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Natural affinors on time-dependent higher order
cotangent bundles

Abstract. We study natural affinors on time-dependent natural bundles.
Then we determine all natural affinors on the time-dependent higher order
cotangent bundle T r∗M × R.

1. Introduction. Recently, it has been pointed out that natural tensor
fields of type (1, 1) (in other words affinors) play an important role in differ-
ential geometry. In particular, I. Kolář and M. Modugno have used natural
affinors to introduce the general concept of the torsion of a connection, [6].
Using such a point of view, it is useful to classify all natural affinors on some
natural bundles. Such an approach has been used e.g. in [3], [4] and [6].
Further, non-autonomous Lagrangian dynamics can be considered as an
extension of autonomous Lagrangian dynamics by introducing the addi-
tional time coordinate. For example, M. de León and R. P. Rodrigues have
introduced the concept of time-dependent (or dynamical) connection, [10].
Quite analogously, one can define dynamical vector fields, affinors, sprays
and other structures. M. Doupovec and I. Kolář have classified all na-
tural affinors on time-dependent Weil bundles, [2]. It is well known that
Weil algebras and Weil functors generalize many geometric structures and
constructions. In particular, there is a complete description of all product
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preserving functors on the category of all smooth manifolds and all smooth
maps in terms of Weil functors, [7].
The aim of this paper is twofold. First, we study natural affinors on time-
dependent natural bundles from a general point of view. In Example 2 we
introduce the new natural affinor on a time-dependent natural bundle, which
was not included in [2]. Second, we classify all natural affinors on time-
dependent higher order cotangent bundles. We remark that such bundles
are used e.g. in higher order mechanics, [14]. In this paper we essentially
use the results [8] and [9] of J. Kurek.
All manifolds and maps are assumed to be infinitely differentiable.

2. Natural affinors on time-dependent bundles. In general, an affi-
nor on a manifold M is a tensor field of type (1, 1) on M , which can be
interpreted as a linear morphism TM → TM over the identity ofM . By the
Frölicher–Nijenhuis theory, affinors are exactly tangent-valued one-forms on
M, i.e. sections from C∞(TM⊗T ∗M). Given a fibered manifold p : Y → M ,
an affinor Q on Y is called vertical, if Q has values in the vertical bundle
VY, i.e. Q ∈ C∞(V Y ⊗ T ∗Y ).
Further, let T ∗M ⊂ T ∗Y be the canonical inclusion of cotangent bun-
dles. By [11], vertical affinors of the form Q ∈ C∞(V Y ⊗ T ∗M) are called
soldering forms. Let F be a natural bundle F on the categoryMfm of all
m-dimensional manifolds and their local diffeomorphisms. We recall that a
natural affinor on a natural bundle F is a system of affinors QM : TFM →
TFM for every m-manifold M satisfying TFf ◦QM = QN ◦ TFf for every
local diffeomorphism f : M → N . An example of a natural affinor is the
classical almost tangent structure on TM .

Definition 1. The time-dependent natural bundle FR corresponding to the
natural bundle F is defined by FRM = FM × R for every m-dimensional
manifold M and by FRf = Ff × IdR : FRM → FRN for every local diffeo-
morphism f : M → N .

Clearly, the time-dependent natural bundle FR generalizes the well known
time-dependent tangent bundle TM ×R and also the time-dependent Weil
bundle TA

R from [2], if we restrict TA
R to the categoryMfm.

In what follows we introduce some examples of natural affinors on time-
-dependent bundles.

Example 1. For any natural bundle F we have three simple constructions
of natural affinors on FR. First, every natural affinor Q on F induces a
natural affinor Q̃ on FR by means of the product structure FM ×R. Quite
analogously, the identity IdTR of TR determines another affinor ĨdTR on FR.
The third type of natural affinors on FR can be defined by tensor products
X ⊗ dt of absolute vector fields on FM with the canonical one-form dt on
R.
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We recall that an absolute vector field can be interpreted as an absolute
natural operator transforming vector fields on M into vector fields on FM,
[7]. Clearly, absolute vector fields are natural in the following sense.

Definition 2. A natural vector field X on natural bundle F is a system
of vector fields XM : FM → TFM for every m-manifold M satisfying
TFf ◦XM = XN ◦ Ff for all local diffeomorphisms f : M → N .

If F is a natural vector bundle, then the classical Liouville vector field
LFM on FM is natural. Clearly, LFM is generated by the one-parameter
family of homotheties. More generally, let Φ(t) be a smooth one-parameter
family of natural transformations F → F , where smoothness means that the
map Φ(t)M : FM × R → FM is smooth for every manifold M . Then the
formula XM = d

dt

∣∣
0
Φ(t)M defines a natural vector field XM : FM → TFM .

By [7], every natural vector field X on F is vertical. This yields that
natural affinors X ⊗ dt on FR from Example 1 are soldering forms.

Example 2. Let F be a natural vector bundle and let f be a natural
function on TF. We recall that this is a system of functions fM : TFM → R
for every m-dimensional manifold M satisfying fM = fN ◦TFϕ for all local
diffeomorphisms ϕ : M → N . Denote by πM : FM → M the bundle
projection and by pM : TM → M the tangent bundle projection. For any
X ∈ TFRM = TFM×TR we have pFRM (X) ∈ FRM , pr1(pFRM (X)) ∈ FM
and x := πM (pr1(pFRM (X))) ∈ M . Let s : M → FM be a zero section.
Then the cartesian product of s(x) with fM (pr1(X)) defines an element

R(X) := s(x)× fM (pr1(X)) ∈ FM × R = FRM.

As FM is a vector bundle, FRM is a vector bundle too. For X ∈ TFRM
we have

P (X) := (pFRM (X), R(X)) ∈ (FRM ⊕ FRM) ∼= V FRM ⊂ TFRM.

This defines a natural affinor P on FRM .

We remark that natural affinors from Example 2 did not appear in the
description of all natural affinors on time-dependent Weil bundles, [2]. We
also point out that the classical Liouville one-form of the cotangent bundle
T ∗M is the simplest example of a natural function on TT ∗.
It is well known that natural affinors play a significant role in the theory
of torsions of connections. In particular, if we interpret a general connection
Γ : FM → J1FM as its horizontal projection (denoted by the same symbol)
Γ : TFM → TFM , we obtain an affinor on F . Further, I. Kolář and M.
Modugno introduced the generalized torsion of Γ as the Frölicher–Nijenhuis
bracket [Γ, Q] of Γ with some natural affinor Q on F , [6]. Such an approach
has been used e.g. in [3], [4] and [6]. There are also many papers which
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classify all natural affinors on some natural bundles, see [5], [8], [12] and
[13].

Denote by TA the Weil functor corresponding to a Weil algebra A, [2]. By
the general theory, every product preserving functor F on the categoryMf
of all smooth manifolds and all smooth maps is the Weil functor F = TA,
where A = FR. M. Doupovec and I. Kolář have determined all natural
affinors on the time-dependent Weil bundle TA

R M , [2]. It is interesting to
point out that all natural affinors on TA

R M are generated only by affinors
from Example 1. Using this result, M. Doupovec has described torsions of
dynamical connections on time-dependent Weil bundles, [1].
Further, natural affinors on time-dependent higher order tangent bundles
were determined by I. Kolář and J. Gancarzewicz, [5]. Such affinors are also
generated only by three affinors from Example 1.

3. Natural affinors on time-dependent higher order cotangent bun-
dles. Let M be a smooth m-dimensional manifold and denote by T r∗M =
Jr(M, R)0 the space of all r-jets from M into R with target 0. Every local
diffeomorphism f : M → N can be extended to a vector bundle morphism
T r∗f : T r∗M → T r∗N by jr

xϕ 7→ jr
f(x)(ϕ ◦ f−1), where f−1 is constructed

locally. Then πM : T r∗M → M is a natural vector bundle which is called
the r-th order cotangent bundle. Clearly, T 1∗M = T ∗M is the classical
cotangent bundle.
Denote by

qM : T r∗M → T ∗M

the bundle projection defined by qM (jr
xf) = j1

xf . If X ∈ TT r∗M , then
TπM (X) ∈ TM and qM (pT r∗M (X)) ∈ T ∗M . So we can define a map

λM : TT r∗M → R, λM (X) = 〈qM (pT r∗M (X)), TπM (X)〉,

which is called the generalized Liouville form on T r∗M .
Further, let Ar

s : T r∗M → T r∗M be the s-th power natural transforma-
tion defined by Ar

s(j
r
xf) = jr

x(f)s, where (f)s denotes s-th power of f. Since
πM : T r∗M → M is a vector bundle, the vertical bundle V T r∗M can be
identified with the Whitney sum T r∗M ⊕ T r∗M . Using this identification
we can define natural affinors Qs

M : TT r∗M → V T r∗M by

Qs
M (X) = (pT r∗M (X), λM (X)Ar

s(pT r∗M (X))).

In what follows we will use the following results, which were proved by
J. Kurek.

Lemma 1 ([8]). All natural affinors on the r-th order cotangent bundle
T r∗M are of the form

k0IdT r∗M + k1Q
1
M + · · ·+ krQ

r
M , ki ∈ R.
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Lemma 2 ([9]). All natural transformations T r∗M → T r∗M are of the
form

k1A
r
1 + · · ·+ krA

r
r, ki ∈ R.

Multiplying the s-th power transformation Ar
s by a real number t, we

obtain a smooth one-parameter family of natural transformations (tAr
s) :

T r∗M → T r∗M . This generates a vector field Ls : T r∗M → V T r∗M by

Ls(u) =
d

dt

∣∣∣∣
0

(u + tAr
s(u)) .

Clearly, L1 is the classical Liouville vector field on T r∗ and Ls can be also
defined by Ls(u) = (u, Ar

s(u)).
Using Example 1 and Example 2, we have four types of natural affinors
on the time-dependent bundle T r∗

R M = T r∗M × R:
I) Each natural affinor on T r∗M from Lemma 1 induces a natural affinor
on T r∗

R M by means of the product structure. In this way we obtain natural
affinors Q̃1

M , . . . , Q̃r
M and ĨdT r∗M .

II) The identity of TR induces a natural affinor ĨdR on T r∗
R M .

III) Natural vector fields Ls : T r∗M → TT r∗M induce natural affinors
(Ls ⊗ dt) on T r∗

R M .

IV) Clearly, the generalized Liouville form λM : TT r∗M → R is a natural
function on TT r∗M . By Example 2, this natural function determines a
natural affinor P on T r∗

R M .

In the rest of this paper we prove that natural affinors from I–IV generate
all natural affinors on T r∗

R M . We first introduce the coordinate form of
affinors from I–IV.
The canonical coordinates (xi) on M induce the additional fiber coordi-
nates (ui, uij , . . . , ui1...ir) on T r∗M , which are symmetric in all indices, [4].
Denoting by t the coordinate on R, the coordinates on TT r∗

R M are of the
form

(xi, t, ui, . . . , ui1···ir , X
i = dxi, T = dt, Ui = dui, . . . , Ui1···ir = dui1···ir).

Clearly, we have

ĨdT r∗M (dxi, dt, dui, . . . , dui1···ir) =(dxi, 0, dui, . . . , dui1···ir)

ĨdR(dxi, dt, dui, . . . , dui1···ir) =(0, dt, 0, . . . , 0).

Obviously, the generalized Liouville form λM has the coordinate expres-
sion uidxi. Then

P (dxi, dt, dui, . . . , dui1···ir) = (0, ujdxj , 0, . . . , 0).
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J. Kurek has computed the coordinate form of affinors Q1
M , . . . , Qr

M on
T r∗M . Using [8], we have

Q̃1
M (dxi, dt, dui, . . . , dui1···ir) = (0, 0, uiujdxj , . . . , ui1···irujdxj)

...

Q̃s
M (dxi, dt, dui, . . . , dui1···ir) =

(
0, 0, 0, . . . , ui1···isujdxj ,

(s + 1)!
(s− 1)!2!

u(i1 · · ·uis−1uisis+1)ujdxj , . . . ,

r!
(s− 1)!(r − s + 1)!

u(i1 · · ·uis−1uis···ir)ujdxj
)

...

Q̃r
M (dxi, dt, dui, . . . , dui1···ir) = (0, 0, 0, . . . , 0, ui1 · · ·uirujdxj),

where (ii · · · ir) denotes the symmetrization.
Finally, the natural vector field Ls is of the form

Ls = ui1 · · ·uis

∂

∂ui1···is
+· · ·+ r!

(s− 1)!(r − s + 1)!
u(i1 · · ·uis−1uis···ir)

∂

∂ui1···ir
,

see [4]. So we have

(L1 ⊗ dt)(dxi, dt, dui, . . . , dui1···ir) = (0, 0, uidt, . . . , ui1···irdt)
...

(Lr ⊗ dt)(dxi, dt, dui, . . . , dui1···ir) = (0, 0, 0, . . . , 0, ui1ui2 · · ·uirdt).

Proposition 1. All natural affinors F r : TT r∗
R M → TT r∗

R M are of the
form

F r = a(t)ĨdT r∗M + b(t)ĨdR + a1(t)Q̃1
M + · · ·+ ar(t)Q̃r

M

+b1(t)L1 ⊗ dt + · · ·+ br(t)Lr ⊗ dt + c(t)P,

where a(t), . . . , c(t) are arbitrary smooth functions of R.

Proof. Denote by Gr
m the group of all invertible r-jets of Rm into Rm

with the source and the target zero. By the general theory, [7], it suffices to
find all Gr+1

m -equivariant linear maps T (T r∗
R Rm)0 → T (T r∗

R Rm)0 of standard
fibers.
Let (ai

j , a
i
jk, . . . , a

i
j1j2...jr

) be the coordinates on Gr
m and denote by a tilde

the inverse element. By standard evaluations we find the action of Gr+1
m on

the standard fibre T (T r∗
R Rm)0
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ui = ãj
iuj(1)

ui1i2 = ãj1
i1

ãj2
i2

uj1j2 + ãj1
i1i2

uj1(2)
...

ui1...ir = ãj1
i1

. . . ãjr

ir
uj1...jr

+
r!

(r − 2)!2!
ãj1

(i1
. . . ã

jr−2

ir−2
ã

jr−1

ir−1ir)uj1...jr−1

+ · · ·+
[

r!
(r − 1)!1!

ãj1
(i1

ãj2
i2...ir) + · · ·

]
uj1j2 + ãj

i1...ir
uj

(3)

(4) X
i = ai

jX
j

(5) T = T

U i = ãj
iUj + ãj

ika
k
l X

luj(6)

U i1i2 = ãj1
i1

ãj2
i2

Uj1j2 + ãj1
i1i2

Uj1

+
(
ãj1

i1
ãj2

i2ka
k
l X

l + ãj2
i2

ãj1
i1ka

k
l X

l
)

uj1j2 + ãj1
i1i2ka

k
l X

luj1

(7)

...

U i1···ir = ãj1
i1
· · · ãjr

ir
Ui1···ir +

r!
(r − 2!)2!

ãj1
(i1
· · · ãjr−2

ir−2
ã

jr−1

ir−1ir)Uj1···jr−1

+ · · ·+
[

r!
(r − 1)!1!

ãj1
(i1

ãj2
i2···ir) + · · ·

]
Uj1j2

+ ãj1
i1···irUj1 +

[
ãj1

i1k · · · ã
jr

ir
ak

l X
l + · · ·

]
uj1···jr

+
[

r!
(r − 2)!2!

ãj1
(i1k · · · ã

jr−2

ir−2
ã

jr−1

ir−1ir)a
k
l X

l + · · ·
]

uj1···jr−1 + · · ·

+
[

r!
(r − 1)!1!

ãj1
(i1kã

j1
i2···ir)a

k
l X

l + · · ·
]

uj1j2 + ãj1
i1···irka

k
l X

luj1 .

(8)

Write u = (ui, uij , . . . , ui1···ir). Any linear map of the standard fibre into
itself has the form

(9) T = αj(t, u)Xj + β(t, u)T + Aj(t, u)Uj + · · ·+ Aj1···jr(t, u)Uj1···jr

(10) X
i = γi

j(t, u)Xj + δi(t, u)T + Bij(t, u)Uj + · · ·+ Bij1···jr(t, u)Uj1···jr
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U i = ηij(t, u)Xj+ζi(t, u)T +Cj
i (t, u)Uj+· · ·+Cj1···jr

i (t, u)Uj1···jr(11)
...

U i1···ir = ηi1···irj(t, u)Xj + ζi1···ir(t, u)T + Cj
i1···ir(t, u)Uj(12)

+ · · ·+ Cj1···jr

i1···ir (t, u)Uj1···jr .

Considering equivariancy of (9) with respect to the homotheties ai
j = kδi

j

we obtain

1
k

αj(t, ui, . . . , ui1···ir) = αj

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
β(t, ui, . . . , ui1···ir) = β

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
Aj(t, ui, . . . , ui1···ir) =

1
k
Aj

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
...

Aj1···jr(t, ui, . . . , ui1···ir) =
1
kr

Aj1···jr

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
.

By the homogenous function theorem from [7] we compute αj(t, u) = α(t)uj ,
β(t, u) = β(t), Aj(t, u) = 0, Aj1···jr(t, u) = 0. Thus (9) can be written in
the form

(13) T = α(t)ujX
j + β(t)T.

Quite analogously we prove

(14) X
i = γ(t)Xi.

Further, equivariancy of (11) implies

1
k2

ηij(t, ui, . . . , ui1···ir) = ηij

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)

1
k

ζi(t, ui, . . . , ui1···ir) = ζi

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
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Cj
i (t, ui, . . . , ui1···ir) = Cj

i

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
Cj1j2

i (t, ui, . . . , ui1···ir) =
1
k
Cj1j2

i

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
...

Cj1···jr

i1···ir (t, ui, . . . , ui1···ir) =
1

kr−1
Cj1···jr

i1···ir

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
.

Using the homogenous function theorem we obtain

(15) U i = ( 1ηij(t)uij + 2ηij(t)uiuj) Xj + ζ(t)uiT + C(t) Ui .

Finally, the equivariancy of (12) leads to following relations:

1
kr+1

ηi1···irj(t, ui, . . . , ui1···ir) = ηi1···irj

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
1
kr

ζi1···ir(t, ui, . . . , ui1···ir) = ζi1···ir

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
1

kr−1
Cj

i1···ir(t, ui, . . . , ui1···ir) = Cj
i1···ir

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
1

kr−2
Cj1j2

i1···ir(t, ui, . . . , ui1···ir) = Cj1j2
i1···ir

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
...

Cj1···jr

i1···ir (t, ui, . . . , ui1···ir) = Cj1···jr

i1···ir

(
t,

1
k
ui, . . . ,

1
kr

ui1···ir

)
.

By the homogenous function theorem, the function ηi1···irj is a sum of the
polynomials of degree as in ui1···is satisfying the relation

r + 1 = a1 + 2a2 + · · ·+ rar.

This has the following solutions:

a1 = r + 1, a2 = · · · = ar = 0
a1 = r − 1, a2 = 1, a3 = · · · = ar = 0
a1 = r − 2, a3 = 1, a2 = · · · = ar = 0
...

a1 = 1, ar = 1, a2 = · · · = ar−1 = 0
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so that ηi1···irj can be written in the form

ηi1···irj(t, u) = rηi1···irj(t)ui1ui2 · · ·uiruj

+ r−1,1ηi1···irj(t)u(i1i2 · · ·uir−2uir−1ir)uj

+ r−1,2ηi1···irj(t)u(i1i2 · · ·uir−2uir−1uir)j

+ · · ·+ 1ηi1···irj(t)ui1···irj .

By similar computations we find the expression of ζi1···ir , C
j
i1···ir , . . . , C

j1···jr

i1···ir
and we obtain

(16)

Ui1···ir = [ rηi1···irj(t)ui1ui2 · · ·uiruj

+ r−1,1ηi1···irj(t)u(i1i2 · · ·uir−2uir−1ir)uj

+ r−1,2ηi1···irj(t)u(i1i2 · · ·uir−2uir−1uir)jk

+ · · ·+ 1ηi1···irj(t)ui1···irj ]Xj

+
[

rζi1···ir(t)ui1 · · ·uir + r−1ζi1···ir(t)u(i1 · · ·uir−2uir−1ir)

+ · · ·+ 1ζi1···ir(t)ui1···ir ]T

+
[

r−1C
j
i1···ir(t)δ

j1
(i1

ui2 · · ·uir)

+ · · ·+ 1C
j
i1···ir(t)δ

j1
(i1

ui2···ir)

]
Uj1

+ · · ·+ Cj1···jr

i1···ir (t)δj1
(i1
· · · δjr

ir)Ui1···ir .

We first prove our assertion for r = 2. Formulas (13)–(16) for r = 2 are
of the form

(17) T = α(t)ukX
k + β(t)T

(18) X
i = γ(t)Xi

(19) U i = ( 1ηik(t)uik + 2ηik(t)uiuk) Xk + ζ(t)uiT + C(t) Ui

(20)

U ij =
(

2ηijk(t)uiujuk + 1,1ηijk(t)uijuk + 1,2ηijk(t)u(iuj)k

+ 1ηijk(t)uijk) Xk + (2ζij(t)uiuj + 1ζij(t)uij) T

+ Ci(t)δk
(iuj)Uk + Cij(t)Uij .

The equivariancy of (19) with respect to the kernel of the jet projection
G2

m → G1
m given by ai

j = δi
j and ai

jk arbitrary leads to relations

C(t) = γ(t), 1ηik = 0
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so that (19) is of the form

(21) U i = ηi(t)uiukX
k + ζi(t)uiT + γ(t) Ui .

Finally, the equivariancy of (20) with respect to the kernel of the jet pro-
jection G3

m → G1
m given by ai

j = δi
j and ai

jk, a
i
jkl arbitrary leads to relations

Ci = 0, Cij(t) = γ(t), 1ζij(t) = ζi(t),

1,1ηijk(t) = ηi(t), 1ηijk = 0, 1,2ηijk = 0,

so that (20) is of the form

(22)
U ij = ηij(t)uiujukX

k + ηi(t)uijukX
k + ζij(t)uiujT

+ ζ(t)uijT + γ(t)Uij .

Hence we have proved

(23)
F 2 = a(t)ĨdTT 2∗M + b(t)ĨdTR + a1(t)Q̃1

M + a2(t)Q̃2
M

+ b1(t)(L1 ⊗ dt) + b2(t)(L2 ⊗ dt) + c(t)P,

where

a(t) = γ(t), b(t) = β(t), a1(t) = ηi(t), a2(t) = ηij(t)

b1(t) = ζi(t), b2(t) = ζij(t), c(t) = α(t).

This proves our proposition for r = 2. To finish the proof, we will use
the induction with respect to r. Suppose now, that our proposition is true
for r − 1, i.e.

(24)
F r−1 = a(t)ĨdTT (r−1)∗M + b(t)ĨdTR + a1(t)Q̃1

M + · · · ar−1(t)Q̃r−1
M

+ b1(t)(L1 ⊗ dt) + · · ·+ br−1(t)(Lr−1 ⊗ dt) + c(t)P.

Using the homogenous function theorem we deduce easily that the com-
ponents of F r at T,Xi, Ui, . . . , Ui1···ir are exactly the corresponding com-
ponents of F r−1. That is why it suffices to determine the last (r + 2)-th
component of F r, which is given by (16). The equivariancy with respect to
the kernel of the projection Gr+1

m → G1
m leads to the relations

Cj1···jr

i1···ir (t) = a(t), Cj
i1···ir(t) = · · · = C

j1···jr−1

i1···ir (t) = 0,

1ηi1···irj(t) = a1(t), s−1,1ηi1···irj(t) = as−1(t) where s = 2, . . . , r,

s−1,2ηi1···irj(t) = 0 where s = 2, . . . , r,

rηi1···irj(t) = ar(t) is a new function,

1ζi1···ir(t) = b1(t), s−1ζi1···ir(t) = bs−1(t) where s = 2, . . . , r,

rζi1···ir(t) = br(t) is a new function.
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This completes the proof. �

Corollary 1. All natural affinors on the time-dependent cotangent bundle
T ∗

RM are of the form

X
i = a(t)Xi(25)

U i = a1(t)uiukX
k + b1(t)uiT + a(t) Ui(26)

T = c(t)ukX
k + b(t)T.(27)
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