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ABSTRACT. In this paper, we introduce an implicit sequence for an infinite
family of nonexpansive mappings in a uniformly convex Banach space and
prove weak and strong convergence theorems for finding a common fixed point

of the mappings.

1. Introduction. Let H be a Hilbert space and let C be a closed convex
subset of H. Let {11, T, ...,Tn} be nonexpansive mappings of C' into itself
such that ﬂf\il F(T;) is nonempty. In 2001, Xu and Ori [15] introduced an
implicit iteration process {z,} for a finite family of nonexpansive mappings
as follows: xg € C' and

x1 =tixo + (1 — t1)Th a1,
T9 = tox1 + (1 — tQ)TQZL‘Q,

zy =tney—1+ (1 —tn)INznN,
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rNy1 = tnpey + (1 —tvg)Tizn g,
TNy2 = tnperny1 + (1 — tny2)Than o,

where {t,} is a real sequence in (0,1) and they proved that this process
converges weakly to a common fixed point of {T3,7T5,...,Tn} in a Hilbert
space setting. Further, Xu and Ori [15] pointed out that it is yet unclear
what assumptions on the mappings {17, 7T»,...,Tn} and/or the parameters
{tn} are sufficient to guarantee the strong convergence of {z,}. In 2002, Liu
[5] gave an affirmative answer to that question as follows (see also [10]): Let
E be a uniformly convex Banach space and let C' be a nonempty bounded
closed convex subset of E. Let {T; : i = 1,2,..., N} be a finite family of
nonexpansive mappings of C into itself such that ﬂfil F(T;) is nonempty.
Let {x,} be a sequence generated by implicit iteration process. If {t,}
and d satisfy 0 < d < 1 and 0 < t, < d < 1 and there exists some
T e {T; : i =1,2,...,N} which is semi-compact, then, {z,} converges
strongly to z € ﬂzj\il F(T;). Further, in 2003, Sun [9] proved that the
modified implicit iteration process for a finite family of asymptotically quasi-
nonexpansive mappings converges strongly to a common fixed point of the
mappings in a uniformly convex Banach space, requiring one member 7' in
the family to be semi-compact.

In this paper, we introduce an implicit sequence for an infinite family
of nonexpansive mappings in a uniformly convex Banach space and prove
weak and strong convergence theorems for finding a common fixed point of
the mappings.

2. Preliminaries and lemmas. Let F be a real Banach space. Let C
be a nonempty closed convex subset of £. Then a mapping T of C' into
itself is called nonexpansive if | Tx — Ty|| < ||z — y|| for any =,y € C. For a
mapping 7" of C' into itself, we denote by F(T") the set of fixed points of T
ie, F(T)={x € C: Tz = z}. We also denote by N the set of all natural
numbers and by R and R the sets of all real numbers and all nonnegative
real numbers, respectively. A Banach space F is called uniformly convex
if for any two sequences {z,}, {yn} in E such that ||z,| = |ly»|| = 1 and
limy, oo ||Tn + ynll = 2, limp—ool|Zn — yn|l = 0 holds. E is said to satisfy
Opial’s condition [6] if for any sequence {z,} in E such that {z,} converges
weakly to z € E, liminf,, ||z, — 2| < liminf, ||z, — y|| holds for all
y € E with y # z. All Hilbert spaces and [P (1 < p < oo) satisfy Opial’s
condition, while P (1 < p < oo, p # 2) do not.

Let 17,75, ... be an infinite sequence of mappings of C' into itself and let
A1, Ag, ... be real numbers such that 0 < A\; < 1 for every ¢ € N. Then, for
any n € N, Takahashi [11] (see also [8], [13]) defined a mapping W), of C
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into itself as follows:

Un,n+1 = I,
Un,n — )\nTnUn,nJrl + (1 - )\n)Ia
Un,nfl — )\nflTnflUn,n + (1 - )\nfl)Iv

Unke = MeTkUp o1 + (1 — M),
Unji—1 = MNe—1Th—1Up s + (1 — Xp—1)1,

Unz = AaToUpns + (1= AT,
Wy = Uny = MT1Uns + (1 — AT

Such a mapping W, is called the W-mapping generated by T,,T),—1,...,11
and Ap, Ap—1,-.., AL
Using [8] and [1], we obtain the following two lemmas.

Lemma 1. Let C' be a nonempty closed convex subset of a Banach space E.
Let Ty, T, . .. be nonezpansive mappings of C into itself such that (\;2, F(T;)
1s nonempty and let A1, A, ... be real numbers such that 0 < A\; < 1 and
0< A\ <b<1lforanyi=2,3,.... Then for every x € C and k € N, the
limy, oo Uy g exists.

Using Lemma 1, for k£ € N, we define mappings Uy and U of C into
itself as follows:

Uoo,kx = lim Un?kx
n—00

and

Uz = lim Wyx = lim Uy 12

n—oo n—oo

for every x € C. Such a U is called the W-mapping generated by 11,75, ..
and Aq, Ao, .. ..

°9

Lemma 2. Let C be a nonempty closed convex subset of a strictly convex
Banach space E. Let T1,Ts, ... be nonexpansive mappings of C' into itself
such that ;2 F(T;) is nonempty and let A\, A2, ... be real numbers such
that 0 < A1 <1l and 0 < X\ <b< 1 foranyi=23,.... Let W, (n =
1,2,...) be the W-mappings of C into itself generated by Ty, Ty—1,...,T1
and Ap, Ap—1,..., A1 and let U be the W-mapping generated by 11,15, ...
and A\, A2, . ... Then F(Wy,) =ie, F(T;) and F(U) = (2, F(T;).

The following lemma was proved by Xu [14].
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Lemma 3. Let E be a uniformly conver Banach space and let r > 0. Then,
there exists a continuous, strictly increasing and convex function g : Rt —
R* with g(0) = 0 such that

1Az + (1= Xyl < Al + (1 = My = A1 = Ng(llz — yll)

forallz,y € By and 0 < A <1, where B, ={z € E : |z| < r}.
We also know the following lemma proved by Schu [7].

Lemma 4. Let E be a uniformly convex Banach space, let {t,} be a real
sequence such that 0 < b < t, <c <1 forn >1 and let a > 0. Sup-
pose that {x,} and {y,} are sequences of E such that limsup,,_, . ||zn] <
a, limsup,_ . ||lyn| < a and lim,_oo |[thxn + (1 — th)yn|| = a. Then
lim, oo |20 — ynl| = 0.

The following lemma was proved by Browder [2].

Lemma 5. Let C' be a nonempty bounded closed convex subset of a uni-
formly convex Banach space E and let T be a nonexpansive mapping of C
into itself. If {x,} converges weakly to z € C and {x, — Tx,} converges
strongly to 0, then Tz = z.

3. Weak convergence theorem. In this section, we prove a weak conver-
gence theorem of the implicit iteration process for finding a common fixed
point of a countable family of nonexpansive mappings in a Banach space.

Theorem 6. Let E be a uniformly conver Banach space which satisfies
Opial’s condition. Let C' be a monempty closed convex subset of E. Let
{T,.} be a countable family of nonexpansive mappings of C' into itself with a
nonempty common fized point set ();2 F(T;). Let b be a real number with
0 < b <1 andlet A\i,N,... be real numbers such that 0 < Ay < 1 and
0< XN <b<1foreveryi=2,3,.... Let W, (n=1,2,...) be W-mappings
of C into itself generated by T,,,Ty,_1,...,T1 and Ay, \p_1,...,A\1. Let U be
the W-mapping generated by 11,15, ... and A1, As, ..., i.e.,

Ur = lim Wyx = lim U,z
n—oo n—oo

for every x € C. Let {x,} be a sequence generated by

Tp = anTp_1+ (1 —apn)Wypzp, n=12...,

{xozxe(],

where {an} and d satisfy 0 < d <1 and 0 < ap, < d < 1. Then, {x,}
converges weakly to z € (o F(T).
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Proof. From Lemma 2, we obtain (2, F(T,) = (.o, F(W,,) = F(U).
Let x € C. Then for u € (2, F'(T,), we obtain that D = {y € C :
ly —u| < ||z — ul|} is a bounded closed convex subset of C' and x € D.
Further, for any y € D, we have T,y € C' and

[Thy — ull < [ly — ull
< Jla —ull.
Then D is invariant under T;, for all n € N. So, without loss of generality,
we may assume that C' is bounded.

Let xg € C and define S1 by S1z = ajzg + (1 — ap) Wiz for all z € C.
Then, we have, for all x,y € C,

1512 = Siyl| < (1 — aa)[[Whz — Why||

<
< (I —a)fz -yl

So, we obtain that S is a contraction mapping C' into itself. By the Banach
contraction principle, there exists a unique point x1 such that x; = Siz1.
Similarly, for n € N, we define S,, by S,z = apxo+(1—ay) Wy forallx € C
and obtain a unique point x,, € C such that =, = S,x,. Let u € F(U). By
the definition of {z, } and Lemma 3, we have
|zn — uH2 = |lan(zn—1 —u) + (1 — an) (Wyan — u)H2
< apl|zn-1 — u”2 + (1 = an)[[Whan — qu
— ap (1 — an)g([[Whnrn — 2p-1]|)
< apl|zn-1 — U”2 + (1 = ap)l|zn — u”2
— (1 — an)g([[Whnrn — 2p-1]|)
< apllTn-1— U||2 + (1 — ap)l|zn — U”2
for some g : RT™ — R*, which is continuous, strictly increasing, convex and

g(0) = 0. Therefore, we obtain ||z, — u|| < ||zn—1 — ul|, and hence the limit
of {||zn, — u||} exists for u € F(U). Since

(1 = an)g(Watn — 2n-1])) < an(llzn-1 — ul2 = 2 — ul]?
for all n € N and from 0 < «,, < d < 1, we have
(1= dg(IWan — n1l) < |1 — ull? — llzn — ul]
and hence lim, o0 g(||[Wnxn — 2n—1]]) = 0. This implies

(1) lim ||Wyx, — xp—1]] = 0.
n—oo
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Therefore, from ||, — zp—1|| < (1 — ap)||Whxn — p—1||, we have
(2) lim ||z, — zp—1] = 0.
n—oo

Further, from |Wyz,, — zp|| < [|[Whnxyn — Zp—1]| + ||n—1 — zx]|, (1) and (2),
we obtain

(3) lim ||W,x, — x| = 0.
n—oo

Since {z,} is bounded, we assume that there exists a subsequence {z,,} C
{xn} such that {x,;} converges weakly to w. Suppose that w # Uw. From
Opial’s condition, the definition of U and (3), we have

liminf ||z, —w| < liminf ||z, — Uw||
j—o00 j—00
< liminf (|2, — Wi, zn,||
j—00
F W2, — W wl| + [[Wa,w — Uw|))

< Hminf([|@n, — W, 2|
J—)OO

2, = ]l + [Wiyw — U]

= liminf [|z,; — w].
Jj—00

This is a contradiction. Hence, we obtain w € F(U). To complete the proof,
we prove that {z,} has at most one weak subsequential limit. We assume
that 21 and 29 are two distinct weak subsequential limits of the subsequences
{@n, } and {xn;} of {z,}, respectively. From Opial’s condition, we obtain
Jim [z — z1]) = T 2, — 1] < Jm l2, — 2l = Tim [z - 2|

= lim Hxnj — 25| < lim Hxnj —z1|| = lim ||z, — 21|
J—00 J—00 n—oo

This is a contradiction. So, {z,} converges weakly to z € (>, F(T},). This
completes the proof. O

As a direct consequence of Theorem 6, we obtain the following result.

Corollary 7. Let X be a Hilbert space. Let C' be a nonempty closed convex
subset of X. Let {T,} be a countable family of nonexpansive mappings of
C into itself such that (\;=, F(T;) is nonempty. Let b be a real number with
0 <b< 1 andlet \i,A,... be real numbers such that 0 < A\ < 1 and
0< XN <b<1foreveryi=2,3,.... Let W,, (n=1,2,...) be W-mappings
of C into itself generated by T,,, Th—1,...,T1 and Ay, Ap—1, ..., 1. Let U be
the W -mapping generated by 11,15, ... and A, Ag, ..., i.€.,

Uz = lim Wyx = lim U,z
n—oo n—oo
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for every x € C. Let {z,,} be a sequence generated by

{$0:$€C,

Tn = anTp_1+ (1 —apn)Wypzy, n=12...,

where {an} and d satisfy 0 < d <1 and 0 < ap, < d < 1. Then, {x,}
converges weakly to z € (o F(Ty).

4. Strong convergence theorem. In this section, we consider the strong
convergence of the implicit iterative process generated by a countable fam-

ily of nonexpansive mappings in a Banach space. We need the following
definition [3].

Definition 1. Let C be a closed subset of a Banach space E. A mapping T
from C into itself is said to be semi-compact, if for any sequence {z,} in C
such that lim, ||z, — T2y || = 0, then there exists a subsequence {x,,} C
{zy} such that z,,, — 2* € C, where — denotes the strong convergence.

Theorem 8. Let E be a uniformly convex Banach space. Let C be a
nonempty closed convez subset of E. Let {T,} be a countable family of non-
expansive mappings of C' into itself with a nonempty common fixed point set
N2, F(T;). Leta andb be real numbers with0 < a < b < 1 and let A1, Ao, . ..
be real numbers such that 0 <a < X \; < b <1 for everyi=1,2,.... Let W,
(n=1,2,...) be W-mappings of C into itself generated by Ty, Ty—1,...,T1
and Ay, Ap—1,...,A1. Let U be the W-mapping generated by 11,15, ... and
)\1, /\2, “ooy z'.e.,

Uz = lim Wyx = lim U,z
n—oo n—oo

for every x € C. Let {x,} be a sequence generated by

{xoszC,

Tp = apnTp_1+ (1 —apn)Wypzn, n=12...,

where {ay,} and d satisfy 0 < d < 1 and 0 < oy, < d < 1. If there ezists
some T € {T; : i € N} which is semi-compact, then {z,} converges strongly
toze (o, F(T,),

Proof. Since a uniformly convex Banach space is strictly convex, from
Lemma 2, we have (2, F(T,,) = (,—; F(Wy) = F(U). As in the proof of
Theorem 5, we may assume that C' is bounded and obtain that the limit of
{||zn, — u||} exists for any u € F(U). Let ¢ = lim,,||zn, — u||. Fix k € N.
For all n € N with n > k, we have

1Un ken = ull < flzn —ul.
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So, we obtain limsup,, . [|Un x2n — u|| < c¢. By the definition of {z,}, we
have

[2n — ull = [Jon(zn-1 — u) + (1 = an) (Whpan — u)]|
< apllen—1 —ull + (1 — an) [[Wyan — ul|
< anl|@n—1 — ull
+ (1 = an { AT Un p2n — ull + (1 = A1) l[2n — ull}
< anl|@n—1 — ull
+ (1 = an{AilUnpzn — ul + (1 = Ay [lzn — ull}
< anl|@n—1 — ull
+ (1 — an){ A Ao||Ungan — ull + (1 = A Ao) lzn — ull}

k—1
< apllen—1 —ull + (1 = an) TT Ail|Unpzn —uf

=1

k—1
+(1—apn)(1— 1;[1 i) || xn — ul|.

K]
Therefore, we obtain

Cn

(1- an) Hfz_ll Ai
d

<
= k—
1-d) I N

[ —ull < (lzn—1 = ull = llzn = ull) + [Ung2n = ul

(lzn—1 = ull = llzn = wll) + [Un pzn —ul.

Consequently, we have ¢ < liminf, o ||U, xx, — u|| and hence
lim | Uy gxn —ul| = ¢
n—oo

for all £ € N. Moreover, since

c= lim |Up xzn — vl
n—oo

= M A (TUn ppa2n — ) + (1 = M) (20 — u)]

and

lim sup|| Tx Uy, g1 120 — ul] < limsup||Up py120 — ul| < ¢,

n—oo n—oo
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we obtain lim, oo ||TxUp k4120 — @n|| = 0 by Lemma 4. For any k € N, we
have

|Tkwn — o0l < | Than — TkUn,kanH + HTkUn,kan — Zn|
< Hxn - n,k+1mnH + HTkUn,k+1xn - an

< Mkt T Unyamn — Toll + 1 TeUn g1 — ool
Hence we have limsup,,, . ||TxZn — || < 0. This implies
(4) lim || Txx, — xn|| = 0.
n—oo

for all k£ € N. By the assumption, there exists a subsequence {zy,} of {z,}
such that z,, — p € C as i — oo. From (4), we have

Ip = Tiepll = lim ||z, — Tan, || = 0
i—00

for all £ € N. This implies p € F(T}) for all £ € N. Therefore we have
liminf,, . d(zy, F(U)) = 0. For any u € F(U), we have

[2n = ull < [lzn—1 = ull

and hence
d(xn, F(U)) < d(xp—1, F(U)).

So, we obtain lim,,_.« d(zy, F(U)) = 0. Let us prove that {z,} is a Cauchy
sequence. For any m,n € N, we have

[2n+m = ull < llzn = ull

for any w € F(U). Since limy—o d(xy, F(U)) = 0, for any € > 0 there
exists ng € N such that d(z,, F(U)) < § for any n > ng. Hence there exists
uy € F'(U) such that ||z,, —u1]| < §. So, for any n,m > ng, we have

[2m = x|l < llzm — wl] + [J2n — ual]

< l#ng = wall + flng —wil

s T5=¢
Then, {z,} is a Cauchy sequence, and hence lim,,_,o, =, exists in C. Let
u = limy, o0 . From (4) and Lemma 5, we have u € F(T}) for all k € N.
So, {x,} converges strongly to u € F(U). O
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