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On some classes of functions of Robertson type

ABSTRACT. Let A be the unit disc |z| < 1 and let G(A,B), -1 < A <1,
—A < B < 1 be the class of functions of the form g(z) = 1+ > | dn2",

holomorphic and nonvanishing in A and such that Re {% + ifgz >0

in A. It is known that the class G = G(1, 1) was introduced by M. S. Robert-
son. A. Lyzzaik has proved the Robertson conjecture on geometric properties
of functions g € G, g # 1.

In this paper we will investigate the properties of functions of the class
G(A, B). In particular when A = B = 1, we will obtain corresponding results
of the class G.

1. Introduction. Let C denote the open complex plane, A = {z € C :
|z| < 1} the unit disc. In the sequel we will use the following well-known
definitions. Let S*(a), 0 < a < 1, denote the class of functions h holo-

morphic in A, normalized by h(0) = A'(0) — 1 = 0 and such that @ # 0
and

zh (2)
h(z)

(1.1) Re >a, z€A.
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Functions belonging to the class S*(«) are called starlike functions of order
a, while S* = S*(0) is called the class of starlike functions (with respect to
the origin).

Let S¢(a), 0 < a < 1, denote the class of functions h of the form

h(z) :z+Zanz”, z€A
n=2

such that for every z € A we have h/(z) # 0 and

(1.2) Re{1+1xgx}>a

Functions belonging to the class S¢(«) are called convez functions of order a.
It is noted that h € S¢(«) if and only if zh/(z) € S*(a) for 0 < a < 1
(see e.g. [3], vol. I, p. 140).
Let h be a holomorphic function in the disc A. We will say that h is close-
to-conver in the unit disc A if and only if there is a function ® € S¢ = 5¢(0)
such that

o)
P'(2)

It is known that the classes S*(a) and S¢(«) were introduced by M. S.
Robertson [10], while the class of normalized close-to-convex functions — by
W. Kaplan [6]. We know also close-to-convex functions generally normalized
(see e.g. [3], vol. I, p. 2).

Moreover, let p denote the class of functions p holomorphic in A, p(0)=1
and such that Rep(z) > 0 for z € A. This class is called the class of
Carathéodory functions with positive real part.

In 1981 M. S. Robertson [11] introduced the class G of all functions g of
the form

(1.3) R

>0, z€A.

(1.4) g(z) =1+ Z dp2",
n=1
holomorphic and nonvanishing in A and such that
229 1
(1.5) Re { =27 (2) + te >0, ze€A.
9(z)  1—2z

Robertson also advanced a hypothesis (see [11]) on geometric interpretation
of the functions of the family G. He assumed that if the function g € G
and g # 1 then g is close-to-convex and univalent in A, g(A) is starlike
with respect to the origin, lim,_,;- g(r) = 0 and for some « € R we have
Re{eg(2)} > 0, 2 € A. The above hypothesis was confirmed by A. Lyzzaik
[8] in 1984.
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A new analytic characterization of the class G has been presented in
paper [7]. It is worth noticing that the analytic condition (1.5) was known
to Styer [13].

In paper [4] there was introduced the class G(M), M > 1, of functions g
of the form (1.4) holomorphic and nonvanishing in A and such that

(1.6) Re {229[(2) + ZP/(Z;M)} >0, ze€A,

9(2) P(z; M)
where P(-; M) denotes the known Pick function. The class

/
(L.7) G(1)= {g of the form (1.4):¢(z)#0 and Re{QZ‘(;((;) +1} >0, zeA}
was also considered.
Moreover, M. S. Obradovi¢ and S. Owa [9] investigated the class G(«),
0 < a < 1, of functions g of the form (1.4) holomorphic in the disc A,
g(z) # 0 for z € A and satisfying the condition

(1.8) Re{zggéij)+(1—a)1fz}>0, z € A.

The purpose of this paper is to introduce and investigate a new class of the
aforesaid type.

2. Definition and some properties of the class G(A, B).

Definition 2.1. Let G(A, B), where —1 < A <1, —A < B < 1, denote the
class of functions g of the form (1.4) holomorphic and nonvanishing in disc
A and such that

229'(2) ,
(2.1) Re { ) —I—Q(Z,A,B)} >0, zeA,
where
1+ Az
(2.2) Q(z;A,B) = T B, c A.

We note that the class G(1, 1) is identical to the known class G. Moreover,
it is shown that G(0,0) = G(1). If B = — A then the function Q(z; A, —A) =
1, so we have the class G(1).

It is worth reminding in this place, that the function (2.2) was used in
many papers, where different classes generated by the appropriate Carathéo-
dory functions were considered.

It is known that the function @ of the form (2.2), when B < 1 maps
conformally the disc A onto a disc situated on the right in the half-plane.
If however B = 1, Q(A; A, B) is the half-plane {w : Rew > %}, where

0<4 <1
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Let Q(z) = Q(z; A, B) and let F(z) = F(z; A, B) be a function satisfying
the equation

2F'(z) B
P =0

where @ is of the form (2.2). Then F € S*(A,B),-1< A<1,-A<B<1
(see [5]), where

(2.3)

S*(A,B) = {F cF(2) =2+ ianz", z € A and z?éi;) =< Q(z)} .

Furthermore, we have
(2.4) F(z) =z-exp /Q(Cé_l ac|, zeA.
0

If in the above-mentioned formula we put the function ) of the form
(2.2), we will obtain the function of the form

_A+B

2(1-=Bz)" 5, z€A, for B#0,

(2.5) F(z;A,B) =
zexp(Az), z € A, for B=0.

From (2.1) and (2.3) we conclude that for some function g € G(A4, B)
there exists a starlike function h of the class S* = S*(1,1) such that
() F(z) = h(z), z€A
and conversely. We have:

Property 2.1. Let g be a holomorphic function in A such that g(0) = 1.
Then g € G(A, B) if and only if there exists a function h € S* such that

(2.6) g(z) = h(ZZ) (1-Bz)%8", z€A, heS*, for B#0,
A
(2.7) g(z) = h(zz)exp (—Qz) , z€A, heS* for B=0.

Examples. It follows from Property 2.1 that the functions:

(1-Bz)25, z€A,for B#0,

2
2.8 A, B) =
28) oA D) {exp (—92), =2€Afor B=0

1—-Bz)25, ze€A, for B#0
(1—2)"texp (—gz), ze A, for B=0
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belong to the class G(A, B). Furthermore, for -1 < A <1, —A < B < 1,
we have

g91(z; A, B)
=1+ 1—§(A+B) 2+ 1—§(A+B)+§(A -B%))z" 4+, z€A.
The function

(2.10) !

92(2’)27\/W , ZEA,

satisfies the condition
/
Re (2292(2) n 1> >0, z€A,
92(2)
so from (1.7) it follows that go € G(1). Moreover, the function g2 is not
univalent, so g2 € G.

Remark 2.1. Let us consider the function g3, g3(0) = 1, satisfying the
equation
2295(2) 1+ Az 1+ 22
g3(2) 1-Bz 1-—22"
Because of (2.1) and (2.2) it is shown, that g3 € G(A, B). We can check
that if B < 1 then there exists a point zgp € A such that g5(z) = 0, i.e. g3
is not a univalent function in A. Therefore g3 & G.

z € A.

We know the property (see e.g. [4], p. 56) that

1 f?
feS*(Q)ﬁh:I,whereI(z)Ez.

Hence from (2.6) and (2.7) we obtain:

Property 2.2. Let g be a holomorphic function in A such that g(0) = 1.
Then g € G(A, B) if and only if there exists a function f € S*(%) such that

f2) ap

(2.11) g(z) = . (1-Bz)25, z€A, for B#0,
(2.12) g9(z) = fiz)exp (—éz) , z€A, for B=0.

From Property 2.1 and from the known estimates of the respective func-
tionals in the class S* we have:

Property 2.3. If g € G(A,B), -1 < A< 1, A< B <1, B#0,
0#£z=re%, 0<r<1,0<p<2m, then the following sharp estimates

A+B

(1—Bz) 25| <lg(2)| <

A+B

(1—-Bz) 2B |, |z| =,

(2.13)

1
1+ |z] 1— |z
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hold. The upper estimate is attained for the function g. of the form

R ey

where k.(z) = 0 e = e, and the lower estimate for g. and ¢ =

_z
1—ez)?”’
If g € G(A,0), then for 0 # z =1re’?, 0 <r < 1, 0 < ¢ < 21 we have

A 1 A
——R < < ——R .
51 exp< 5 ez) <|g(2)| < =T exp( 5 ez>

The extremal function for the upper estimate (2.14) is the function g} of
the form

(2.14)

)

g (2) = exp <_;1> k()

where € = e~ while for the lower estimate is the function g for e =
—e P,

Let 0 < B < 1. Then from (2.13) we have |g(2)] > 3 (1 —B)% for

ze A If —A < B <0so |g(z)] > %(1—3)?733, but when B = 0 then
from (2.14) |g(z)| > 5 exp (—3 |A|) for z € A. In consequence we obtain:

Property 2.4. If g € G(A,B), g # 1, B < 1, then there exists the constant
d > 0 such that |g(z)| > d for z € A.

The point w = 0 is not the boundary point of the set g(A) for any function
g from class G(A, B), B < 1, and consequently g ¢ G.

Property 2.5. If g€ G(A,B), -1 < A<1, —A < B <1, is of the form
(1.4) then the sharp estimates

(2.15) 2d, + A+ B| < 2,

1
(2.16) 2d2+d§+2d1(A+B)+§(A+B)(A+QB) <3

hold. We obtain the equality in the above estimates for the function g1 of
the form (2.9).
Because for each function A € S* the functions

1 . .
(2.17) z— —h(pz), z—e%h (e_wz) ,0<p<l, peR, z€ A,
p

also belong to S*, from Property 2.1 and estimation (2.15) we obtain:

Property 2.6. The region of values of the coefficient dy, i.e. {d; : g €
G(A,B), g(z) =1+diz+---} has the form

{wG(C:’uH—A;B‘Sl}.
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From the global formula (2.4) and Property 2.1 it follows:
Property 2.7. If g€ G(A,B), -1 < A<1, —A< B <1, then for B#0

1 [p(0) -1

(2.18) g(z):(l—Bz)%exp 2/p(ocd( , ZENA, pEp,
0

and for B=0

z

(2.19) g(z):expC(—AH;/p(oc_ldg)), €A, pep,
0

and conversely, where @ denotes the aforesaid class of Carathéodory func-

tions with positive real part.

We know that if f € S* (%) then the function ® defined by the formula

ANIONI0

() -&
1

(2.20) O(2,8) = z, £ €A

S~

satisfies the condition Re ®(z,€&) > % (see [12], p. 121). Moreover, if g €
) the function

G(A, B), B # 0 then from (2.1
(2.21) F(2) = 2g(2) (1 — B2)""25 |, ze€A,
belongs to the class S* (%) We denote

A

o
(2.22) dy=1=Py(A,B), (1-Bz)"35 =1+Y P(AB):*, zeA,

k=1
where
(A+B)(A+3B)-...- (A+(2k—1)B)
Piy(A,B) = 1R , k=1,2,....
We prove:

Theorem 2.1. Let g € G(A,B), -1 < A <1, —A< B <1, B#0,
g(z) =14>77  dp2", z € A and let Ry, (z; A, B) denote the n-th partial sum
of the power series expansion with the centre at the origin of the function
z—g(2)(1 - Bz)_%, Ro(z; A, B) = 1. Then the functions

A+B
—(1—-Bz)2B -R,_1(z;A,B
(2.23) v, (z:4,8) = U= BD B (B4 5)
2" g(2)
ze€ A, n=1,2,..., are holomorphic in A and
(2.24) |®,(2; A, B)| < 1.

In particular

> diPo i (A,B)| <1,

k=0

(2.25) |©,,(0; 4, B)| =
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|®,(0; A, B)|
n+1 n
=) diPuj1-k (A, B) = (Pi(A,B) +d1) Y dpPo (A, B)
(2.26) k=0 k=0

2

> dyP,_i(A,B)
k=0

<1-

)

(2.27) |dn — gn(A, B) \2+Z\dn+k—gn+k A, B))? < 1+Z|dk] p>1,

k=1
where
gr(A,B)=di, k=0,1,....,n—1,
(2 28) d()Pn+k(A, B) + -+ dn_1Pk+1(A, B) + gn(A, B)Pk(A, B)

+--'+gn+k(A,B)P0(A,B):O, k=0,1,....

Proof. By the assumption g € G(A, B), B # 0, so the function f of the

form (2.21) belongs to the class S* (1). Let 2, € A. We consider the

function ® of the form (2.20). Hence we obtain

1 1 z g(z)(l—Bz)_AjiBB

1_3_1_3'5' _AfB Z7£€A.
; ¢ & g =BE >

The expansion of the function ® in powers of z yields

(1)(275) =

D(z,) =1+ Z@n(ﬁ;A, B)z", z €A,
n=1
where the functions ®,(£; A, B) are defined by formulas (2.23).

We notice that for all n = 1,2,... the functions ®, are holomorphic in
A. Moreover, because Re ®(z,£) > 3 then from the known estimate of the
coefficients in the class p we obtain the estimates (2.24).

On the other hand, because of (2.22) and the definition the function
R,_1(§ A, B), from (2.23) we have

Sn(A, B) + Sp1(A,B)+ -+ + Sn-l—k:(A’ B)¢r +

(I)n(gvAaB): 1"'51( )5“’ )

where
Sn(A,B) =doPy(A,B)+ -+ d,Py(A,B), n=12....

Hence and from inequality (2.24) for z = 0 we obtain (2.25).
The inequality (2.26) is a consequence of the fact that if

@n(f; A, B) =ag+ a1€ + a2€2 +

and
|9,(; A, B)| < 1 for € €A,
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then |a;| <1 — |ag|?.
From (2.23) we have

®,(2;A,B)-g(z) = g(z) = (A - BZ)?TB - Rn-1(2; 4, B) ’

ZTL

zeA,n=12,....
Put

G(zA,B) = (1 - Bz)28 -R,_1(2;A,B), z€A
and let

G(z; A, B) ZgnAB "oz eA.

Equating coefficients at the respectlve powers of z of identity
G(z;A,B)-(1 —Bz)f 5 = Ry 1(z;A,B), ze€A,
we have (2.28). Then
n—1

G(zA,B) = dipz" + gn(A,B)2" + gny1(A,B)2" -+, z€ A
k=0

From this and from (2.23) we have

> (dnir = gnri(A,B) 2F + > ax(A, B)2F = (Z dkzk) - ®,(z; A, B),

k=0 k=p+1 k=0

where ai (A, B) are the appropriate coefficients. From the inequality (2.24)
we obtain

2
p

Z n+k—gn+k(AB Z + Z (ZkAB
k=0 k=p+1

Z dkz

Let z = re”, 0 < r < 1, 0 < t < 27. Integrating the above inequality
side-wise in the interval [0,27] and making use of the equality 2z = |z|?,
z € C, we obtain

p
Z\dm — gnyi (4, B)[r?* + Z (A, B)Prot < 3 Jdi P,
k=0 k=p+1 k=0

Passing to the limit as r — 1~ and from the fact that |a;(4, B)|?> > 0
k=p+1,..., p>1 we have (2.27). O

We know that Theorem 2.1 has its equivalents in the classes G (see [1])
and G(M), M > 1 (see [4]).
Similarly we do in case B = 0.
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Let g € G(A,0). Then from (2.12) the function f(z) = z - g(2) exp(éz),
z € A belongs to the class S* (%) Denote

(2.29) do=1= Py(A), exp (?2) =1+ ZPn(A)z", z €A,

n=1

where P, (A) = % It is clear that Py(A) = Py(A,0), P,(A) = P,(A,0).
We obtain:

Theorem 2.2. Let g € G(A4,0), 0 < A < 1, g(z) = 1+ >0, dp2",
z € A and let R,(z;A) denote the n-th partial sum of the power series

expansion with the centre at the origin of the function z — g(z)exp (%z),
Ro(z; A) = 1. Then the functions

g(2) — exp (—=42) - Rn_1(z; A)

(2.30) @,(z;A) = 900 , z€A, n=1,2,...,
are holomorphic in A and
(2.31) | D (25 A)] < 1.
In particular
(2.32) B (05 A)| = Y dpPoi(A)| < 1,
k=0
n+1 n
10,0 A)| = > diPas1-k(A) = (PL(A) + d1) > dixPoi(A)

(2.33) = ) k=0

<1= ) diPai(4)]

k=0

p p
(2.34)  |dn = g (AP + ) ldnik — gnn(AP <1+ |del*, p>1,
k=1

k=1
where
gk(A):dk, k=0,1,...,n—1,
(2.35) doPnyi(A) + -+ 4 dn1Pry1(A) + gn(A) Pr(A)

+ -+ gnik(A)Py(A) =0, k=0,1,....
From (2.23), (2.24) and (2.30), (2.31) for n = 1 we have:
Corollary 2.1. Ifge G(A,B), -1< A<1, A< B<1, B#0, then

A+B

Al 1—Bz) 2B | |7

(1—Bz) 2B ’(

2.36 - A
( ) g(Z) 1 ‘Z|2 1 ‘Z|2 , 2 €
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If g € G(A,0) then

_ exp (—%Re z)

() exp (—éRez) ||
T TIRp

1= 22 , 2z €A.

(2.37)

Remark 2.2. If in Theorem 2.1 we put A = B = 1 then we obtain the
known theorem for the class G (see [1] p. 11). Furthermore, from (2.36) for
g € G we have

1—2z
1—|z]?

|1 — 22|

S TP , z€eA.

‘9(2)

Remark 2.3. If ¢ € G(A,B), B # 0, z € A any fixed then the values
of the functional H(g) = ¢g(2), g € G(A, B) belong to K (wq,|zwg|) where
A+B

+
(1-Bz) 2B

S EEa Since wp # 0 and |zwg| < |wpl|, we have 0 € K (wo, |zwo).

wy =
From (2.27), (2.28), (2.22) and (2.34), (2.35), (2.29) we have:

Corollary 2.2. Ifg€ G(A,B), -1 < A<1, —A< B <1 then

2 1 2
=+ dz—é(AQ—BQ) §1+|d1|2

A+B

(2.38) dy +

The extremal function is the function g1 of the form (2.9).

3. Application of classical Cluni method. In the following considera-
tions we are using the so-called Cluni method (see [2]), i.e. without using
the function (2.20).

Let the function g of the form (1.4) belong to the class G(A, B). Thus the
conditions (2.1), (2.2) are satisfied. It follows that there exists a function
p € p such that

_ 22¢'(2) | 1+ Az

g(2) 1—- Bz’ ZEA

(3.1) p(2)

It is known that if p € p then the function w of the form

_plx) -1
w(z) = p(z)+1° €A

belongs to the known class © (w holomorphic in A, w(0) =0, |w(z)| < 1 for
z € A). From this fact and from (3.1) we have

(2zg’(z)(1 — Bz)+2¢(2) + (A — B)zg(z))w(z)
=22¢'(2)(1 — Bz) + (A+ B)zg(z), z¢€A.
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Let w(z) = > o7, wpz™. Considering the expansion of the function ¢ in
power series we get

<2+2i(n+1)dnzn+(A—B)§: dn_lz"—QBi(n — l)dn_lz”> (i wnz”>
n=1

n=1 n=1 n=1
=2 Z nd,z" — 2B Z(n —1)dp—12"+ (A + B) Z dp_12", z€ A

From this
<2+Z (n+1)d, + (A+ B —2Bn)d, )(anz>

:Zan + (A+3B—2Bn)d,—1)z", z€A.
n=1

(3.2)

Let
(3.3) pn(A,B) =2(n+ 1)d, + (A+ B —2Bn)dy,—1, n=1,2,...,
and
(3.4) sn(A,B) =2nd, + (A+ 3B —2Bn)d,—1, n=1,2,....

Then we obtain

23 wne" + 3 (p1(A, BYwnr + - -+ puoi(A, Blwr) 2"

= an(A, B)z", zeA.

Equating coefficients on both sides of the above identity we have

(3.5) 2w = 2d; + A+ B,

(3.6) 2wp+p1(A, B)wp—1+-+pn-1(A, B)w; = sn(A, B) for n =2,3,....
Since |w1| < 1, from (3.5) we obtain
|2d; + A+ B| < 2,

which is identical to the estimate (2.15).
Next from (3.2)-(3.4) we have

(2+nzlpkAB )(Zwkz> ZskABz + Z arz”,

k=1 k=n-+1
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where ay, are the appropriate coefficients. Since |w(z)| < 1 for z € A,
2

, zZ€A.

2 n—1

2+ pr(A,B)F
k=1

n

Zsk(A,B)zk—i- i apz®

k=1 k=n+1

<

Similarly to the proof of the inequality (2.27) we get

n n—1
(37> Z|Sk(AvB)|2§4+Z|pk(A?B)‘27 n=23....
k=1 k=1
Since |si(A4,B)|> >0 for k=1,...,n — 1, then
n—1
[sa(A, B)? <4+ |pe(4,B)I>, n=23,....
k=1

If we adopt the notation (3.3), (3.4), we get:

Theorem 3.1. If the function g of the form (1.4) belongs to the class
G(A, B), then the estimates

|2nd,, + (A + 3B — 2Bn)d, 1|

3.8 n-l

(38) <4+ 2(k+1)dy + (A+ B —2Bk)dy1>, n=2,3,...
k=1

hold.

Remark 3.1. If we put n =2 in (3.7), then we have

(3.9)  |2di + A+ BJ? +|4dy + (A — B)dy|* < 4+ |4d, + (A — B)|%.
This estimate is different from (2.38).

4. The class G[a] = G(1 — 2, 1). Relations between classes G|0],

G[a] and GJ[1]. We have recalled different applications of the function

(2.2) in geometric theory of functions. In particular we often use it when
B=1and A=1-2a,0<a< 1. Hence we consider the class

Glo] :==G(1 —2a,1), 0<a<l.

Obviously, G[0] = G(1,1) = G and G[1] = G(0,0) = G(1). Furthermore,
from the obtained properties of the class G(A, B) we get the corresponding
properties of the class G[a]. In particular we have:

Property 4.1.

(4.1) g€ Gla] < g(z) = h(zz)(l — )7, he s

(4.2) geGla]=di+1—-al <1,
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(1—z)1’”‘| (1 —2)'7|4]
T—[z2 77 1z

(4.3) g € Gla] = |g(z) —

Mutual relations between classes G[0], G[a], G[1], 0 < a < 1 are also
worth considering.

Let

(4.4) g(2)=1, I(z)=2z z€A.

Obviously

(4.5) g € GO]NGla]NG[L], 0<a<l.
Since I € S*, from (4.1) the function g; of the form

(4.6) g(z;a)=1-2)1" 2eA, 0<a<1,

satisfies the conditions

(4.7) gi(a) €Gla), 0<a<1 and g1(a) € G[1].

On the other hand for the function

(4.8) g2(2) =1—2z, z € A,

we have

(4.9) g2 € G[0] and g2 € Gla] for 0 <a <1.
The function h(z) = (1_%)2 € 5%, so from (4.1) for the function g3 of the

form

(4.10) g3(z;a) = (1—12)0‘ . zZENA,

the following conditions hold
(4.11) g93(;a) € G0] and g3(; ) € Gla), 0 < a < 1.
We see that the point zp = 0 is not the boundary point of the set g3(A) (it

is an exterior point).
However for the function

(4.12) 94(z) = T, * €A,
we have
(4.13) g1 € Gla], 0<a<1 and g4 € G[1].

If we consider in the property (4.1) the function h(z) = ﬁ € S*, then
we have the mapping
(1 _ Z)l—a

€A
1+Z ) z )

(4.14) g5(z;0) =
satisfying the conditions
(4.15)  g5(;a) € G[0], g5(a) € Gla), 0 <a <1 and g5(;a) € G[1].
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From the above-mentioned examples (4.4), (4.6), (4.8), (4.10), (4.12),
(4.14) and the obtained conditions (4.5), (4.7), (4.9). (4.11), (4.13), (4.15)
we have

G0N Gla]NG[1] # 0,
GO\ (Gla] U G[1]) # 0,
G\ (Gla] U Gl0]) # 0,
Gla]\ (GIO]UG[1]) # 0,
(GO} NGla]) \ G[1] # 0,
(G N Gla])\ G[0] # 0.

From the above relationships we get a question, whether a function g €
G[0] N G[1], g # 1 exists. The answer is negative. We have:

Corollary 4.1. The function g € G[0] N G[1], g # 1 does not exist. The
intersection of classes G[0], Gla] for 0 < a < 1, and GI[1] is a singleton,
i.e. GO]NGla)NG[1] = {g0}-

Indeed, suppose on the contrary that there exists a function g € G[0] N
GI1], g # 1. Then from (4.1) we have

gEG < ¢*(z)=(1— Z)2h1£2) , z€ A, hy € 5%,

and
geGl] e ¢?(z) = hiz) L 2EA, hy € S*.
From this
ho(2) = (1 — 2)%hi(2), 2 € A, hy,hy € S*.
We see that
/ /
Re {Z}ZQ&)} — Re {1__222 n Zfiléz)) } C2EA, hyhy € S*

But for z — 1~ we have Re {ZIZ /2((;))} — —oo , which contradicts the defini-

tion of the function hoy € S*.
Unfortunately, we do not know so far any mutual relations between G|aq]
and G[ag], where ay # as.
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