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Abstract. In this paper, we introduce an implicit sequence for an infinite
family of nonexpansive mappings in a uniformly convex Banach space and
prove weak and strong convergence theorems for finding a common fixed point
of the mappings.

1. Introduction. Let H be a Hilbert space and let C be a closed convex
subset of H. Let {T1, T2, . . . , TN} be nonexpansive mappings of C into itself
such that

⋂N
i=1 F (Ti) is nonempty. In 2001, Xu and Ori [15] introduced an

implicit iteration process {xn} for a finite family of nonexpansive mappings
as follows: x0 ∈ C and

x1 = t1x0 + (1− t1)T1x1,

x2 = t2x1 + (1− t2)T2x2,

...

xN = tNxN−1 + (1− tN )TNxN ,
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xN+1 = tN+1xN + (1− tN+1)T1xN+1,

xN+2 = tN+2xN+1 + (1− tN+2)T2xN+2,

...

where {tn} is a real sequence in (0, 1) and they proved that this process
converges weakly to a common fixed point of {T1, T2, . . . , TN} in a Hilbert
space setting. Further, Xu and Ori [15] pointed out that it is yet unclear
what assumptions on the mappings {T1, T2, . . . , TN} and/or the parameters
{tn} are sufficient to guarantee the strong convergence of {xn}. In 2002, Liu
[5] gave an affirmative answer to that question as follows (see also [10]): Let
E be a uniformly convex Banach space and let C be a nonempty bounded
closed convex subset of E. Let {Ti : i = 1, 2, . . . , N} be a finite family of
nonexpansive mappings of C into itself such that

⋂N
i=1 F (Ti) is nonempty.

Let {xn} be a sequence generated by implicit iteration process. If {tn}
and d satisfy 0 < d < 1 and 0 < tn ≤ d < 1 and there exists some
T ∈ {Ti : i = 1, 2, . . . , N} which is semi-compact, then, {xn} converges
strongly to z ∈

⋂N
i=1 F (Ti). Further, in 2003, Sun [9] proved that the

modified implicit iteration process for a finite family of asymptotically quasi-
nonexpansive mappings converges strongly to a common fixed point of the
mappings in a uniformly convex Banach space, requiring one member T in
the family to be semi-compact.
In this paper, we introduce an implicit sequence for an infinite family
of nonexpansive mappings in a uniformly convex Banach space and prove
weak and strong convergence theorems for finding a common fixed point of
the mappings.

2. Preliminaries and lemmas. Let E be a real Banach space. Let C
be a nonempty closed convex subset of E. Then a mapping T of C into
itself is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for any x, y ∈ C. For a
mapping T of C into itself, we denote by F (T ) the set of fixed points of T ,
i.e., F (T ) = {x ∈ C : Tx = x}. We also denote by N the set of all natural
numbers and by R and R+ the sets of all real numbers and all nonnegative
real numbers, respectively. A Banach space E is called uniformly convex
if for any two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞‖xn + yn‖ = 2, limn→∞‖xn − yn‖ = 0 holds. E is said to satisfy
Opial’s condition [6] if for any sequence {xn} in E such that {xn} converges
weakly to z ∈ E, lim infn→∞‖xn − z‖ < lim infn→∞‖xn − y‖ holds for all
y ∈ E with y 6= z. All Hilbert spaces and lp (1 < p < ∞) satisfy Opial’s
condition, while Lp (1 < p < ∞, p 6= 2) do not.
Let T1, T2, . . . be an infinite sequence of mappings of C into itself and let

λ1, λ2, . . . be real numbers such that 0 ≤ λi ≤ 1 for every i ∈ N. Then, for
any n ∈ N, Takahashi [11] (see also [8], [13]) defined a mapping Wn of C
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into itself as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1− λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,

...

Un,k = λkTkUn,k+1 + (1− λk)I,

Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,

...

Un,2 = λ2T2Un,3 + (1− λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1− λ1)I.

Such a mapping Wn is called the W -mapping generated by Tn, Tn−1, . . . , T1

and λn, λn−1, . . . , λ1.
Using [8] and [1], we obtain the following two lemmas.

Lemma 1. Let C be a nonempty closed convex subset of a Banach space E.
Let T1, T2, . . . be nonexpansive mappings of C into itself such that

⋂∞
i=1 F (Ti)

is nonempty and let λ1, λ2, . . . be real numbers such that 0 < λ1 ≤ 1 and
0 < λi ≤ b < 1 for any i = 2, 3, . . .. Then for every x ∈ C and k ∈ N, the
limn→∞ Un,kx exists.

Using Lemma 1, for k ∈ N, we define mappings U∞,k and U of C into
itself as follows:

U∞,kx = lim
n→∞

Un,kx

and

Ux = lim
n→∞

Wnx = lim
n→∞

Un,1x

for every x ∈ C. Such a U is called the W -mapping generated by T1, T2, . . .,
and λ1, λ2, . . ..

Lemma 2. Let C be a nonempty closed convex subset of a strictly convex
Banach space E. Let T1, T2, . . . be nonexpansive mappings of C into itself
such that

⋂∞
i=1 F (Ti) is nonempty and let λ1, λ2, . . . be real numbers such

that 0 < λ1 ≤ 1 and 0 < λi ≤ b < 1 for any i = 2, 3, . . .. Let Wn (n =
1, 2, . . .) be the W -mappings of C into itself generated by Tn, Tn−1, . . . , T1

and λn, λn−1, . . . , λ1 and let U be the W -mapping generated by T1, T2, . . .
and λ1, λ2, . . .. Then F (Wn) =

⋂n
i=1 F (Ti) and F (U) =

⋂∞
i=1 F (Ti).

The following lemma was proved by Xu [14].
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Lemma 3. Let E be a uniformly convex Banach space and let r > 0. Then,
there exists a continuous, strictly increasing and convex function g : R+ →
R+ with g(0) = 0 such that

‖λx + (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)g(‖x− y‖)

for all x, y ∈ Br and 0 ≤ λ ≤ 1, where Br = {x ∈ E : ‖x‖ ≤ r}.

We also know the following lemma proved by Schu [7].

Lemma 4. Let E be a uniformly convex Banach space, let {tn} be a real
sequence such that 0 < b ≤ tn ≤ c < 1 for n ≥ 1 and let a ≥ 0. Sup-
pose that {xn} and {yn} are sequences of E such that lim supn→∞ ‖xn‖ ≤
a, lim supn→∞ ‖yn‖ ≤ a and limn→∞ ‖tnxn + (1 − tn)yn‖ = a. Then
limn→∞ ‖xn − yn‖ = 0.

The following lemma was proved by Browder [2].

Lemma 5. Let C be a nonempty bounded closed convex subset of a uni-
formly convex Banach space E and let T be a nonexpansive mapping of C
into itself. If {xn} converges weakly to z ∈ C and {xn − Txn} converges
strongly to 0, then Tz = z.

3. Weak convergence theorem. In this section, we prove a weak conver-
gence theorem of the implicit iteration process for finding a common fixed
point of a countable family of nonexpansive mappings in a Banach space.

Theorem 6. Let E be a uniformly convex Banach space which satisfies
Opial’s condition. Let C be a nonempty closed convex subset of E. Let
{Tn} be a countable family of nonexpansive mappings of C into itself with a
nonempty common fixed point set

⋂∞
i=1 F (Ti). Let b be a real number with

0 < b < 1 and let λ1, λ2, . . . be real numbers such that 0 < λ1 ≤ 1 and
0 < λi ≤ b < 1 for every i = 2, 3, . . .. Let Wn (n = 1, 2, . . .) be W -mappings
of C into itself generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1. Let U be
the W -mapping generated by T1, T2, . . . and λ1, λ2, . . ., i.e.,

Ux = lim
n→∞

Wnx = lim
n→∞

Un,1x

for every x ∈ C. Let {xn} be a sequence generated by{
x0 = x ∈ C,

xn = αnxn−1 + (1− αn)Wnxn, n = 1, 2, . . . ,

where {αn} and d satisfy 0 < d < 1 and 0 < αn ≤ d < 1. Then, {xn}
converges weakly to z ∈

⋂∞
n=1 F (Tn).



Weak and strong convergence of an implicit iterative... 73

Proof. From Lemma 2, we obtain
⋂∞

n=1 F (Tn) =
⋂∞

n=1 F (Wn) = F (U).
Let x ∈ C. Then for u ∈

⋂∞
n=1 F (Tn), we obtain that D = {y ∈ C :

‖y − u‖ ≤ ‖x − u‖} is a bounded closed convex subset of C and x ∈ D.
Further, for any y ∈ D, we have Tny ∈ C and

‖Tny − u‖ ≤ ‖y − u‖
≤ ‖x− u‖.

Then D is invariant under Tn for all n ∈ N. So, without loss of generality,
we may assume that C is bounded.
Let x0 ∈ C and define S1 by S1x = α1x0 + (1 − α1)W1x for all x ∈ C.
Then, we have, for all x, y ∈ C,

‖S1x− S1y‖ ≤ (1− α1)‖W1x−W1y‖
≤ (1− α1)‖x− y‖.

So, we obtain that S1 is a contraction mapping C into itself. By the Banach
contraction principle, there exists a unique point x1 such that x1 = S1x1.
Similarly, for n ∈ N, we define Sn by Snx = αnx0+(1−αn)Wnx for all x ∈ C
and obtain a unique point xn ∈ C such that xn = Snxn. Let u ∈ F (U). By
the definition of {xn} and Lemma 3, we have

‖xn − u‖2 = ‖αn(xn−1 − u) + (1− αn)(Wnxn − u)‖2

≤ αn‖xn−1 − u‖2 + (1− αn)‖Wnxn − u‖2

− αn(1− αn)g(‖Wnxn − xn−1‖)
≤ αn‖xn−1 − u‖2 + (1− αn)‖xn − u‖2

− αn(1− αn)g(‖Wnxn − xn−1‖)
≤ αn‖xn−1 − u‖2 + (1− αn)‖xn − u‖2

for some g : R+ → R+, which is continuous, strictly increasing, convex and
g(0) = 0. Therefore, we obtain ‖xn − u‖ ≤ ‖xn−1 − u‖, and hence the limit
of {‖xn − u‖} exists for u ∈ F (U). Since

αn(1− αn)g(‖Wnxn − xn−1‖) ≤ αn(‖xn−1 − u‖2 − ‖xn − u‖2)

for all n ∈ N and from 0 < αn ≤ d < 1, we have

(1− d)g(‖Wnxn − xn−1‖) ≤ ‖xn−1 − u‖2 − ‖xn − u‖2

and hence limn→∞ g(‖Wnxn − xn−1‖) = 0. This implies

(1) lim
n→∞

‖Wnxn − xn−1‖ = 0.
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Therefore, from ‖xn − xn−1‖ ≤ (1− αn)‖Wnxn − xn−1‖, we have

(2) lim
n→∞

‖xn − xn−1‖ = 0.

Further, from ‖Wnxn − xn‖ ≤ ‖Wnxn − xn−1‖+ ‖xn−1 − xn‖, (1) and (2),
we obtain

(3) lim
n→∞

‖Wnxn − xn‖ = 0.

Since {xn} is bounded, we assume that there exists a subsequence {xnj} ⊂
{xn} such that {xnj} converges weakly to w. Suppose that w 6= Uw. From
Opial’s condition, the definition of U and (3), we have

lim inf
j→∞

‖xnj − w‖ < lim inf
j→∞

‖xnj − Uw‖

≤ lim inf
j→∞

(‖xnj −Wnjxnj‖

+ ‖Wnjxnj −Wnjw‖+ ‖Wnjw − Uw‖)
≤ lim inf

j→∞
(‖xnj −Wnjxnj‖

+ ‖xnj − w‖+ ‖Wnjw − Uw‖)
= lim inf

j→∞
‖xnj − w‖.

This is a contradiction. Hence, we obtain w ∈ F (U). To complete the proof,
we prove that {xn} has at most one weak subsequential limit. We assume
that z1 and z2 are two distinct weak subsequential limits of the subsequences
{xni} and {xnj} of {xn}, respectively. From Opial’s condition, we obtain

lim
n→∞

‖xn − z1‖ = lim
i→∞

‖xni − z1‖ < lim
i→∞

‖xni − z2‖ = lim
n→∞

‖xn − z2‖

= lim
j→∞

‖xnj − z2‖ < lim
j→∞

‖xnj − z1‖ = lim
n→∞

‖xn − z1‖.

This is a contradiction. So, {xn} converges weakly to z ∈
⋂∞

n=1 F (Tn). This
completes the proof. �

As a direct consequence of Theorem 6, we obtain the following result.

Corollary 7. Let X be a Hilbert space. Let C be a nonempty closed convex
subset of X. Let {Tn} be a countable family of nonexpansive mappings of
C into itself such that

⋂∞
i=1 F (Ti) is nonempty. Let b be a real number with

0 < b < 1 and let λ1, λ2, . . . be real numbers such that 0 < λ1 ≤ 1 and
0 < λi ≤ b < 1 for every i = 2, 3, . . .. Let Wn (n = 1, 2, . . .) be W -mappings
of C into itself generated by Tn, Tn−1, . . . , T1 and λn, λn−1, . . . , λ1. Let U be
the W -mapping generated by T1, T2, . . . and λ1, λ2, . . ., i.e.,

Ux = lim
n→∞

Wnx = lim
n→∞

Un,1x
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for every x ∈ C. Let {xn} be a sequence generated by{
x0 = x ∈ C,

xn = αnxn−1 + (1− αn)Wnxn, n = 1, 2, . . . ,

where {αn} and d satisfy 0 < d < 1 and 0 < αn ≤ d < 1. Then, {xn}
converges weakly to z ∈

⋂∞
n=1 F (Tn).

4. Strong convergence theorem. In this section, we consider the strong
convergence of the implicit iterative process generated by a countable fam-
ily of nonexpansive mappings in a Banach space. We need the following
definition [3].

Definition 1. Let C be a closed subset of a Banach space E. A mapping T
from C into itself is said to be semi-compact, if for any sequence {xn} in C
such that limn→∞‖xn− Txn‖ = 0, then there exists a subsequence {xni} ⊂
{xn} such that xni → x∗ ∈ C, where → denotes the strong convergence.

Theorem 8. Let E be a uniformly convex Banach space. Let C be a
nonempty closed convex subset of E. Let {Tn} be a countable family of non-
expansive mappings of C into itself with a nonempty common fixed point set⋂∞

i=1 F (Ti). Let a and b be real numbers with 0 < a ≤ b < 1 and let λ1, λ2, . . .
be real numbers such that 0 < a ≤ λi ≤ b < 1 for every i = 1, 2, . . .. Let Wn

(n = 1, 2, . . .) be W -mappings of C into itself generated by Tn, Tn−1, . . . , T1

and λn, λn−1, . . . , λ1. Let U be the W -mapping generated by T1, T2, . . . and
λ1, λ2, . . ., i.e.,

Ux = lim
n→∞

Wnx = lim
n→∞

Un,1x

for every x ∈ C. Let {xn} be a sequence generated by{
x0 = x ∈ C,

xn = αnxn−1 + (1− αn)Wnxn, n = 1, 2, . . . ,

where {αn} and d satisfy 0 < d < 1 and 0 < αn ≤ d < 1. If there exists
some T ∈ {Ti : i ∈ N} which is semi-compact, then {xn} converges strongly
to z ∈

⋂∞
n=1 F (Tn),

Proof. Since a uniformly convex Banach space is strictly convex, from
Lemma 2, we have

⋂∞
n=1 F (Tn) =

⋂∞
n=1 F (Wn) = F (U). As in the proof of

Theorem 5, we may assume that C is bounded and obtain that the limit of
{‖xn − u‖} exists for any u ∈ F (U). Let c = limn→∞‖xn − u‖. Fix k ∈ N.
For all n ∈ N with n ≥ k, we have

‖Un,kxn − u‖ ≤ ‖xn − u‖.
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So, we obtain lim supn→∞‖Un,kxn − u‖ ≤ c. By the definition of {xn}, we
have

‖xn − u‖ = ‖αn(xn−1 − u) + (1− αn)(Wnxn − u)‖
≤ αn‖xn−1 − u‖+ (1− αn)‖Wnxn − u‖
≤ αn‖xn−1 − u‖

+ (1− αn){λ1‖T1Un,2xn − u‖+ (1− λ1)‖xn − u‖}
≤ αn‖xn−1 − u‖

+ (1− αn){λ1‖Un,2xn − u‖+ (1− λ1)‖xn − u‖}
≤ αn‖xn−1 − u‖

+ (1− αn){λ1λ2‖Un,3xn − u‖+ (1− λ1λ2)‖xn − u‖}
...

≤ αn‖xn−1 − u‖+ (1− αn)
k−1∏
i=1

λi‖Un,kxn − u‖

+ (1− αn)(1−
k−1∏
i=1

λi)‖xn − u‖.

Therefore, we obtain

‖xn − u‖ ≤ αn

(1− αn)
∏k−1

i=1 λi

(‖xn−1 − u‖ − ‖xn − u‖) + ‖Un,kxn − u‖

≤ d

(1− d)
∏k−1

i=1 λi

(‖xn−1 − u‖ − ‖xn − u‖) + ‖Un,kxn − u‖.

Consequently, we have c ≤ lim infn→∞‖Un,kxn − u‖ and hence

lim
n→∞

‖Un,kxn − u‖ = c

for all k ∈ N. Moreover, since

c = lim
n→∞

‖Un,kxn − u‖

= lim
n→∞

‖λk(TkUn,k+1xn − u) + (1− λk)(xn − u)‖

and

lim sup
n→∞

‖TkUn,k+1xn − u‖ ≤ lim sup
n→∞

‖Un,k+1xn − u‖ ≤ c,
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we obtain limn→∞‖TkUn,k+1xn − xn‖ = 0 by Lemma 4. For any k ∈ N, we
have

‖Tkxn − xn‖ ≤ ‖Tkxn − TkUn,k+1xn‖+ ‖TkUn,k+1xn − xn‖
≤ ‖xn − Un,k+1xn‖+ ‖TkUn,k+1xn − xn‖
≤ λk+1‖Tk+1Un,k+2xn − xn‖+ ‖TkUn,k+1xn − xn‖.

Hence we have lim supn→∞‖Tkxn − xn‖ ≤ 0. This implies

(4) lim
n→∞

‖Tkxn − xn‖ = 0.

for all k ∈ N. By the assumption, there exists a subsequence {xni} of {xn}
such that xni → p ∈ C as i →∞. From (4), we have

‖p− Tkp‖ = lim
i→∞

‖xni − Tkxni‖ = 0

for all k ∈ N. This implies p ∈ F (Tk) for all k ∈ N. Therefore we have
lim infn→∞ d(xn, F (U)) = 0. For any u ∈ F (U), we have

‖xn − u‖ ≤ ‖xn−1 − u‖

and hence

d(xn, F (U)) ≤ d(xn−1, F (U)).

So, we obtain limn→∞ d(xn, F (U)) = 0. Let us prove that {xn} is a Cauchy
sequence. For any m,n ∈ N, we have

‖xn+m − u‖ ≤ ‖xn − u‖

for any u ∈ F (U). Since limn→∞ d(xn, F (U)) = 0, for any ε > 0 there
exists n0 ∈ N such that d(xn, F (U)) < ε

2 for any n ≥ n0. Hence there exists
u1 ∈ F (U) such that ‖xn0 − u1‖ < ε

2 . So, for any n, m ≥ n0, we have

‖xm − xn‖ ≤ ‖xm − u1‖+ ‖xn − u1‖
≤ ‖xn0 − u1‖+ ‖xn0 − u1‖

<
ε

2
+

ε

2
= ε.

Then, {xn} is a Cauchy sequence, and hence limn→∞ xn exists in C. Let
u = limn→∞ xn. From (4) and Lemma 5, we have u ∈ F (Tk) for all k ∈ N.
So, {xn} converges strongly to u ∈ F (U). �
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