_2, \ldots$, i.e.,

$$Ux = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ x_n = \alpha_n x_{n-1} + (1 - \alpha_n) W_n x_n, \quad n = 1, 2, \dots, \end{cases}$$

where $\{\alpha_n\}$ and d satisfy 0 < d < 1 and $0 < \alpha_n \leq d < 1$. Then, $\{x_n\}$ converges weakly to $z \in \bigcap_{n=1}^{\infty} F(T_n)$.

4. Strong convergence theorem. In this section, we consider the strong convergence of the implicit iterative process generated by a countable family of nonexpansive mappings in a Banach space. We need the following definition [3].

Definition 1. Let *C* be a closed subset of a Banach space *E*. A mapping *T* from *C* into itself is said to be semi-compact, if for any sequence $\{x_n\}$ in *C* such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$, then there exists a subsequence $\{x_{n_i}\} \subset \{x_n\}$ such that $x_{n_i} \to x^* \in C$, where \to denotes the strong convergence.

Theorem 8. Let *E* be a uniformly convex Banach space. Let *C* be a nonempty closed convex subset of *E*. Let $\{T_n\}$ be a countable family of nonexpansive mappings of *C* into itself with a nonempty common fixed point set $\bigcap_{i=1}^{\infty} F(T_i)$. Let *a* and *b* be real numbers with $0 < a \le b < 1$ and let $\lambda_1, \lambda_2, \ldots$ be real numbers such that $0 < a \le \lambda_i \le b < 1$ for every $i = 1, 2, \ldots$. Let W_n $(n = 1, 2, \ldots)$ be *W*-mappings of *C* into itself generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$. Let *U* be the *W*-mapping generated by T_1, T_2, \ldots and $\lambda_1, \lambda_2, \ldots$, i.e.,

$$Ux = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$$

for every $x \in C$. Let $\{x_n\}$ be a sequence generated by

$$\begin{cases} x_0 = x \in C, \\ x_n = \alpha_n x_{n-1} + (1 - \alpha_n) W_n x_n, \quad n = 1, 2, \dots, \end{cases}$$

where $\{\alpha_n\}$ and d satisfy 0 < d < 1 and $0 < \alpha_n \leq d < 1$. If there exists some $T \in \{T_i : i \in \mathbb{N}\}$ which is semi-compact, then $\{x_n\}$ converges strongly to $z \in \bigcap_{n=1}^{\infty} F(T_n)$,

Proof. Since a uniformly convex Banach space is strictly convex, from Lemma 2, we have $\bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{n=1}^{\infty} F(W_n) = F(U)$. As in the proof of Theorem 5, we may assume that C is bounded and obtain that the limit of $\{\|x_n - u\|\}$ exists for any $u \in F(U)$. Let $c = \lim_{n \to \infty} \|x_n - u\|$. Fix $k \in \mathbb{N}$. For all $n \in \mathbb{N}$ with $n \geq k$, we have

$$||U_{n,k}x_n - u|| \le ||x_n - u||.$$

So, we obtain $\limsup_{n\to\infty} ||U_{n,k}x_n - u|| \le c$. By the definition of $\{x_n\}$, we have

$$\begin{aligned} \|x_n - u\| &= \|\alpha_n (x_{n-1} - u) + (1 - \alpha_n) (W_n x_n - u)\| \\ &\leq \alpha_n \|x_{n-1} - u\| \\ &+ (1 - \alpha_n) \{\lambda_1 \|T_1 U_{n,2} x_n - u\| + (1 - \lambda_1) \|x_n - u\|\} \\ &\leq \alpha_n \|x_{n-1} - u\| \\ &+ (1 - \alpha_n) \{\lambda_1 \|U_{n,2} x_n - u\| + (1 - \lambda_1) \|x_n - u\|\} \\ &\leq \alpha_n \|x_{n-1} - u\| \\ &+ (1 - \alpha_n) \{\lambda_1 \lambda_2 \|U_{n,3} x_n - u\| + (1 - \lambda_1 \lambda_2) \|x_n - u\|\} \end{aligned}$$

$$\vdots$$

$$\leq \alpha_n \|x_{n-1} - u\| + (1 - \alpha_n) \prod_{i=1}^{k-1} \lambda_i \|U_{n,k} x_n - u\| \\ &+ (1 - \alpha_n) (1 - \prod_{i=1}^{k-1} \lambda_i) \|x_n - u\|. \end{aligned}$$

Therefore, we obtain

$$||x_n - u|| \le \frac{\alpha_n}{(1 - \alpha_n) \prod_{i=1}^{k-1} \lambda_i} (||x_{n-1} - u|| - ||x_n - u||) + ||U_{n,k}x_n - u||$$

$$\le \frac{d}{(1 - d) \prod_{i=1}^{k-1} \lambda_i} (||x_{n-1} - u|| - ||x_n - u||) + ||U_{n,k}x_n - u||.$$

Consequently, we have $c \leq \liminf_{n \to \infty} \|U_{n,k}x_n - u\|$ and hence

$$\lim_{n \to \infty} \|U_{n,k}x_n - u\| = c$$

for all $k \in \mathbb{N}$. Moreover, since

$$c = \lim_{n \to \infty} \|U_{n,k}x_n - u\|$$

=
$$\lim_{n \to \infty} \|\lambda_k(T_k U_{n,k+1}x_n - u) + (1 - \lambda_k)(x_n - u)\|$$

and

$$\limsup_{n \to \infty} \|T_k U_{n,k+1} x_n - u\| \le \limsup_{n \to \infty} \|U_{n,k+1} x_n - u\| \le c,$$

we obtain $\lim_{n\to\infty} ||T_k U_{n,k+1} x_n - x_n|| = 0$ by Lemma 4. For any $k \in \mathbb{N}$, we have

$$\begin{aligned} \|T_k x_n - x_n\| &\leq \|T_k x_n - T_k U_{n,k+1} x_n\| + \|T_k U_{n,k+1} x_n - x_n\| \\ &\leq \|x_n - U_{n,k+1} x_n\| + \|T_k U_{n,k+1} x_n - x_n\| \\ &\leq \lambda_{k+1} \|T_{k+1} U_{n,k+2} x_n - x_n\| + \|T_k U_{n,k+1} x_n - x_n\|. \end{aligned}$$

Hence we have $\limsup_{n\to\infty} ||T_k x_n - x_n|| \le 0$. This implies

(4)
$$\lim_{n \to \infty} \|T_k x_n - x_n\| = 0.$$

for all $k \in \mathbb{N}$. By the assumption, there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to p \in C$ as $i \to \infty$. From (4), we have

$$||p - T_k p|| = \lim_{i \to \infty} ||x_{n_i} - T_k x_{n_i}|| = 0$$

for all $k \in \mathbb{N}$. This implies $p \in F(T_k)$ for all $k \in \mathbb{N}$. Therefore we have $\liminf_{n\to\infty} d(x_n, F(U)) = 0$. For any $u \in F(U)$, we have

$$||x_n - u|| \le ||x_{n-1} - u||$$

and hence

$$d(x_n, F(U)) \le d(x_{n-1}, F(U)).$$

So, we obtain $\lim_{n\to\infty} d(x_n, F(U)) = 0$. Let us prove that $\{x_n\}$ is a Cauchy sequence. For any $m, n \in \mathbb{N}$, we have

$$||x_{n+m} - u|| \le ||x_n - u||$$

for any $u \in F(U)$. Since $\lim_{n\to\infty} d(x_n, F(U)) = 0$, for any $\epsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $d(x_n, F(U)) < \frac{\epsilon}{2}$ for any $n \ge n_0$. Hence there exists $u_1 \in F(U)$ such that $||x_{n_0} - u_1|| < \frac{\epsilon}{2}$. So, for any $n, m \ge n_0$, we have

$$\begin{aligned} \|x_m - x_n\| &\leq \|x_m - u_1\| + \|x_n - u_1\| \\ &\leq \|x_{n_0} - u_1\| + \|x_{n_0} - u_1\| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Then, $\{x_n\}$ is a Cauchy sequence, and hence $\lim_{n\to\infty} x_n$ exists in C. Let $u = \lim_{n\to\infty} x_n$. From (4) and Lemma 5, we have $u \in F(T_k)$ for all $k \in \mathbb{N}$. So, $\{x_n\}$ converges strongly to $u \in F(U)$.

References

- Atsushiba, S., W. Takahashi, Strong convergence theorems for a finite family of nonexpansive mappings and applications, Indian J. Math. 41 (1999), 435–453.
- [2] Browder, F.E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Nonlinear Functional Analysis, Proc. Sympos. Pure Math., vol. 18, pt.2, Amer. Math. Soc., Providence, R.I., 1976, 1–308.
- [3] Chang, S.S., Y.J. Cho, J.K. Kim and K.H. Kim, Iterative approximation of fixed points for asymptotically nonexpansive type mappings in Banach spaces, Panamer. Math. J. 11 (2001), 53–63.
- [4] Kimura, Y., W. Takahashi, Weak convergence to common fixed points of countable nonexpansive mappings and its applications, J. Korean Math. Soc. 38 (2001), 1275– 1284.
- [5] Liu, J.A., Some convergence theorems of implicit iterative process for nonexpansive mappings in Banach spaces, Math. Communications 7 (2002), 113–118.
- [6] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591–597.
- [7] Schu, J., Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991) 153–159.
- [8] Shimoji, K., W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2001), 387–404.
- [9] Sun, Z.H., Strong convergence of implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003) 351– 358.
- [10] Sun, Z.H., C. He and Y.Q. Ni, Strong convergence of an implicit iteration process for nonexpansive mappings in Banach spaces, Nonlinear Funct. Anal. Appl. 8 (2003) 595–602.
- [11] Takahashi, W., Weak and strong convergence theorems for families of nonexpansive mappings and their applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 277–292.
- [12] Takahashi, W., Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [13] Takahashi, W., K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling 32 (2000), 1463–1471.
- [14] Xu, H.K., Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.
- [15] Xu, H.K., R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optimiz. 22 (2001), 767–773.

Misako Kikkawa Department of Mathematical and Computing Sciences Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo, 152-8552 Japan e-mail: takahata@is.titech.ac.jp Wataru Takahashi Department of Mathematical and Computing Sciences Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo, 152-8552 Japan e-mail: wataru@is.titech.ac.jp

Received October 4, 2004