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On some classes of functions of Robertson type

Abstract. Let ∆ be the unit disc |z| < 1 and let G(A, B), −1 < A ≤ 1,
−A < B ≤ 1 be the class of functions of the form g(z) = 1 +

∑∞
n=1 dnzn,

holomorphic and nonvanishing in ∆ and such that Re
{

2zg′(z)
g(z)

+ 1+Az
1−Bz

}
> 0

in ∆. It is known that the class G = G(1, 1) was introduced by M. S. Robert-
son. A. Lyzzaik has proved the Robertson conjecture on geometric properties
of functions g ∈ G, g 6= 1.
In this paper we will investigate the properties of functions of the class

G(A, B). In particular when A = B = 1, we will obtain corresponding results
of the class G.

1. Introduction. Let C denote the open complex plane, ∆ = {z ∈ C :
|z| < 1} the unit disc. In the sequel we will use the following well-known
definitions. Let S∗(α), 0 ≤ α < 1, denote the class of functions h holo-
morphic in ∆, normalized by h(0) = h′(0) − 1 = 0 and such that h(z)

z 6= 0
and

(1.1) Re
zh′(z)
h(z)

> α, z ∈ ∆.

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Univalent functions, starlike functions of order α, starlike

function with respect to a boundary point, Robertson conjecture, estimates of functionals.



28 Z. J. Jakubowski and A. Włodarczyk

Functions belonging to the class S∗(α) are called starlike functions of order
α, while S∗ = S∗(0) is called the class of starlike functions (with respect to
the origin).
Let Sc(α), 0 ≤ α < 1, denote the class of functions h of the form

h(z) = z +
∞∑

n=2

anzn, z ∈ ∆

such that for every z ∈ ∆ we have h′(z) 6= 0 and

(1.2) Re
{

1 +
zh′′(z)
h′(z)

}
> α.

Functions belonging to the class Sc(α) are called convex functions of order α.
It is noted that h ∈ Sc(α) if and only if zh′(z) ∈ S∗(α) for 0 ≤ α < 1
(see e.g. [3], vol. I, p. 140).
Let h be a holomorphic function in the disc ∆. We will say that h is close-
to-convex in the unit disc ∆ if and only if there is a function Φ ∈ Sc = Sc(0)
such that

(1.3) Re
h′(z)
Φ′(z)

> 0, z ∈ ∆.

It is known that the classes S∗(α) and Sc(α) were introduced by M. S.
Robertson [10], while the class of normalized close-to-convex functions – by
W. Kaplan [6]. We know also close-to-convex functions generally normalized
(see e.g. [3], vol. II, p. 2).
Moreover, let ℘ denote the class of functions p holomorphic in ∆, p(0)=1
and such that Re p(z) > 0 for z ∈ ∆. This class is called the class of
Carathéodory functions with positive real part.
In 1981 M. S. Robertson [11] introduced the class G of all functions g of
the form

(1.4) g(z) = 1 +
∞∑

n=1

dnzn,

holomorphic and nonvanishing in ∆ and such that

(1.5) Re
{

2zg′(z)
g(z)

+
1 + z

1− z

}
> 0, z ∈ ∆.

Robertson also advanced a hypothesis (see [11]) on geometric interpretation
of the functions of the family G. He assumed that if the function g ∈ G
and g 6= 1 then g is close-to-convex and univalent in ∆, g(∆) is starlike
with respect to the origin, limr→1− g(r) = 0 and for some α ∈ R we have
Re {eiαg(z)} > 0, z ∈ ∆. The above hypothesis was confirmed by A. Lyzzaik
[8] in 1984.
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A new analytic characterization of the class G has been presented in
paper [7]. It is worth noticing that the analytic condition (1.5) was known
to Styer [13].
In paper [4] there was introduced the class G(M), M > 1, of functions g
of the form (1.4) holomorphic and nonvanishing in ∆ and such that

(1.6) Re
{

2zg′(z)
g(z)

+ z
P ′(z;M)
P (z;M)

}
> 0, z ∈ ∆,

where P (·;M) denotes the known Pick function. The class

(1.7) G(1)=
{
g of the form (1.4) :g(z) 6=0 and Re

{
2z

g′(z)
g(z)

+1
}

>0, z∈∆
}

was also considered.
Moreover, M. S. Obradović and S. Owa [9] investigated the class G(α),

0 ≤ α < 1, of functions g of the form (1.4) holomorphic in the disc ∆,
g(z) 6= 0 for z ∈ ∆ and satisfying the condition

(1.8) Re
{

zg′(z)
g(z)

+ (1− α)
1 + z

1− z

}
> 0, z ∈ ∆.

The purpose of this paper is to introduce and investigate a new class of the
aforesaid type.

2. Definition and some properties of the class G(A, B).

Definition 2.1. Let G(A,B), where −1 < A ≤ 1, −A < B ≤ 1, denote the
class of functions g of the form (1.4) holomorphic and nonvanishing in disc
∆ and such that

(2.1) Re
{

2zg′(z)
g(z)

+ Q(z;A,B)
}

> 0, z ∈ ∆,

where

(2.2) Q(z;A,B) =
1 + Az

1−Bz
, z ∈ ∆.

We note that the class G(1, 1) is identical to the known class G. Moreover,
it is shown that G(0, 0) = G(1). If B = −A then the function Q(z;A,−A) ≡
1, so we have the class G(1).
It is worth reminding in this place, that the function (2.2) was used in
many papers, where different classes generated by the appropriate Carathéo-
dory functions were considered.
It is known that the function Q of the form (2.2), when B < 1 maps
conformally the disc ∆ onto a disc situated on the right in the half-plane.
If however B = 1, Q(∆; A,B) is the half-plane {w : Re w > 1−A

2 }, where
0 ≤ 1−A

2 < 1.
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Let Q(z) = Q(z;A,B) and let F (z) = F (z;A,B) be a function satisfying
the equation

(2.3)
zF ′(z)
F (z)

= Q(z),

where Q is of the form (2.2). Then F ∈ S∗(A,B), −1 < A ≤ 1, −A < B ≤ 1
(see [5]), where

S∗(A,B) =

{
F : F (z) = z +

∞∑
n=2

anzn, z ∈ ∆ and
zF ′(z)
F (z)

≺ Q(z)

}
.

Furthermore, we have

(2.4) F (z) = z · exp

 z∫
0

Q(ζ)− 1
ζ

dζ

 , z ∈ ∆.

If in the above-mentioned formula we put the function Q of the form
(2.2), we will obtain the function of the form

(2.5) F (z;A,B) =

{
z(1−Bz)−

A+B
B , z ∈ ∆, for B 6= 0,

z exp(Az), z ∈ ∆, for B = 0.

From (2.1) and (2.3) we conclude that for some function g ∈ G(A,B)
there exists a starlike function h of the class S∗ = S∗(1, 1) such that

g2(z) · F (z) = h(z), z ∈ ∆

and conversely. We have:

Property 2.1. Let g be a holomorphic function in ∆ such that g(0) = 1.
Then g ∈ G(A,B) if and only if there exists a function h ∈ S∗ such that

g(z) =

√
h(z)

z
(1−Bz)

A+B
2B , z ∈ ∆, h ∈ S∗, for B 6= 0,(2.6)

g(z) =

√
h(z)

z
exp

(
−A

2
z

)
, z ∈ ∆, h ∈ S∗, for B = 0.(2.7)

Examples. It follows from Property 2.1 that the functions:

(2.8) g0(z;A,B) =

{
(1−Bz)

A+B
2B , z ∈ ∆, for B 6= 0,

exp
(
−A

2 z
)
, z ∈ ∆, for B = 0

and

(2.9) g1(z;A,B) =

{
(1− z)−1(1−Bz)

A+B
2B , z ∈ ∆, for B 6= 0

(1− z)−1 exp
(
−A

2 z
)
, z ∈ ∆, for B = 0
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belong to the class G(A,B). Furthermore, for −1 < A ≤ 1, −A < B ≤ 1,
we have

g1(z;A,B)

= 1+
(
1− 1

2
(A+B)

)
z+
(
1− 1

2
(A + B)+

1
8
(
A2−B2

))
z2 + · · · , z ∈ ∆.

The function

(2.10) g2(z) =
1√

1− z2
, z ∈ ∆,

satisfies the condition

Re
(

2z
g′2(z)
g2(z)

+ 1
)

> 0, z ∈ ∆,

so from (1.7) it follows that g2 ∈ G(1). Moreover, the function g2 is not
univalent, so g2 6∈ G.

Remark 2.1. Let us consider the function g3, g3(0) = 1, satisfying the
equation

2zg′3(z)
g3(z)

+
1 + Az

1−Bz
=

1 + z2

1− z2
, z ∈ ∆.

Because of (2.1) and (2.2) it is shown, that g3 ∈ G(A,B). We can check
that if B < 1 then there exists a point z0 ∈ ∆ such that g′3(z) = 0, i.e. g3

is not a univalent function in ∆. Therefore g3 6∈ G.

We know the property (see e.g. [4], p. 56) that

f ∈ S∗
(

1
2

)
⇔ h =

f2

I
, where I(z) ≡ z.

Hence from (2.6) and (2.7) we obtain:

Property 2.2. Let g be a holomorphic function in ∆ such that g(0) = 1.
Then g ∈ G(A,B) if and only if there exists a function f ∈ S∗(1

2) such that

g(z) =
f(z)

z
(1−Bz)

A+B
2B , z ∈ ∆, for B 6= 0,(2.11)

g(z) =
f(z)

z
exp

(
−A

2
z

)
, z ∈ ∆, for B = 0.(2.12)

From Property 2.1 and from the known estimates of the respective func-
tionals in the class S∗ we have:

Property 2.3. If g ∈ G(A,B), −1 < A ≤ 1, −A < B ≤ 1, B 6= 0,
0 6= z = reiϕ, 0 < r < 1, 0 ≤ ϕ ≤ 2π, then the following sharp estimates

(2.13)
1

1 + |z|

∣∣∣(1−Bz)
A+B
2B

∣∣∣ ≤ |g(z)| ≤ 1
1− |z|

∣∣∣(1−Bz)
A+B
2B

∣∣∣ , |z| = r,
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hold. The upper estimate is attained for the function gε of the form

gε(z) = (1−Bz)
A+B
2B ·

√
kε(z)

z
,

where kε(z) = z
(1−εz)2

, ε = e−iϕ, and the lower estimate for gε and ε =
−e−iϕ.
If g ∈ G(A, 0), then for 0 6= z = reiϕ, 0 < r < 1, 0 ≤ ϕ ≤ 2π we have

(2.14)
1

1 + |z|
exp

(
−A

2
Re z

)
≤ |g(z)| ≤ 1

1− |z|
exp

(
−A

2
Re z

)
.

The extremal function for the upper estimate (2.14) is the function g∗ε of
the form

g∗ε(z) = exp
(
−A

2
z

)√
kε(z)

z
,

where ε = e−iϕ, while for the lower estimate is the function g∗ε for ε =
−e−iϕ.

Let 0 < B < 1. Then from (2.13) we have |g(z)| ≥ 1
2 (1−B)

A+B
2B for

z ∈ ∆. If −A < B < 0 so |g(z)| ≥ 1
2 (1−B)

A+B
2B , but when B = 0 then

from (2.14) |g(z)| ≥ 1
2 exp

(
−1

2 |A|
)
for z ∈ ∆. In consequence we obtain:

Property 2.4. If g ∈ G(A,B), g 6= 1, B < 1, then there exists the constant
δ > 0 such that |g(z)| > δ for z ∈ ∆.
The point w = 0 is not the boundary point of the set g(∆) for any function

g from class G(A,B), B < 1, and consequently g 6∈ G.

Property 2.5. If g ∈ G(A,B), −1 < A ≤ 1, −A < B ≤ 1, is of the form
(1.4) then the sharp estimates

(2.15) |2d1 + A + B| ≤ 2,

(2.16)
∣∣∣∣2d2 + d2

1 + 2d1 (A + B) +
1
2

(A + B) (A + 2B)
∣∣∣∣ ≤ 3

hold. We obtain the equality in the above estimates for the function g1 of
the form (2.9).

Because for each function h ∈ S∗ the functions

(2.17) z → 1
ρ
h(ρz), z → eiϕh

(
e−iϕz

)
, 0 < ρ < 1, ϕ ∈ R, z ∈ ∆,

also belong to S∗, from Property 2.1 and estimation (2.15) we obtain:

Property 2.6. The region of values of the coefficient d1, i.e. {d1 : g ∈
G(A,B), g(z) = 1 + d1z + · · · } has the form{

w ∈ C :
∣∣∣∣w +

A + B

2

∣∣∣∣ ≤ 1
}

.
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From the global formula (2.4) and Property 2.1 it follows:

Property 2.7. If g ∈ G(A,B), −1 < A ≤ 1, −A < B ≤ 1, then for B 6= 0

(2.18) g(z) = (1−Bz)
A+B
2B · exp

1
2

z∫
0

p (ζ)− 1
ζ

dζ

 , z ∈ ∆, p ∈ ℘,

and for B = 0

(2.19) g(z) = exp

(
1
2

(
−Az +

1
2

z∫
0

p(ζ)− 1
ζ

dζ
))

, z ∈ ∆, p ∈ ℘,

and conversely, where ℘ denotes the aforesaid class of Carathéodory func-
tions with positive real part.

We know that if f ∈ S∗ (1
2

)
then the function Φ defined by the formula

(2.20) Φ(z, ξ) =
ξ

f(ξ)
· f(z)− f(ξ)

z − ξ
, z, ξ ∈ ∆

satisfies the condition Re Φ(z, ξ) > 1
2 (see [12], p. 121). Moreover, if g ∈

G(A,B), B 6= 0 then from (2.11) the function

(2.21) f(z) = zg(z) (1−Bz)−
A+B
2B , z ∈ ∆,

belongs to the class S∗ (1
2

)
. We denote

(2.22) d0 = 1 = P0(A,B), (1−Bz)−
A+B
2B = 1+

∞∑
k=1

Pk(A,B)zk, z ∈ ∆,

where

Pk(A,B) =
(A + B)(A + 3B) · . . . · (A + (2k − 1)B)

k!2k
, k = 1, 2, . . . .

We prove:

Theorem 2.1. Let g ∈ G(A,B), −1 < A ≤ 1, −A < B ≤ 1, B 6= 0,
g(z) = 1+

∑∞
n=1 dnzn, z ∈ ∆ and let Rn(z;A,B) denote the n-th partial sum

of the power series expansion with the centre at the origin of the function
z → g(z)(1−Bz)−

A+B
2B , R0(z;A,B) ≡ 1. Then the functions

(2.23) Φn (z;A,B) =
g(z)− (1−Bz)

A+B
2B ·Rn−1 (z;A,B)

zn · g(z)
,

z ∈ ∆, n = 1, 2, . . . , are holomorphic in ∆ and

(2.24) |Φn(z;A,B)| ≤ 1.

In particular

(2.25) |Φn(0;A,B)| =

∣∣∣∣∣
n∑

k=0

dkPn−k (A,B)

∣∣∣∣∣ ≤ 1,
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(2.26)

∣∣Φ′
n(0;A,B)

∣∣
=

∣∣∣∣∣
n+1∑
k=0

dkPn+1−k (A,B)− (P1(A,B) + d1)
n∑

k=0

dkPn−k(A,B)

∣∣∣∣∣
≤ 1−

∣∣∣∣∣
n∑

k=0

dkPn−k(A,B)

∣∣∣∣∣
2

,

(2.27) |dn− gn(A,B)|2 +
p∑

k=1

|dn+k− gn+k(A,B)|2 ≤ 1+
p∑

k=1

|dk|2, p ≥ 1,

where
gk(A,B) = dk, k = 0, 1, . . . , n− 1,

(2.28)
d0Pn+k(A,B) + · · ·+ dn−1Pk+1(A,B) + gn(A,B)Pk(A,B)

+ · · ·+ gn+k(A,B)P0(A,B) = 0, k = 0, 1, . . . .

Proof. By the assumption g ∈ G(A,B), B 6= 0, so the function f of the
form (2.21) belongs to the class S∗ (1

2

)
. Let z, ξ ∈ ∆. We consider the

function Φ of the form (2.20). Hence we obtain

Φ(z, ξ) =
1

1− z
ξ

− 1
1− z

ξ

· z

ξ
· g(z)(1−Bz)−

A+B
2B

g(ξ)(1−Bξ)−
A+B
2B

, z, ξ ∈ ∆.

The expansion of the function Φ in powers of z yields

Φ(z, ξ) = 1 +
∞∑

n=1

Φn(ξ;A,B)zn, z ∈ ∆,

where the functions Φn(ξ;A,B) are defined by formulas (2.23).
We notice that for all n = 1, 2, . . . the functions Φn are holomorphic in

∆. Moreover, because Re Φ(z, ξ) > 1
2 then from the known estimate of the

coefficients in the class ℘ we obtain the estimates (2.24).
On the other hand, because of (2.22) and the definition the function

Rn−1(ξ;A,B), from (2.23) we have

Φn(ξ;A,B) =
Sn(A,B) + Sn+1(A,B)ξ + · · ·+ Sn+k(A,B)ξk + . . .

1 + S1(A,B)ξ + · · ·
,

where

Sn(A,B) = d0Pn(A,B) + · · ·+ dnP0(A,B), n = 1, 2, . . . .

Hence and from inequality (2.24) for z = 0 we obtain (2.25).
The inequality (2.26) is a consequence of the fact that if

Φn(ξ;A,B) = a0 + a1ξ + a2ξ
2 + · · ·

and
|Φn(ξ;A,B)| < 1 for ξ ∈ ∆,
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then |a1| ≤ 1− |a0|2.
From (2.23) we have

Φn(z;A,B) · g(z) =
g(z)− (1−Bz)

A+B
2B ·Rn−1(z;A,B)
zn

,

z ∈ ∆, n = 1, 2, . . . .
Put

G(z;A,B) = (1−Bz)
A+B
2B ·Rn−1(z;A,B), z ∈ ∆

and let

G(z;A,B) =
∞∑

n=0

gn(A,B)zn, z ∈ ∆.

Equating coefficients at the respective powers of z of identity

G(z;A,B) · (1−Bz)−
A+B
2B = Rn−1(z;A,B), z ∈ ∆,

we have (2.28). Then

G(z;A,B) =
n−1∑
k=0

dkz
k + gn(A,B)zn + gn+1(A,B)zn+1 + · · · , z ∈ ∆.

From this and from (2.23) we have
p∑

k=0

(dn+k − gn+k(A,B)) zk +
∞∑

k=p+1

ak(A,B)zk =

(
p∑

k=0

dkz
k

)
· Φn(z;A,B),

where ak(A,B) are the appropriate coefficients. From the inequality (2.24)
we obtain∣∣∣∣∣∣

p∑
k=0

(dn+k − gn+k(A,B)) zk +
∞∑

k=p+1

ak(A,B)zk

∣∣∣∣∣∣
2

≤

∣∣∣∣∣
∞∑

k=0

dkz
k

∣∣∣∣∣
2

.

Let z = reit, 0 < r < 1, 0 ≤ t ≤ 2π. Integrating the above inequality
side-wise in the interval [0, 2π] and making use of the equality zz̄ = |z|2,
z ∈ C, we obtain

p∑
k=0

|dn+k − gn+k(A,B)|2r2k +
∞∑

k=p+1

|ak(A,B)|2r2k ≤
p∑

k=0

|dk|2r2k.

Passing to the limit as r → 1− and from the fact that |ak(A,B)|2 ≥ 0,
k = p + 1, . . . , p ≥ 1 we have (2.27). �

We know that Theorem 2.1 has its equivalents in the classes G (see [1])
and G(M), M > 1 (see [4]).
Similarly we do in case B = 0.
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Let g ∈ G(A, 0). Then from (2.12) the function f(z) = z · g(z) exp(A
2 z),

z ∈ ∆ belongs to the class S∗ (1
2

)
. Denote

(2.29) d0 = 1 = P0(A), exp
(

A

2
z

)
= 1 +

∞∑
n=1

Pn(A)zn, z ∈ ∆,

where Pn(A) = An

2n·n! . It is clear that P0(A) = P0(A, 0), Pn(A) = Pn(A, 0).
We obtain:

Theorem 2.2. Let g ∈ G(A, 0), 0 < A ≤ 1, g(z) = 1 +
∑∞

n=1 dnzn,
z ∈ ∆ and let Rn(z;A) denote the n-th partial sum of the power series
expansion with the centre at the origin of the function z → g(z) exp

(
A
2 z
)
,

R0(z;A) ≡ 1. Then the functions

(2.30) Φn(z;A) =
g(z)− exp

(
−A

2 z
)
·Rn−1(z;A)

zn · g(z)
, z ∈ ∆, n = 1, 2, . . . ,

are holomorphic in ∆ and

(2.31) |Φn(z;A)| ≤ 1.

In particular

(2.32) |Φn(0;A)| =

∣∣∣∣∣
n∑

k=0

dkPn−k(A)

∣∣∣∣∣ ≤ 1,

(2.33)

∣∣Φ′
n(0;A)

∣∣ = ∣∣∣∣∣
n+1∑
k=0

dkPn+1−k(A)− (P1(A) + d1)
n∑

k=0

dkPn−k(A)

∣∣∣∣∣
≤ 1−

∣∣∣∣∣
n∑

k=0

dkPn−k(A)

∣∣∣∣∣
2

,

(2.34) |dn − gn(A)|2 +
p∑

k=1

|dn+k − gn+k(A)|2 ≤ 1 +
p∑

k=1

|dk|2, p ≥ 1,

where
gk(A) = dk, k = 0, 1, . . . , n− 1,

(2.35)
d0Pn+k(A) + · · ·+ dn−1Pk+1(A) + gn(A)Pk(A)

+ · · ·+ gn+k(A)P0(A) = 0, k = 0, 1, . . . .

From (2.23), (2.24) and (2.30), (2.31) for n = 1 we have:

Corollary 2.1. If g ∈ G(A,B), −1 < A ≤ 1, −A < B ≤ 1, B 6= 0, then

(2.36)

∣∣∣∣∣g(z)− (1−Bz)
A+B
2B

1− |z|2

∣∣∣∣∣ ≤
∣∣∣(1−Bz)

A+B
2B

∣∣∣ |z|
1− |z|2

, z ∈ ∆.
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If g ∈ G(A, 0) then

(2.37)

∣∣∣∣∣g(z)−
exp

(
−A

2 Re z
)

1− |z|2

∣∣∣∣∣ ≤ exp
(
−A

2 Re z
)
|z|

1− |z|2
, z ∈ ∆.

Remark 2.2. If in Theorem 2.1 we put A = B = 1 then we obtain the
known theorem for the class G (see [1] p. 11). Furthermore, from (2.36) for
g ∈ G we have ∣∣∣∣g(z)− 1− z

1− |z|2

∣∣∣∣ ≤ |1− z||z|
1− |z|2

, z ∈ ∆.

Remark 2.3. If g ∈ G(A,B), B 6= 0, z ∈ ∆ any fixed then the values
of the functional H(g) = g(z), g ∈ G(A,B) belong to K(w0, |zw0|) where

w0 = (1−Bz)
A+B
2B

1−|z|2 . Since w0 6= 0 and |zw0| < |w0|, we have 0 6∈ K(w0, |zw0|).

From (2.27), (2.28), (2.22) and (2.34), (2.35), (2.29) we have:

Corollary 2.2. If g ∈ G(A,B), −1 < A ≤ 1, −A < B ≤ 1 then

(2.38)
∣∣∣∣d1 +

A + B

2

∣∣∣∣2 +
∣∣∣∣d2 −

1
8
(
A2 −B2

)∣∣∣∣2 ≤ 1 + |d1|2.

The extremal function is the function g1 of the form (2.9).

3. Application of classical Cluni method. In the following considera-
tions we are using the so-called Cluni method (see [2]), i.e. without using
the function (2.20).
Let the function g of the form (1.4) belong to the class G(A,B). Thus the
conditions (2.1), (2.2) are satisfied. It follows that there exists a function
p ∈ ℘ such that

(3.1) p(z) =
2zg′(z)
g(z)

+
1 + Az

1−Bz
, z ∈ ∆.

It is known that if p ∈ ℘ then the function ω of the form

ω(z) =
p(z)− 1
p(z) + 1

, z ∈ ∆,

belongs to the known class Ω (ω holomorphic in ∆, ω(0) = 0, |ω(z)| < 1 for
z ∈ ∆). From this fact and from (3.1) we have(

2zg′(z)(1−Bz) + 2g(z) + (A−B)zg(z)
)
ω(z)

= 2zg′(z)(1−Bz) + (A + B)zg(z), z ∈ ∆.
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Let ω(z) =
∑∞

n=1 ωnzn. Considering the expansion of the function g in
power series we get(
2+2

∞∑
n=1

(n+1)dnzn+(A−B)
∞∑

n=1

dn−1z
n−2B

∞∑
n=1

(n− 1)dn−1z
n

)( ∞∑
n=1

ωnzn

)

= 2
∞∑

n=1

ndnzn − 2B

∞∑
n=1

(n− 1)dn−1z
n + (A + B)

∞∑
n=1

dn−1z
n, z ∈ ∆.

From this

(3.2)

(
2 +

∞∑
n=1

(2(n + 1)dn + (A + B − 2Bn)dn−1) zn

)( ∞∑
n=1

ωnzn

)

=
∞∑

n=1

(2ndn + (A + 3B − 2Bn)dn−1)zn, z ∈ ∆.

Let

(3.3) pn(A,B) = 2(n + 1)dn + (A + B − 2Bn)dn−1, n = 1, 2, . . . ,

and

(3.4) sn(A,B) = 2ndn + (A + 3B − 2Bn)dn−1, n = 1, 2, . . . .

Then we obtain

2
∞∑

n=1

ωnzn +
∞∑

n=2

(p1(A,B)ωn−1 + · · ·+ pn−1(A,B)ω1) zn

=
∞∑

n=1

sn(A,B)zn, z ∈ ∆.

Equating coefficients on both sides of the above identity we have

(3.5) 2ω1 = 2d1 + A + B,

(3.6) 2ωn+p1(A,B)ωn−1+ · · ·+pn−1(A,B)ω1 = sn(A,B) for n = 2, 3, . . . .

Since |ω1| ≤ 1, from (3.5) we obtain

|2d1 + A + B| ≤ 2,

which is identical to the estimate (2.15).
Next from (3.2)–(3.4) we have(

2 +
n−1∑
k=1

pk(A,B)zk

)( ∞∑
k=1

ωkz
k

)
=

n∑
k=1

sk(A,B)zk +
∞∑

k=n+1

akz
k,
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where ak are the appropriate coefficients. Since |ω(z)| < 1 for z ∈ ∆,∣∣∣∣∣
n∑

k=1

sk(A,B)zk +
∞∑

k=n+1

akz
k

∣∣∣∣∣
2

<

∣∣∣∣∣2 +
n−1∑
k=1

pk(A,B)zk

∣∣∣∣∣
2

, z ∈ ∆.

Similarly to the proof of the inequality (2.27) we get

(3.7)
n∑

k=1

|sk(A,B)|2 ≤ 4 +
n−1∑
k=1

|pk(A,B)|2, n = 2, 3, . . . .

Since |sk(A,B)|2 ≥ 0 for k = 1, . . . , n− 1, then

|sn(A,B)|2 ≤ 4 +
n−1∑
k=1

|pk(A,B)|2, n = 2, 3, . . . .

If we adopt the notation (3.3), (3.4), we get:

Theorem 3.1. If the function g of the form (1.4) belongs to the class
G(A,B), then the estimates

(3.8)

∣∣2ndn + (A + 3B − 2Bn)dn−1

∣∣2
≤ 4 +

n−1∑
k=1

|2(k + 1)dk + (A + B − 2Bk)dk−1|2, n = 2, 3, . . .

hold.

Remark 3.1. If we put n = 2 in (3.7), then we have

(3.9) |2d1 + A + B|2 + |4d2 + (A−B)d1|2 ≤ 4 + |4d1 + (A−B)|2.

This estimate is different from (2.38).

4. The class G[α] = G(1 − 2α, 1). Relations between classes G[0],
G[α] and G[1]. We have recalled different applications of the function
(2.2) in geometric theory of functions. In particular we often use it when
B = 1 and A = 1− 2α, 0 ≤ α < 1. Hence we consider the class

G[α] := G(1− 2α, 1), 0 ≤ α < 1.

Obviously, G[0] = G(1, 1) = G and G[1] = G(0, 0) = G(1). Furthermore,
from the obtained properties of the class G(A,B) we get the corresponding
properties of the class G[α]. In particular we have:

Property 4.1.

(4.1) g ∈ G[α] ⇔ g(z) =

√
h(z)

z
(1− z)1−α, h ∈ S∗;

(4.2) g ∈ G[α] ⇒ |d1 + 1− α| ≤ 1;
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(4.3) g ∈ G[α] ⇒ |g(z)− (1− z)1−α

1− |z|2
| ≤ |(1− z)1−α||z|

1− |z|2
.

Mutual relations between classes G[0], G[α], G[1], 0 < α < 1 are also
worth considering.
Let

(4.4) g0(z) ≡ 1, I(z) ≡ z, z ∈ ∆.

Obviously

(4.5) g0 ∈ G[0] ∩G[α] ∩G[1], 0 < α < 1.

Since I ∈ S∗, from (4.1) the function g1 of the form

(4.6) g1(z;α) = (1− z)1−α, z ∈ ∆, 0 ≤ α < 1,

satisfies the conditions

(4.7) g1(·;α) ∈ G[α], 0 ≤ α < 1 and g1(·;α) 6∈ G[1].

On the other hand for the function

(4.8) g2(z) = 1− z, z ∈ ∆,

we have

(4.9) g2 ∈ G[0] and g2 6∈ G[α] for 0 < α ≤ 1.

The function h(z) = z
(1−z)2

∈ S∗, so from (4.1) for the function g3 of the
form

(4.10) g3(z;α) =
1

(1− z)α
, z ∈ ∆,

the following conditions hold

(4.11) g3(·;α) 6∈ G[0] and g3(·;α) ∈ G[α], 0 < α ≤ 1.

We see that the point z0 = 0 is not the boundary point of the set g3(∆) (it
is an exterior point).
However for the function

(4.12) g4(z) =
1

1− z
, z ∈ ∆,

we have

(4.13) g4 6∈ G[α], 0 ≤ α < 1 and g4 ∈ G[1].

If we consider in the property (4.1) the function h(z) = z
(1+z)2

∈ S∗, then
we have the mapping

(4.14) g5(z;α) =
(1− z)1−α

1 + z
, z ∈ ∆,

satisfying the conditions

(4.15) g5(·;α) 6∈ G[0], g5(·;α) ∈ G[α], 0 < α < 1 and g5(·;α) 6∈ G[1].
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From the above-mentioned examples (4.4), (4.6), (4.8), (4.10), (4.12),
(4.14) and the obtained conditions (4.5), (4.7), (4.9). (4.11), (4.13), (4.15)
we have

G[0] ∩G[α] ∩G[1] 6= ∅,
G[0] \ (G[α] ∪G[1]) 6= ∅,
G[1] \ (G[α] ∪G[0]) 6= ∅,
G[α] \ (G[0] ∪G[1]) 6= ∅,
(G[0] ∩G[α]) \G[1] 6= ∅,
(G[1] ∩G[α]) \G[0] 6= ∅.

From the above relationships we get a question, whether a function g ∈
G[0] ∩G[1], g 6= 1 exists. The answer is negative. We have:

Corollary 4.1. The function g ∈ G[0] ∩ G[1], g 6= 1 does not exist. The
intersection of classes G[0], G[α] for 0 < α < 1, and G[1] is a singleton,
i.e. G[0] ∩G[α] ∩G[1] = {g0}.

Indeed, suppose on the contrary that there exists a function g ∈ G[0] ∩
G[1], g 6= 1. Then from (4.1) we have

g ∈ G[0] ⇔ g2(z) = (1− z)2
h1(z)

z
, z ∈ ∆, h1 ∈ S∗,

and

g ∈ G[1] ⇔ g2(z) =
h2(z)

z
, z ∈ ∆, h2 ∈ S∗.

From this
h2(z) = (1− z)2h1(z), z ∈ ∆, h1, h2 ∈ S∗.

We see that

Re
{

zh′2(z)
h2(z)

}
= Re

{
−2z

1− z
+

zh′1(z)
h1(z)

}
, z ∈ ∆, h1, h2 ∈ S∗.

But for z → 1− we have Re
{

zh′2(z)
h2(z)

}
→ −∞ , which contradicts the defini-

tion of the function h2 ∈ S∗.
Unfortunately, we do not know so far any mutual relations between G[α1]
and G[α2], where α1 6= α2.
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