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Equipower curves

Abstract. In this paper we consider the family of equipower curves. It is
proved that each equipower oval has 4n + 2 vertices (n ≥ 1) and an example
of an equipower oval with exactly six vertices is given. Moreover, it is shown
that two vertices lie at ends of one equipower chord. The last sections are
devoted to Crofton-type integral formula and estimations of the area and the
length of an equipower curve.

1. Introduction. We consider the family K of all ovals, i.e. the family of
all plane closed curves with the positive curvature, Leichtweiss [2] .
Let a curve C ∈ K be of the form

(1) t → z(t) = r(t)eit, t ∈ [0, 2π] ,

where the radius function r : R → R satisfies the following conditions:

(2)

 r ∈ C3 (R)
r (t + 2π) = r (t)
r (t) > 0
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for all t ∈ R. The curvature k of C is given by the formula:

(3) k =
2ṙ2 + r2 − rr̈(√

r2 + ṙ2
)3 > 0,

where the dot denotes the differentiation with respect to t.
We denote by α (t) the oriented angle between the radius vector of the
point z(t) and the tangent line to C at z(t).
We note that

(4) cot α =
ṙ

r
.

Making use of (3) and (4) we get

k

(√
.
r
2 +r2

)3

= 2
.
r
2 −r

..
r +r2,

k
r3

sin3 α
= 2r2 cot2 α− r

(
.
r cot α− r

.
α

sin2 α

)
+ r2,

k
r3

sin3 α
= 2r2 cot2 α− r2 cot2 α + r2

.
α

sin2 α
+ r2,

k
r3

sin3 α
= r2 cot2 α + r2

.
α

sin2 α
+ r2,

k
r

sin3 α
= cot2 α +

.
α

sin2 α
+ 1,

kr

sinα
= 1+

.
α,

and

(5) kr = (1 + α̇) sinα,

for all t ∈ R.

2. Equipower ovals. In this paper we consider the subfamily Kp of K
containing of all equipower ovals. An equipower oval C is a curve such
that there exists a point P in the region bounded by C with the following
property:
if a chord of C passes through P and it joins points P1, P2 of C then

(6) |PP1||PP2| = c = const.

and the product does not depend on the choice of a chord.
The point P is called the equipower point of C.
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The equipower curves were introduced by Yanagihara [4], [5] and next
considered by Kelly [1], Rosenbaum [3] and Zuccheri [6].
We may assume that the origin O is the equipower point of an equipower
curve C ∈ Kp. If C ∈ Kp is of the form (1) then we have

(7) r (t) r (t + π) = c,

for all t ∈ R.
In the sequel we will write down fπ (t) = f (t + π), for all t ∈ R. Thus
the formula (7) can be written as follows

(8) rrπ = c,

for all t ∈ R.
We have the following theorems.

Theorem 1. A curve C ∈ Kp is an equipower curve if and only if the
condition

(9) α + απ = π, for all t ∈ R

is satisfied.

Proof. Differentiating (8) and using (4) we obtain

(rrπ). = rrπ

( .
r

r
+

.
rπ

rπ

)
= rrπ (cot α + cot απ) ,

cot α + cot απ = 0 ⇐⇒ α + απ = π.

�

Theorem 2. If an equipower oval C ∈ Kp satisfies the relation (8) then its
curvature k satisfies the equality

(10) k̇r2 + k̇πc = 0.

Proof. From (5) with respect to (9) we get

(11) kπrπ = (1− α̇) sinα.

The formulae (5) and (11) lead us to the following formula

(12) kr + kπrπ = 2 sin α.

Differentiating (12), substituting α̇ from (5) and next using (12), we obtain

k̇r + kṙ + k̇πrπ + kπ ṙπ = 2α̇ cos α,

k̇r + k̇πrπ + rk cot α + rπkπ cot απ = 2
(

kr

sinα
− 1

)
cos α,
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k̇r + k̇πrπ = 2rk cot α− 2 cos α− rk cot α− rπkπ cot απ,

k̇r + k̇πrπ = rk cot α + rπkπ cot α− 2 cos α,

k̇r + k̇πrπ = (rk + rπkπ − 2 sinα) cot α

and

(13) k̇r + k̇πrπ = 0.

Thus, using (8), we have

k̇r2 + k̇πc = 0.

�

The formula (10) has the following geometric interpretation:

Theorem 3. Let C ∈ Kp and let an equipower chord of C pass through
A,B. If A is the vertex of C, then B is also a vertex.

Theorem 2 and the four vertices theorem [2], imply immediately:

Corollary 1. An equipower curve C ∈ Kp has 4n + 2 vertices, n ≥ 1.

3. Equipower ovals with exactly six vertices. According to Corol-
lary 1 an equipower oval has at least six vertices. We construct an oval with
exactly six vertices.
Let

(14) r (t) = exp (b sin t) ,

for all t ∈ R, for some fixed b ∈ (0, 1). It is clear that rrπ = 1 and r (t) > 0
for all t ∈ R. Moreover, we have

(15) k =
1 + b sin t + b2 cos2 t

(1 + b2 cos2 t)
3
2

exp (−b sin t) > 0

and

(16)
1
c
k̇

(
1 + b2 cos2 t

) 5
2 exp (b sin t)

= −b3
[
b2 sin4 t− 2

(
2 + b2

)
sin2 t +

(
1 + b2

)]
.

From (16) we note that k̇ has exactly six zeros in the interval [0, 2π) .
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4. Convex equipower curves. In this section we consider the class K.
Let C ∈ K be of the form (1). We define the function λ : R → R by the
formula

(17) λ = k|ż|,

i.e.

(18) λ =
2ṙ2 + r2 − rr̈

r2 + ṙ2
.

It is clear that the function λ is a non-negative, continuous and 2π peri-
odic one. With respect to (4) we have

λ = 1− r̈r − ṙ2

r2 + ṙ2
,

λ = 1−
(

ṙ
r

)·
1 +

(
ṙ
r

)2 ,

λ = 1 +
(

arccot
ṙ

r

)·
,

λ = 1 + α̇.

Thus we have a simple relation between λ and α, namely

(19) λ = 1 + α̇.

Hence we have

(20)

2π∫
0

λ (t) dt = 2π.

The function

(21) Λ (t) =

t∫
0

λ (s) ds

has the following geometric meaning:
Λ (t) is an oriented angle between a tangent line at z (0) and the tangent
line at z (t) .
We note that the function λ satisfies the following properties:

1◦ λ is a non-negative function,
2◦ λ is a 2π-periodic function,
3◦ λ is a continuous function,



22 W. Cieślak and R. Stępnicki

4◦
2π∫
0

λ (t) dt = 2π,

5◦ 0 <
t∫
0

λ (s) ds < t + π, for t ∈ [0, 2π).

Moreover, we note that the function α satisfies the following properties:

1◦ α is a C1-function,
2◦ α is a 2π-periodic function,
3◦ α̇ + 1 ≥ 0,

4◦
2π∫
0

cot α (t) dt = 0.

Since we have cot α = ṙ
r , so

(22) r (t) = ro exp

t∫
0

cot α (s) ds

where ro = r (0). We may assume that α (0) = π
2 . The relation α̇ = λ − 1

implies the formula

(23) r (t) = ro exp

t∫
0

tan

τ∫
0

(1− λ (s)) dsdτ.

Periodicity of r implies the equality

(24)

2π∫
0

tan

τ∫
0

(λ (s)− 1) dsdτ = 0.

We note that the curvature of C is given by the formula k = λ
r sinα,

(25) k =
1
r

(1 + α̇) sinα.

Hence we have

(26) k̇ =
1
r

[
α̈ +

(
α̇2 − 1

)
cot α

]
sinα.

The functions λ and α allows us to construct special examples of equipower
curves.

Example 4.1. Let α (t) = π
2 + arctan sin t for t ∈ [0, 2π]. Obviously, α

is a regular, 2π-periodic function and α (t) + α (t + π) = π. It is easy to see
that

∫ 2π
0 cot α (t) dt = 0 and 1 + α̇ (t) = 1 + cos t

1+sin2 t
≥ 0 with the equality at
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π only. According to (25) it means that k ≥ 0 and the curve generated by
α is convex but it is not an oval.
Next we have

α̈ +
(
α̇2 − 1

)
cot α =

sin t(
1 + sin2 t

)2

(
sin4 t + 4 sin2 t− 3

)
,

α̈ +
(
α̇2 − 1

)
cot α =

sin t(
1 + sin2 t

)2

(
sin2 t + 2 +

√
7
) (

sin2 t + 2−
√

7
)

.

We note that with respect to the above relations and formula (26) the
equation k̇ (t) = 0 has exactly six solutions. It follows from (22) that the
polar equation of our curve has the following form

r (t) = ro exp (cos t− 1) .

5. Crofton-type integral formula for equipower curves. Let Cj , t →
rj (t) eit (j = 1, 2) be different equipower regular curves and rj (t) rj (t + π)
= cj . We assume that C1 lies in the domain bounded by C2 (then c2 > c1).
We denote by C1C2 the domain bounded by C1 and C2, and by D the
interior of C1C2 with deleted some line segment.
We consider the mapping F ∗ : [0, 1]× [0, 1] → D given by

(27) F ∗ (s, t) = r2 (t)s r1 (t)1−s eit.

For each fixed s0 the curve t → F (s0, t) is an equipower one. Let E =
{(s, t) : 0 < s < 1, 0 < t < 2π} and let F denote the restriction of F ∗ to E.
We note that F is a 1 : 1 mapping and the jacobian F ′ (s, t) of F at (s, t)
is given by the formula

(28) F ′ (s, t) =
(
r2 (t)s r1 (t)1−s

)2
ln

r2 (t)
r1 (t)

.

Let x ∈ R2. We denote by ‖x‖ the length of the segment joining the origin
O and x. Using the diffeomorphism F we get the following theorem.

Theorem 4. The following Crofton-type integral formula holds

(29)
∫∫

C1C2

1
‖x‖2

dx = π ln
c2

c1
.

Proof. Let x ∈ C1C2. We denote by t the oriented angle between the x1-
axe and the segment Ox. Then x = r2 (t)s r1 (t)1−s eit for some s ∈ (0, 1)
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and making use of F ′ we get

∫∫
C1C2

1
‖x‖2

dx =

1∫
0

2π∫
0

1(
r2 (t)s r1 (t)1−s

)2

(
r2 (t)s r1 (t)1−s

)2
ln

r2 (t)
r1 (t)

dtds

=

2π∫
0

ln
r2 (t)
r1 (t)

dt =

π∫
0

ln
r2 (t)
r1 (t)

dt +

π∫
0

ln
r2 (t + π)
r1 (t + π)

dt

=

π∫
0

ln
c2

c1
dt = π ln

c2

c1
.

�

6. Estimations of the area and the length. Let C, t → r (t) eit be an
equipower curve such that r (t) r (t + π) ≡ c. Let

(30) rM = max {r (t) : t ∈ [0, 2π]}

and

(31) rm = min {r (t) : t ∈ [0, 2π]} .

We denote by SmC the domain bounded by C and the circle Sm with the
center at the origin and the radius rm. Similarly, we introduce the domain
CSM .
Making use of the Crofton-type integral formula (29) we obtain

π ln
c

r2
m

=
∫∫

SmC

1
‖x‖2

dx ≤ 1
r2
m

area SmC =
1

r2
m

(
area C − πr2

m

)
and

π ln
r2
M

c
=

∫∫
CSM

1
‖x‖2

dx ≥ 1
r2
M

area CSM =
1

r2
M

(
πr2

M − area C
)
.

Hence we have

(32) area C ≥ max
{

πr2
m

(
1 + ln

c

r2
m

)
, πr2

M

(
1− ln

c

r2
M

)}
.

On the other hand we have

2 area C =

2π∫
0

r (t)2 dt =

π∫
0

(
r (t)2 +

c2

r (t)2

)
dt ≥ 2πc,
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and we obtain the well-known inequality

(33) area C ≥ πc.

By similar way we obtain the inequality for the length of an equipower
curve. Namely, using (9) and (7) we obtain

L =

2π∫
0

√
r (t)2 + ṙ (t)2dt =

2π∫
0

r (t)
sinα (t)

dt

=

π∫
0

1
sinα (t)

(
r (t) +

c

r (t)

)
dt ≥ 2π

√
c,

i.e.

(34) L ≥ 2π
√

c.
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Tŏhoku Math. J. 11 (1917), 55–57.

[6] Zuccheri, L., Characterization of the circle by equipower properties, Arch. Math. 58
(1992), 199–208.

Waldemar Cieślak Robert Stępnicki
Technical University of Lublin Technical University of Lublin
Department of Mathematics Department of Mathematics
and Engineering Geometry and Engineering Geometry
20-618 Lublin 20-618 Lublin
ul. Nadbystrzycka 40 ul. Nadbystrzycka 40
Poland Poland

e-mail: roberts@enterpol.pl
Wyższa Szkoła Ekonomiczna
w Stalowej Woli
37-450 Stalowa Wola
ul. 1-go Sierpnia 26
Poland

Received March 14, 2003


