ANNALES
UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
LUBLIN - POLONIA
vol. LIX, $2005 \quad$ SECTIOA

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

The natural transformations $\boldsymbol{T} \boldsymbol{T}^{(r), a} \rightarrow \boldsymbol{T} \boldsymbol{T}^{(r), a}$

Abstract

For integers $r \geq 1$ and $n \geq 2$ and a real number $a<0$ all natural endomorphisms of the tangent bundle $T T^{(r), a}$ of generalized higher order tangent bundle $T^{(r), a}$ over n-manifolds are completely described.

$\mathbf{0}$. Let us recall the following definitions (see for ex. [3], [8])
Let $F: \mathcal{M} f_{n} \rightarrow \mathcal{F M}$ be a functor from the category $\mathcal{M} f_{n}$ of all n dimensional manifolds and their local diffeomorphisms into the category $\mathcal{F M}$ of fibered manifolds and their fiber maps. Let B be the base functor from the category of fibered manifolds to the category of manifolds.

A natural bundle over n-manifolds is a functor F satisfying $B \circ F=i d$ and the localization condition: for every inclusion of an open subset $i_{U}: U \rightarrow M$, $F U$ is the restriction $p_{M}^{-1}(U)$ of $p_{M}: F M \rightarrow M$ over U and $F i_{U}$ is the inclusion $p_{M}^{-1}(U) \rightarrow F M$.

A natural transformation $A: F \rightarrow G$ from a natural bundle F into a natural bundle G is a system of maps $A: F M \rightarrow G M$ for every n-manifold M satisfying $G f \circ A=A \circ F f$ for every local diffeomorphism $f: M \rightarrow N$ between n-manifolds. (Then $A: F M \rightarrow G M$ is a fibered map covering $i d_{M}$ for any M.)

In other words, natural transformations are morphisms in the category of natural bundles. That is why, they are intensively studied, see [3].

[^0]Some special natural transformations $T F \rightarrow T F$ called natural affinors on F are very important. A natural affinor on a natural bundle F is a natural transformation $A: T F \rightarrow T F$ such that $A: T F M \rightarrow T F M$ is a tensor field of type $(1,1)$ on $F M$ for any n-manifold M. Natural affinors play an important role in the theory of generalized connections $\Gamma: T F M \rightarrow T F M$ on $F M$. The Frolicher-Nijenhuis bracket $[\Gamma, A]$ of a connection Γ on $F M$ with a natural affinor A on $F M$ is a generalized torsion of Γ. That is why, natural affinors have been studied in many papers: [2], [6], etc.

All natural transformations $A: F \rightarrow G$ for some natural bundles are classified, see e.g. [1], [3], [4], [7], etc. For example, in [7] the second author classified all natural endomorphisms $A: T T^{(r)} \rightarrow T T^{(r)}$, where $T^{(r)}=$ $\left(J^{r}(., \mathbf{R})_{0}\right)^{*}$ is the vector r-tangent natural bundle, and reobtained a result from [2] about natural affinors on $T^{(r)}$ saying that the vector space of all natural affinors on $T^{(r)}$ is 2-dimensional.

In [5], the second author extended the concept of vector r-tangent bundles and introduced the concept of generalized higher order tangent bundles. In [6], the second author extended the result from [2]. He proved that for every $a<0$ and every natural numbers r and $n \geq 2$ every natural affinor on generalized higher order tangent bundle $T^{(r), a}$ is a constant multiple of the identity affinor.

In the present note we generalize the results of [2], [6] and [7]. We prove that for natural numbers r and $n \geq 2$ and a negative real number a every natural transformation $\tilde{A}: T T^{(r), a} \rightarrow T^{(r), a}$ is a constant multiple of the tangent bundle projection $p^{T}: T T^{(r), a} \rightarrow T^{(r), a}$. Next we prove that for n, r, a as above the vector space of all natural transformations $A: T T^{(r), a} \rightarrow$ $T T^{(r), a}$ over $\tilde{A}: T T^{(r), a} \rightarrow T^{(r), a}$ is 2-dimensional and we construct the basis of this vector space. In other words, for integers $r \geq 1$ and $n \geq 2$ and a negative real number $a<0$ we classify all natural endomorphisms $A: T T^{(r), a} \rightarrow T T^{(r), a}$ over n-manifolds. In particular, we reobtain the result of [6].

The usual coordinates on \mathbf{R}^{n} are denoted by x^{i} and $\partial_{i}=\frac{\partial}{\partial x^{i}}, i=1, \ldots, n$. All manifolds and maps are assumed to be of class C^{∞}.

1. Let us cite the notion of $T^{(r), a} M,[5]$.

The linear action $\alpha^{(a)}: G L(n, \mathbf{R}) \times \mathbf{R} \rightarrow \mathbf{R}, \alpha^{(a)}(B, x)=|\operatorname{det}(B)|^{a} x$ defines the natural vector bundle $T^{(0,0), a} M=L M \times_{\alpha^{(a)}} \mathbf{R}$ (associated to the principal bundle $L M$ of linear frames). Every embedding $\varphi: M \rightarrow N$ of n-manifolds induces a vector bundle mapping $T^{(0,0), a} \varphi=L \varphi \times_{\alpha^{(a)}} i d_{\mathbf{R}}$: $T^{(0,0), a} M \rightarrow T^{(0,0), a} N$. Let

$$
T^{r *, a} M=\left\{j_{x}^{r} \sigma \mid \sigma \text { is a local section of } T^{(0,0), a} M, \sigma(x)=0, x \in M\right\}
$$

be the vector bundle over M of all r-jets of local sections of $T^{(0,0), a} M$ with target 0 with respect to the source projection. We set $T^{(r), a} M=$
$\left(T^{r *, a} M\right)^{*}$, the dual vector bundle. Every embedding $\varphi: M \rightarrow N$ of n manifolds induces a vector bundle mapping $T^{r *, a} \varphi: T^{r *, a} M \rightarrow T^{r *, a} N$, $j_{x}^{r} \sigma \rightarrow j_{\varphi(x)}^{r}\left(T^{(0,0), a} \varphi \circ \sigma \circ \varphi^{-1}\right)$, and (next) it induces a vector bundle mapping $T^{(r), a} \varphi=\left(\left(T^{r *, a} \varphi\right)^{*}\right)^{-1}: T^{(r), a} M \rightarrow T^{(r), a} N$ over φ, and we obtain a natural vector bundle $T^{(r), a}$ over n-manifolds. (For $a=0$ we get the r-th order vector tangent bundle $T^{(r)}$. That is why $T^{(r), a} M$ is called the generalized higher order tangent bundle.)
$T^{(0,0), a} M$ is the bundle of densities with weight $a . T^{(r), a} M$ appears if we consider linear differential operators $D \in \operatorname{Diffr}\left(C_{x}^{\infty}\left(T^{(0,0), a} M\right)_{0}, \mathbf{R}\right)$ of order $\leq r$ on the $C_{x}^{\infty}(M)$-module $C_{x}^{\infty}\left(T^{(0,0), a} M\right)_{0}$ of germs at $x \in M$ of fields of densities on M with weight a vanishing at x. These operators are in bijection with elements $I(D) \in T_{x}^{(r), a} M$. This bijection is given by $I(D)\left(j_{x}^{r} \sigma\right)=D\left(\operatorname{germ}_{x}(\sigma)\right), \sigma$ is a field of densities of weight a on M vanishing at x. Thus $T^{(r), a} M$ is the vector bundle of such operators.
2. In this section we study natural transformations $C: T T^{(r), a} \rightarrow T^{(r), a}$ over n-manifolds. An example of such a transformation is the tangent projection $p^{T}: T T^{(r), a} M \rightarrow T^{(r), a} M$ for any n-manifold M.
Proposition 1. For natural numbers r and $n \geq 2$ and a real number $a<0$ every natural transformation $C: T T^{(r), a} \rightarrow T^{(r), a}$ over n-manifolds is a constant multiple of the tangent projection $p^{T}: T T^{(r), a} \rightarrow T^{(r), a}$.
Proof. We modify the proof of Proposition 1 in [6] as follows.
From now on the set of all $\alpha \in(\mathbf{N} \cup\{0\})^{n}$ with $1 \leq|\alpha| \leq r$ will be denoted by $P(r, n)$.

Clearly, every section of $T^{(0,0), a} \mathbf{R}^{n}=L \mathbf{R}^{n} \times_{\alpha^{(a)}} \mathbf{R}$ can be considered as a real valued function f on \mathbf{R}^{n} satisfying the transformation rule

$$
\varphi_{*} f(x)=\left|\operatorname{det}\left(d_{0}\left(\tau_{-x} \circ \varphi \circ \tau_{\varphi^{-1}(x)}\right)\right)\right|^{a} \cdot f \circ \varphi^{-1}(x)
$$

for every local diffeomorphism $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, where $\tau_{y}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is the translation by $y \in \mathbf{R}^{n}$. Then any element v from the fibre $T_{0}^{(r), a} \mathbf{R}^{n}$ of $T^{(r), a} \mathbf{R}^{n}$ over 0 is a linear combination of the $\left(j_{0}^{r} x^{\alpha}\right)^{*}$ for all $\alpha \in P(r, n)$, where the $\left(j_{0}^{r} x^{\alpha}\right)^{*}$ form the basis dual to the basis $j_{0}^{r} x^{\alpha} \in T_{0}^{r *, a} \mathbf{R}^{n}$. From now on we denote the coefficient of v corresponding to $\left(j_{0}^{r} x^{\alpha}\right)^{*}$ by $[v]_{\alpha}$.

Of course, any natural transformation C as above is (fully) determined by the contractions $\left\langle C(u), j_{0}^{r} x^{\alpha}\right\rangle \in \mathbf{R}$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}=\mathbf{R}^{n} \times\left(V T^{(r), a}\right)_{0} \mathbf{R}^{n}$ $=\mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n}$ and $\alpha \in P(r, n), j_{0}^{r} x^{\alpha} \in T_{0}^{r *, a} \mathbf{R}^{n}$.

We are going to prove that C is determined by the values $\left\langle C(u), j_{0}^{r}\left(x^{1}\right)\right\rangle \in$ \mathbf{R} for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$, where $j_{0}^{r}\left(x^{1}\right) \in T_{0}^{r *, a} \mathbf{R}^{n}$.

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in P(r, n)$ with $\alpha_{1}+\cdots+\alpha_{n-1} \geq 1$ and $\tau \in \mathbf{R}$, then the diffeomorphism $\varphi_{\alpha, \tau}=\left(x^{1}, \ldots, x^{n-1}, x^{n}-\tau\left(x^{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x^{n-1}\right)^{\alpha_{n-1}}\right)$ sends $j_{0}^{r}\left(\left(x^{n}\right)^{\alpha_{n}+1}\right) \in T_{0}^{r *, a} \mathbf{R}^{n}$ into $j_{0}^{r}\left(\left(x^{n}+\tau\left(x^{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x^{n-1}\right)^{\alpha_{n-1}}\right)^{\alpha_{n}+1}\right)$ (as $\varphi_{\alpha, \tau}^{-1}=\left(x^{1}, \ldots, x^{n-1}, x^{n}+\tau\left(x^{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x^{n-1}\right)^{\alpha_{n-1}}\right)$ and $\operatorname{det}\left(d_{0}\left(\tau_{-\varphi_{\alpha, \tau}(y)} \circ\right.\right.$
$\left.\left.\varphi_{\alpha, \tau} \circ \tau_{y}\right)\right)=1$ for any $y \in \mathbf{R}^{n}$). Then by the naturality of C with respect to the diffeomorphisms $\varphi_{\alpha, \tau}$, the values $\left\langle C(u), j_{0}^{r}\left(\left(x^{n}+\tau\left(x^{1}\right)^{\alpha_{1}} \ldots \ldots\right.\right.\right.$. $\left.\left.\left.\left(x^{n-1}\right)^{\alpha_{n-1}}\right)^{\alpha_{n}+1}\right)\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$ and $\tau \in \mathbf{R}$ are determined by the values $\left\langle C(u), j_{0}^{r}\left(\left(x^{n}\right)^{\alpha_{n}+1}\right)\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$. On the other hand, given $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$ the value $\frac{1}{\alpha_{n}+1}\left\langle C(u), j_{0}^{r} x^{\alpha}\right\rangle$ is the coefficient on τ of the polynomial $\left\langle C(u), j_{0}^{r}\left(\left(x^{n}+\tau\left(x^{1}\right)^{\alpha_{1}} \cdot \ldots \cdot\left(x^{n-1}\right)^{\alpha_{n-1}}\right)^{\alpha_{n}+1}\right)\right\rangle$ with respect to τ. Therefore the values $\left\langle C(u), j_{0}^{r} x^{\alpha}\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$ are determined by the values $\left\langle C(u), j_{0}^{r}\left(\left(x^{n}\right)^{\alpha_{n}+1}\right)\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$. Then C is fully determined by the values $\left\langle C(u), j_{0}^{r}\left(\left(x^{n}\right)^{i}\right)\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$ and $i=$ $1, \ldots, r$. For $i \in\{1, \ldots, r\}$ the diffeomorphism $\varphi_{i}=\left(x^{1}-\left(x^{n}\right)^{i}, x^{2}, \ldots, x^{n}\right)$ sends $j_{0}^{r}\left(x^{1}\right)$ into $j_{0}^{r}\left(x^{1}+\left(x^{n}\right)^{i}\right)$ (as $\varphi_{i}^{-1}=\left(x^{1}+\left(x^{n}\right)^{i}, x^{2}, \ldots, x^{n}\right)$ and $\operatorname{det}\left(d_{0}\left(\tau_{-\varphi_{i}(y)} \circ \varphi_{i} \circ \tau_{y}\right)\right)=1$ for any $\left.y \in \mathbf{R}^{n}\right)$. Then by the naturality of C with respect to φ_{i}, the values $\left\langle C(u), j_{0}^{r}\left(\left(x^{n}\right)^{i}\right)\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$ are fully determined by the values $\left\langle C(u), j_{0}^{r}\left(x^{1}\right)\right\rangle$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}$. That is why C is fully determined by the values $\left\langle C(u), j_{0}^{r}\left(x^{1}\right)\right\rangle \in \mathbf{R}$ for $u \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}=\mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n}$.

We continue the proof of the proposition. For any $t \in \mathbf{R}_{+}$and any $\alpha \in P(r, n)$ the homothety $a_{t}=\left(t x^{1}, \ldots, t x^{n}\right)$ sends $j_{0}^{r} x^{\alpha} \in T_{0}^{r *, a} \mathbf{R}^{n}$ into $t^{n a-|\alpha|} j_{0}^{r} x^{\alpha}$, i.e. $\left(j_{0}^{r} x^{\alpha}\right)^{*}$ into $t^{|\alpha|-n a} \cdot\left(j_{0}^{r} x^{\alpha}\right)^{*}$. Then (since $a<0$) by the naturality of C with respect to a_{t} and the homogeneous function theorem [3] we deduce that given $u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}=\mathbf{R}^{n} \times$ $T_{0}^{(r), a} \mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n}, u_{1}=\left(u_{1}^{1}, \ldots, u_{1}^{n}\right) \in \mathbf{R}^{n}, u_{2}, u_{3} \in T_{0}^{(r), a} \mathbf{R}^{n}$ we have $\left\langle C(u), j_{0}^{r}\left(x^{1}\right)\right\rangle=\sum_{i=1}^{n} \lambda_{i}\left[u_{2}\right]_{e_{i}}+\sum_{i=1}^{n} \mu_{i}\left[u_{3}\right]_{e_{i}}+\cdots$, where λ_{i}, μ_{i} are the reals, the dots denote the linear combination of monomials in $u_{1}^{1}, \ldots, u_{1}^{n}$ of degree $1-n a$ and $e_{i}=(0, \ldots, 1, \ldots, 0) \in P(r, n), 1$ in the i-th position.

For any $t \in \mathbf{R}_{+}$and $k=1, \ldots, n$ the homothety $b_{t}^{k}=\left(x^{1}, \ldots, t x^{k}, \ldots, x^{n}\right)$ (only the k-th position is exceptional) sends $\left(j_{0}^{r}\left(x^{i}\right)\right)^{*} \in T_{0}^{r *, a} \mathbf{R}^{n}$ into $t^{\delta_{k}^{i}-a}\left(j_{0}^{r}\left(x^{i}\right)\right)^{*}$ for $i=1, \ldots, n$. Then, by the naturality of C with respect to b_{t}^{k} and $a<0$,

$$
\left\langle C(u), j_{0}^{r}\left(x^{1}\right)\right\rangle=\lambda\left[u_{2}\right]_{e_{1}}+\mu\left[u_{3}\right]_{e_{1}}+\rho\left(u_{1}^{1}\right)^{1-a}\left(u_{1}^{2}\right)^{-a} \ldots\left(u_{1}^{n}\right)^{-a}
$$

for real numbers λ, μ and ρ.
Using the invariance of A with respect to $\psi=\left(x^{1}, x^{2}+x^{1}, x^{3}, \ldots, x^{n}\right)$ (only the second position is exceptional) we get that $\rho=0$.

On replacing C by $C-\lambda p^{T}$ we can assume that $\lambda=0$, i.e.

$$
\begin{equation*}
\left\langle C(u), j_{0}^{r}\left(x^{1}\right)\right\rangle=\mu\left[u_{3}\right]_{e_{1}} \tag{*}
\end{equation*}
$$

for real number μ. In particular, if $n \geq 2$,

$$
\begin{equation*}
\left\langle C\left(\partial_{2}^{C} \mid \omega\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=\left\langle C\left(e_{2}, \omega, 0\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=0 \tag{**}
\end{equation*}
$$

for any $\omega \in T_{0}^{(r), a} \mathbf{R}^{n}$, where ($)^{C}$ is the complete lift of vector fields to $T^{(r), a}$.

Clearly, the proof of the proposition will be complete after proving that $\mu=0$, i.e. $\left\langle C\left(0,0,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=0$. But (if $n \geq 2$) we have

$$
\begin{aligned}
0 & =\left\langle C\left(\left(\left(x^{2}\right)^{r} \partial_{1}\right)^{C} \mid \omega\right), j_{0}^{r}\left(x^{1}\right)\right\rangle \\
& =\left\langle C\left(0, \omega,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle \\
& =\left\langle C\left(0,0,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle,
\end{aligned}
$$

where $\omega=\left(j_{0}^{r}\left(\left(x^{2}\right)^{r}\right)\right)^{*}$.
Let us explain $(* * *)$. The equality

$$
\left\langle C\left(0, \omega,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=\left\langle C\left(0,0,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle
$$

is an immediate consequence of the formula $(*)$.
We prove that $0=\left\langle C\left(\left(\left(x^{2}\right)^{r} \partial_{1}\right)^{C} \mid \omega\right), j_{0}^{r}\left(x^{1}\right)\right\rangle$. Let us consider the diffeomorphism $\psi=\left(x^{1}+\frac{1}{r+1}\left(x^{2}\right)^{r+1}, x^{2}, \ldots, x^{n}\right)$. Clearly, ψ sends ∂_{2} into $\partial_{2}+\left(x^{2}\right)^{r} \partial_{1}$. It is easily seen that $\operatorname{det}\left(d_{0}\left(\tau_{-\psi(y)} \circ \psi \circ \tau_{y}\right)\right)=1$ for any $y \in \mathbf{R}^{n}$ and $j_{0}^{r} \psi=i d$. Hence ψ preserves $j_{0}^{r}\left(x^{1}\right) \in T_{0}^{r *, a} \mathbf{R}^{n}$. Then using the naturality of C with respect to ψ from $(* *)$ it follows that $\left\langle C\left(\left(\partial_{2}+\right.\right.\right.$ $\left.\left.\left.\left(x^{2}\right)^{r} \partial_{1}\right)^{C} \mid \omega\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=0$ for any $\omega \in T_{0}^{(r), a} \mathbf{R}^{n}$. Now, by $(*)$ we obtain $\left\langle C\left(\left(\left(x^{2}\right)^{r} \partial_{1}\right)^{C} \mid \omega\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=\left\langle C\left(\left(\partial_{2}+\left(x^{2}\right)^{r} \partial_{1}\right)^{C} \mid \omega\right), j_{0}^{r}\left(x^{1}\right)\right\rangle=0$.

The flow of $\left(x^{2}\right)^{r} \partial_{1}$ is $\varphi_{t}=\left(x^{1}+t\left(x^{2}\right)^{r}, x^{2}, \ldots, x^{n}\right)$ and $\operatorname{det}\left(d_{0}\left(\tau_{-\varphi_{t}(y)} \circ\right.\right.$ $\left.\left.\varphi_{t} \circ \tau_{y}\right)\right)=1$ for any $y \in \mathbf{R}^{n}$. Then

$$
\begin{aligned}
\left\langle\left(\left(x^{2}\right)^{r} \partial_{1}\right)^{C}{ }_{\mid \omega,}, j_{0}^{r}\left(x^{1}\right)\right\rangle & =\left\langle\frac{d}{d t}\right| t=0 \\
& \left.=\frac{d}{d t} T_{t=0}^{(r), a}\left(\varphi_{t}\right)(\omega), j_{0}^{r}\left(x^{1}\right)\right\rangle \\
& \left.=\frac{d}{d t}{ }_{\mid t=0}\left\langle\omega, j_{0}^{r}\left(x^{1} \circ \varphi_{t}\right)\right\rangle(\omega), j_{0}^{r}\left(x^{1}\right)\right\rangle \\
& =\left\langle\omega, j_{0}^{r}\left(\left.\frac{d}{d t} \right\rvert\, t=0\right.\right. \\
& \left.\left.=\left\langle\omega, j_{0}^{r} \circ \varphi_{t}\right)\right)\right\rangle \\
& \left.=\left\langle\omega, j_{0}^{r}\left(\left(x^{2}\right)^{r}\right)_{1}^{r} x^{1}\right)\right\rangle \\
& =1 .
\end{aligned}
$$

Then $\left(\left(x^{2}\right)^{r} \partial_{1}\right)^{C}{ }_{\mid \omega}=\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}+\beta$ under the isomorphism $V_{\omega} T^{(r), a} \mathbf{R}^{n}=$ $T_{0}^{(r), a} \mathbf{R}^{n}$, where β is a linear combination of the $\left(j_{0}^{r}\left(x^{\alpha}\right)\right)^{*} \neq\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}$. Now, by ($*$)

$$
\begin{aligned}
\left\langle C\left(\left(\left(x^{2}\right)^{r} \partial_{1}\right)^{C}{ }_{|\omega|}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle & =\left\langle C\left(0, \omega,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}+\cdots\right), j_{0}^{r}\left(x^{1}\right)\right\rangle \\
& =\left\langle C\left(0, \omega,\left(j_{0}^{r}\left(x^{1}\right)\right)^{*}\right), j_{0}^{r}\left(x^{1}\right)\right\rangle .
\end{aligned}
$$

3. The tangent map $T p: T T^{(r), a} M \rightarrow T M$ of the bundle projection p : $T^{(r), a} M \rightarrow M$ defines a natural transformation over n-manifolds.

Proposition 2. For natural numbers r and n and for a real number $a<$ 0 every natural transformation $B: T T^{(r), a} \rightarrow T$ over n-manifolds is a constant multiple of $T p$.

Proof. Clearly, every natural transformation B as in the proposition is uniquely determined by the contractions $\left\langle B(u), d_{0} x^{1}\right\rangle$ for $u=\left(u_{1}, u_{2}, u_{3}\right) \in$ $\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}=\mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n}$. Using the invariance of B with respect to the homotheties $a_{t}=\left(t x^{1}, \ldots, t x^{n}\right)$ for $t \in \mathbf{R}_{+}$and the homogeneous function theorem we deduce (similarly as in the proof of Proposition 1) that $\left\langle B(u), d_{0} x^{1}\right\rangle$ for $u=\left(u_{1}, u_{2}, u_{3}\right) \in\left(T T^{(r), a}\right)_{0} \mathbf{R}^{n}=$ $\mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n} \times T_{0}^{(r), a} \mathbf{R}^{n}$ is the linear combination (with real coefficients) of the $u_{1}^{1}, \ldots, u_{1}^{n}$ and it is independent of u_{2} and u_{3}, where $u_{1}=\left(u_{1}^{1}, \ldots, u_{1}^{n}\right) \in$ \mathbf{R}^{n}. Next, using the invariance of B with respect to the homotheties $b_{t}=\left(x^{1}, t x^{2}, \ldots, t x^{n}\right)$ we see that $\left\langle B(u), d_{0} x^{1}\right\rangle$ is proportional (by a real number) to $u_{1}^{1}=\left\langle T p(u), d_{0} x^{1}\right\rangle$.
4. Let $\underline{A}: T T^{(r), a} M \rightarrow T^{(r), a} M$ be a natural transformation over n manifolds. We say that a natural transformation $A: T T^{(r), a} M \rightarrow T T^{(r), a} M$ over n-manifolds is over \underline{A} if $p^{T} \circ A=\underline{A}$.

If $B: T T^{(r), a} M \rightarrow T^{(r), a} M$ is another natural transformation over n manifolds, we define a natural transformation
$\underline{A}^{B}:=(\underline{A}, B): T T^{(r), a} M \rightarrow T^{(r), a} M \times_{M} T^{(r), a} M \tilde{=} V T^{(r), a} M \subset T T^{(r), a} M$.
Clearly, \underline{A}^{B} is over \underline{A}. We call \underline{A}^{B} the B-vertical lift of \underline{A}.
In particular, considering $p^{T}: T T^{(r), a} M \rightarrow T^{(r), a} M$ we produce natural transformation $\underline{A}^{p^{T}}: T T^{(r), a} M \rightarrow T T^{(r), a} M$ over \underline{A}. The above natural transformations \underline{A}^{B} are of vertical type, i.e. they have values in $V T^{(r), a} M$.

If $A: T T^{(r), a} M \rightarrow V T^{(r), a} M \tilde{=} T^{(r), a} M \times_{M} T^{(r), a} M$ is a natural transformation of vertical type over \underline{A}, then $A=(\underline{A}, B)$ for natural transformation $B=p r_{2} \circ A: T T^{(r), a} M \rightarrow T^{(r), a} M$, i.e. $A=\underline{A}^{B}$ for some B.

Then applying Proposition 1 we obtain the following proposition.
Proposition 3. Let r and $n \geq 2$ be natural numbers and a be a negative real number. Let $\underline{A}: T T^{(r), a} M \rightarrow T^{(r), a} M$ be a natural transformation over n-manifolds. Then every natural transformation $A: T T^{(r), a} M \rightarrow V T^{(r), a} M$ over n-manifolds of vertical type over \underline{A} is a constant multiple of $\underline{A}^{p^{T}}$.
5. Let $\lambda \in \mathbf{R}$. For every n-manifold M we define $A^{(\lambda)}: T T^{(r), a} M \rightarrow$ $T T^{(r), a} M$ by

$$
A^{(\lambda)}(v)=T\left(\lambda i d_{T^{(r), a} M}\right)(v), v \in T T^{(r), a} M
$$

Clearly $A^{(\lambda)}: T T^{(r), a} \rightarrow T T^{(r), a}$ is a natural transformation over $\tilde{A}=\lambda p^{T}:$ $T T^{(r), a} \rightarrow T^{(r), a}$.

Proposition 4. Let $\lambda \in \mathbf{R}$. If r and $n \geq 2$ are natural numbers and a is a negative real number, then every natural transformation $A: T T^{(r), a} \rightarrow$ $T T^{(r), a}$ over n-manifolds over $\underline{A}=\lambda p^{T}$ is a linear combination of $\underline{A}^{p^{T}}$ and $A^{(\lambda)}$ with real coefficients.

Proof. Let $A: T T^{(r), a} M \rightarrow T T^{(r), a} M$ be a natural transformation over n-manifolds over \underline{A}. The composition $T p \circ A: T T^{(r), a} M \rightarrow T M$ is a natural transformation. By Proposition 2, there exists the real number ρ such that $T p \circ A=\rho T p$. Clearly, $T p \circ A^{(\lambda)}=T p$. Then $A-\rho A^{(\lambda)}: T T^{(r), a} M \rightarrow$ $T T^{(r), a} M$ is of vertical type. Then Proposition 3 ends the proof.

Remark. Every natural transformation $A: T T^{(r), a} M \rightarrow T T^{(r), a} M$ over n-manifolds is over $\underline{A}=p^{T} \circ A: T T^{(r), a} M \rightarrow T^{(r), a} M$. So, Proposition 4 together with Proposition 1 gives a complete description of all natural transformations $T T^{(r), a} M \rightarrow T T^{(r), a} M$ over n-manifolds in the case where $a<0$, $r \geq 1$ and $n \geq 2$.
6. As a corollary of Proposition 4 we get immediately the following fact.

Corollary 1 ([6]). If r and $n \geq 2$ are natural numbers and a is a negative real number, then every natural affinor $A: T T^{(r), a} \rightarrow T T^{(r), a}$ on $T^{(r), a}$ over n-manifolds is a constant multiple of the identity affinor.
7. Similarly as $T^{(r), a}$ starting from the action $G L(n, \mathbf{R}) \times \mathbf{R} \rightarrow \mathbf{R}$ given by $(B, x) \rightarrow \operatorname{sgn}(\operatorname{det}(B))|\operatorname{det}(B)|^{a} x$ instead of $\alpha^{(a)}: G L(n, \mathbf{R}) \times \mathbf{R} \rightarrow \mathbf{R}$, we can define natural vector bundles $\tilde{T}^{(r), a}$ over n-manifolds. Using obviously modified arguments as in Items 3-6 we obtain the following facts.

Proposition 1'. For natural numbers r and $n \geq 2$ and a real number $a<0$ every natural transformation $C: T \tilde{T}^{(r), a} \rightarrow \tilde{T}^{(r), a}$ over n-manifolds is a constant multiple of the tangent projection $p^{T}: T \tilde{T}^{(r), a} \rightarrow \tilde{T}^{(r), a}$.

Proposition 2'. For natural numbers r and n and for a real number $a<$ 0 every natural transformation $B: T \tilde{T}^{(r), a} \rightarrow T$ over n-manifolds is a constant multiple of Tp, where $p: \tilde{T}^{(r), a} M \rightarrow M$ is the bundle projection.

Similarly as in Items 4 and 5 we define $\underline{A}^{p^{T}}: T \tilde{T}^{(r), a} \rightarrow V \tilde{T}^{(r), a}$ and $A^{(\lambda)}: T \tilde{T}^{(r), a} \rightarrow T \tilde{T}^{(r), a}$.

Proposition 3'. Let r and $n \geq 2$ be natural numbers and a be a negative real number. Let $\underline{A}: T \tilde{T}^{(r), a} M \rightarrow \tilde{T}^{(r), a} M$ be a natural transformation over n-manifolds. Then every natural transformation $A: T \tilde{T}^{(r), a} M \rightarrow V \tilde{T}^{(r), a} M$ over n-manifolds of vertical type over \underline{A} is a constant multiple of $\underline{A}^{p^{T}}$.

Proposition 4'. Let $\lambda \in \mathbf{R}$. If r and $n \geq 2$ are natural numbers and a is a negative real number, then every natural transformation $A: T \tilde{T}^{(r), a} \rightarrow$ $T \tilde{T}^{(r), a}$ over n-manifolds over $\underline{A}=\lambda p^{T}$ is a linear combination of $\underline{A}^{p^{T}}$ and $A^{(\lambda)}$ with real coefficients.

Corollary 1' ([6]). If r and $n \geq 2$ are natural numbers and a is a negative real number, then every natural affinor $A: T \tilde{T}^{(r), a} \rightarrow T \tilde{T}^{(r), a}$ on $\tilde{T}^{(r), a}$ over n-manifolds is a constant multiple of the identity affinor.

References

[1] Doupovec, M., Natural transformations between $T T T^{*} M$ and $T T^{*} T M$, Czechoslovak Math. J. 43(118) (1993), 599-613.
[2] Gancarzewicz, J., I. Kolář, Natural affinors on the extended r-th order tangent bundles, Rend. Circ. Mat. Palermo (2) Suppl. 30 (1993), 95-100.
[3] Kolář, I., P. W. Michor and J. Slovák , Natural Operations in Differential Geometry, Springer-Verlag, Berlin 1993.
[4] Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58 (1993), 29-33.
[5] Mikulski, W. M., The natural operators lifting vector fields to generalized higher order tangent bundles, Arch. Math. Brno 36(III) (2000), 207-212.
[6] Mikulski, W. M., The natural affinors on generalized higher order tangent bundles, Rend. Mat. Roma 21(VII) (2001), 339-349.
[7] Mikulski, W. M., The natural transformations $T T^{(r)} \rightarrow T T^{(r)}$, Arch. Math. Brno $\mathbf{3 6 (1) ~ (2 0 0 0) , ~ 7 1 - 7 5 . ~}$
[8] Paluszny, M., A. Zajtz, Foundation of Differential Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.

Jan Kurek
Institute of Mathematics
M. Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: kurek@golem.umcs.lublin.pl

Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. Reymonta 4
30-059 Kraków, Poland
e-mail: mikulski@im.uj.edu.pl

Received February 21, 2005

[^0]: 2000 Mathematics Subject Classification. 58A20, 53A55.
 Key words and phrases. Natural bundle, natural transformation.

