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On estimating the coefficient product A;A3A3
for real bounded non-vanishing univalent functions

ABSTRACT. The class of the title is sufficiently limited for allowing certain
estimations for combinations of the three first coefficients A;, Az and As.
The negative sign of Az implies complications which, however, in the present
treatment will be governed, when estimating the product A; A3 As.

1. Introduction. In [2] the observations of J. Sladkowska [1] were utilized
in determining the first coefficient bodies for functions F' which are univalent
and bounded with the condition of non-vanishedness. Denote the class of
these functions by S’(B). Another condition will be a restriction to real
coefficients A,. The subclass thus introduced is denoted by S%(B):

S'(B)={F|F(z)=B+A12+...,2€¢ UDF({U) %0,
0<B<1, A >0},
Sr(B) c S'(B).
Here U is the unit disc centered at the origin and B is the leading

coefficient, characterizing the function through the image of the origin:
B = F(O). The class notation repeats those of the normalized bounded

2000 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. Univalent functions, coefficient bodies.



130 O. Tammi

univalent functions f:

S(b):{f|f(z):b(z+a2z2+---),ZEU, |f(z)|<170<b<1}7
Sr(b) C S(b).

Again, Sk(b) means the real subclass of S(b).
The observation on Sladkowska combined the above real classes together
through the function L:

L=L(z)=K"! [(iBB)Q (K(z) + i)] ;

K=K(z)= —.
Here K is the left Koebe-function and hence L(U) is a unit disc with a left
radial slit from the point —1 to the origin. The one-to-one correspondence

LofeSy(B), L 'oF ¢ Sg(b)
will be governed by aid of the development of L:

y=L(2) = B+ Biz+ By2®> + B32® + ...,
4B(1 - B)
1+B 7’
BQ—W(1—2B—BZ),
4B(1 — B)
T 1+ By

1=

(3 —20B + 18B? + 12B* + 3B%),

yielding

_ A B
A B2

B Bs
=13 _ 972y 2 A3,
“CTA B2 2+(B4 B3>
The knowledge concerning the coefficient bodies of Sg(b) allows determin-

ing the corresponding bodies of S%(B) [2]. They are denoted by (A2, A1)
and (Ag, AQ, Al) For (AQ,Al) we have

A? 2+ B
A1+ —— < Ay <24, - — A2
T2 B gy

0<A1<Bl}.

(A2, A1) = {(AbAz)
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The body (As, A, A1) is defined on (A, A7) so that

E < AB < F7
where in the whole (Asg, A7),
A2 A3
E=A3=2-2 A+ —1
STA o (1 B2%)?

The extremal domains connected to E are of left-right radial-slit types [2].
For F the area of definition is divided in three parts I, II and III visualized
in Figure 1. The dividing lines INII and IINIII are determined by the limits

R?*[B, —2By|InR|| < Ay < R*[By +2B;|InR|],

where R = A;/B;.
The slit-type boundary functions extremizing F' are similarly visualized
in Figure 1.

As N\

0.1 -

SEAASSIDLSIEIISIS
I I, \ m

Observe that according to the extremal types the region II is split in two
parts, II; and IIs by the dividing line

1— 6B+ B?

_ 2
Ay = B2\ By 2By In ).
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In the following denote
Dy = B3/B; — 2B3/B3.
By using this notation we have for F' in the regions I and IIT (cf. [2]):

B
Az = a3+2B—§A2—|—D1R2 Ay =F,
1

(1) Ay = Ajag + BoR?,
as =20(R—o+olno); o€ [R,1],
a3 =1—R?>+a3+25-0ay+2(c — R)2

Here § =1 for I and 6 = —1 for III.
In II, F is defined by (cf. [2])

B
Az = |:(13 + 2F§A2 + D1R2:| A1 =F,
1
Ay B
2 — 2 _ 2
() a2 A1 Bl )
1
1 p2 2
\a3—1 R +<1+lnR>a2'

2. Maximizing Aj; A2Ajz. In some former papers, e.g. [3], a few simple
functionals of the coefficients A, were considered. They were chosen to
be independent of the sign of As. The present functional is free of that
restriction. Thus

Ay > 0: AjAE < A1AA3 < A1 AoF,

A2 S 0: AlAQF S A1A2A3 S A1A2E.

Consider first the local extremal point connected with A1 AsE':

A4
s _ 43 1 2
(3) Ay <0: Q= A1 A0 A3 < A1AE = A2 + <(1—B2)2 — A1>A2.
Differentiating this we obtain for the local extremal:
V3 9 3 1-B? 1-B? V2
4 =~ "(1-B%% A= ——, Ay=———— A3 =—"—(1-B?.
(@) Q=Yg (B2 = =2, Ay =~ Ay = (-
The extremal point lies above the lower boundary arc 01 of (A, Ay) if
1— B2 A?
e |24+ — L >
2v3 P BO=BY |, i 2
Ve
4
2
(5) B>¢= 6V2+ V3 _ 0.444231834.

23
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For the upper boundary arc 9III of (As, A1) we require

2+ B 1— B?
24— — 2 42 > ——,
1—- B2 A, —1-B2 24/3
="

which holds for the whole interval 0 < B < 1.

For an interval below ¢ the extremal point will be located on the lower
boundary arc 01,
A
1: Ay = 241+ ———
0 2 1+ B(—B?)

where according to (3),
4 2 2
3(11:422) - B26(:__2f32)2‘4? + 33214__332)3‘4?'
For the local extremal point on 0l we thus have
—9[B(1 — BY)]® +22[B(1 — B?)]*4,
—5[B(1 - B?)|(3+ B*)A? +3(1 + B} A} = 0.

This condition is satisfied at the point (4) for B = ¢.
Next, determine the local extremal point of ) = A1 AsF in the regions I
and III. From (1) deduce

Q= —643+

(6)

1 8Q
24° 9o = ho + h1 Ay + he A = 0;
(7) ho = &1n o(1 + 125 + 1205 + 202),

hi =4ln 0(3s + 0)S,
hy = 61ln 0(13/B} + 126B,/ B} + 2B3 /Bt + Bs/B}).

Further
;%.ggl = ko + k1 A1 + ko AT + ks AT = 0;
ko = 66s(1 + 4s° + 4os + 20?),
(8) ki = 4(1 + 1252 + 40s + 202)S,
ko = 106s(25% + 5/B} + 40B2/ B} + B3/ By}),
ks = 6(5/B} +46By/B} + B3/ B})S.
Here

s=olno—o0, S=20/B; + By/B?
and § =1 for I and § = —1 for III.

From (7)
A —h1+5-\/h%—4h0h2
1= )

2hy




134 O. Tammi

which, when substituted in (8), yields in the local extremal case o and hence
A1, too.

There remains the maximizing of QQ = A1 AoF in II. By aid of the abbre-
viations

Al/Bl :R, H = 1+1/11’1R,
Dy = B3/By — B3/B? — 1, D3 = B3/B; +2B3/B? — 1,

we obtain from (2)

~-In*R 0Q , By 9 )
= 4—RI ~ag —2In“ R(1 4+ 2R*D
A1A2 8141 @2 + BlR n R a2 . ( + 2)’
— - — =3H 2—(H+2)R 14+ DsR".
A% 8142 3 @2 + B1 ( + ) @2 T+ 3

This yields the necessary extremal conditions for determining A; and As:
3H(I% + Gias + Go = 0,
3Ha% + Gzag + G4 = 0,

)

( Gy — Go 2
== Ay = A B
a G — s = Ao 1a2 + BoR”,

3HCL% + Gsas + G4 = 0;

Gy = 12822 pin R,
(9) By
Gy = —6H In> R(1 + 2R?D>),

B

Gs = 2=2(H + 2)R,
B

G4 =1+ D3R%

3. Maximalization results. In Table 1 there is a list of maximal points
and values for increasing values of B. Observe, that the sign — in the region-
notation implies maximizing with negative Asg, i.e. the maximum is obtained
from A;AsE which means explicit expression (4) for max Q. Similarly, +
indicates maximalization with positive Ao, from A1 Ao F, yielding results in
implicit form.

There exist the following max max-cases:

max max ) = 0.037487883; B = b; = 0.105067336 € P,
maxmax @) = 0.026754453; B = by = 0.397998215 € JI.

The maximizing point varies with increasing values of B. Crossing the
boundaries between different regions of the body (As, A2, A1) occurs at the
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points co and cs:

At

B = ¢ = 0.185727645 € 11, NIII,,
B = c3 =0.453697122 ¢ I_N1I_.

B =d =0.312534879 € 111, 01

the maximalization occurs simultaneously on the upper surface I and on
the lower boundary 91, determining at the same time

minmax @ = 0.021714369; B = d € 111, 01.

Such double maximal points may be called Twin Peaks on the surface of
the coefficient body (As, Aa, A7).

Table 1.
B Region Aq Ay Asg max ()
0.01 P 0.039208 | 0.075326 | 0.105567 | 0.000312
0.1 P 0.327273 | 0.427348 | 0.266517 | 0.037275
0.105067 = by P 0.340353 | 0.434133 | 0.253711 | 0.037488
0.1051 P 0.340436 | 0.434173 | 0.253625 | 0.037488
0.105369 =c¢; | 1T, NP |0.341122 | 0.434504 | 0.252918 | 0.037487
0.14 j|mn 0.356935 | 0.412379 | 0.244326 | 0.035963
0.185728 = ¢o | 11 NIII, | 0.355339 | 0.388176 | 0.233366 | 0.032189
0.2 jim 0.350186 | 0.383550 | 0.230412 | 0.030947
0.3 I, 0.312908 | 0.348136 | 0.208226 | 0.022683
0.312535 = d jim 0.308088 | 0.343354 | 0.205272 | 0.021714
0.312535 = d ol 0.455939 | —0.174732 | —0.272563 | 0.021714
0.35 ol 0.495114 | —0.192058 | —0.262990 | 0.025008
0.38 ol 0.522565 | —0.205232 | —0.247032 | 0.026493
0.39 ol 0.530866 | —0.209495 | —0.240097 | 0.026702
0.397998 = b ol 0.537182 | —0.212860 | —0.233981 | 0.026754
0.4 ol 0.538716 | —0.213697 | —0.232372 | 0.026751
0.444232 = ¢ oINI_ |0.567565 | —0.231707 | —0.189188 | 0.024880
0.45 1_ 0.563918 | —0.230218 | —0.187973 | 0.024403
0.453697 = c3 | I_NII_ | 0.561555 | —0.229254 | —0.187185 | 0.024098
0.46 II_ 0.557483 | —0.227591 | —0.185828 | 0.023578
0.5 11 0.530330 | —0.216506 | —0.176777 | 0.020297
0.6 II_ 0.452548 | —0.184752 | —0.150849 | 0.012612
0.7 II_ 0.360624 | —0.147224 | —0.120208 | 0.006382
0.8 II_ 0.254558 | —0.103923 | —0.084853 | 0.002245
0.9 II_ 0.134350 | —0.054848 | —0.044783 | 0.000330
0.99 II_ 0.014071 | —0.005745 | —0.004690 | 0.000000
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The point ¢ from (5) defines an interval d < B < ¢ in which the maxi-
mizing point lies on JI. From this onwards, in the interval ¢ < B < 1, the
regions I_ or II_ take care of the maximalization.

If B is sufficiently close to 0 the point P assumes the role of the maxi-
mizing point. In order to find the shifting point ¢; = II; NP let A7 tend to
Bj so that

AlzBl(l—h), h — +0.

From (9) we see that

Bl
as = — ;;R(1+D3)+O(h), O(h) — 0 for h— 0;
2
1 0Q
_AlAQ'TAl_K(B)+O(h),

where
32
K(B) = —1(1+4 D3)* — 4Dy — 2D3 — 4.
4B;
Hence g—z = 0 yields for B = ¢; the condition K(B) = 0, i.e.

(10) 8B?B3 — 20B, B3B3 + BiB2 + 4B3 = 0

4

B = c¢1 =0.105369060 € II. N P.

The explicit part of the above estimation is collected as follows.

Result. In S (B) the mazimum of A1AsAs for the interval

0.444031833 = 6\@2;:‘@ —¢<B<1

occurs on the lower surface of the body (As, A, Ay):

maxA1A2A3 = \3/?(1 — B2)3,

at the point

1— B2 1— B2 2
A= —F——, Ao=———— A3 = —l( — B?).
V2 2V/3 6

In Figure 2 there is the graph connected with the values of the Table 1.
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4. Minimalization results. According to the Section 2 the minimum of
QQ = A1 A1 A3 is obtained from the expressions

AlAQE for A2 Z O,
A1A2F for AQ < 0.

Actually, only the last alternative will be realized. Therefore, the sign —,
characterizing the region-notation, can be omitted.

Table 2.
B Region Aq Ag Asg min Q
0.05 ol 0.034231 | —0.044968 | 0.024882 | —0.000038
0.1 0l 0.262374 | 0.170606 | —0.133010 | —0.005954
0.2 ol 0.489747 | 0.269737 | —0.213725 | —0.028234
0.27 0l 0.612783 0.274543 | —0.222069 | —0.037360
0.274376 = 31 ol 0.619290 0.273003 | —0.221185 | —0.037395
0.28 ol 0.627436 0.270719 | —0.219810 | —0.037337
0.284717 =~ | 0INP | 0.634079 0.268541 | —0.218451 | —0.037197
0.285 P 0.634319 0.267964 | —0.218773 | —0.037186
0.289393 = v | PN OIIT | 0.637958 0.258988 | —0.223541 | —0.036934
0.29 oIl 0.637558 0.258804 | —0.223569 | —0.036890
0.3 oIl 0.630918 0.255757 | —0.223967 | —0.036140
0.4 OlIII 0.559821 0.224215 | —0.221370 | —0.027786
0.489950 = § OlIl1 0.489238 0.194240 | —0.209355 | —0.019895
0.489958 = § I 0.308716 | —0.325655 0.197891 | —0.019895
0.5 I 0.314515 | —0.327111 0.199710 | —0.020547
0.554728 =3 | INII |0.371011 | —0.307904 | 0.207974 | —0.023758
0.6 1I 0.414995 | —0.290090 | 0.218305 | —0.026281
0.66 1I 0.428346 | —0.292403 | 0.223806 | —0.028032
0.667947 = 35 1I 0.428169 | —0.292795 0.223822 | —0.028060
0.67 11 0.428053 | —0.292886 | 0.223798 | —0.028058
0.7 II 0.423061 | —0.293516 | 0.222059 | —0.027574
0.790542 =4 | IINP | 0.369911 | —0.278305 0.199329 | —0.020521
0.8 P 0.355556 | —0.272154 | 0.199590 | —0.019313
0.9 P 0.189474 | —0.169004 | 0.149698 | —0.004794
0.99 P 0.019899 | —0.019699 | 0.019500 | —0.000008

There appears that the minimum may occur also on the upper boundary

OIII of (AQ, Al);
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2+ B

I
Q = AL ASE
2+B 1+3(2+B)? 2+B
=643 - 11 At 42 > 1+ (24 B)?| AS.
1 1— B2 1+ (1_32)2 1 (1_32)3[ +( + )] 1

Thus, for the local extremal point on OIII there holds
9(1 — B*? - 22(2 + B)(1 — B A,

(11) (2+ B)[1+ (2+ B)?]

+5[1+3(2+ B)*|A] -3 A3 =0.

1—- B2
o
0.04 1 I,
I
0.03 n, o1 A
P ol max A1A2A3
0.02 -
-
0.01 1

-0.01 1

-0.02 {

II

-0.03 1

-0.04 1 min AlAQAg

FIGURE 2
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In Table 2 there is a collection of minimal points. Some of them deserve
to be mentioned separately.

minmin @ = —0.037395325; B = (1 = 0.274376470 € 01,
min min @) = —0.028059590; B = (3 = 0.667947135 € II.

The tip P assumes the role of minimizing point three times. Shifting
from O1 to P occurs at B = ~;. This point is found from (6) by aid of the
limit process Ay — By, i.e. at (6) we have to take A; = Bj. Similarly, (11)
with A; = B; yields the shifting point B = v from JIIl to P. At B =4
we move from II to P by aid of (10). Between 75 and 74 there exists still
another shifting point 3 of the type INII. The results are:

vy = 0.284716560 € 91 N P,
vy = 0.280392233 € P N A1,
v3 = 0.554728151 € IN1I,
~v4 = 0.790541920 € I N P.

Finally, at
B =0 = 0.489949658 € JI1I, 1

there occur two simultaneous minima. We may speak about Twin Pits
which, at the same time, happen to yield

max min ) = —0.019894996; B = § € OIII, 1.

The results of the Table 2 are visualized in Figure 2. In it the points of
twin peaks and twin pits are pointed out by dotted circles.
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