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On homogeneous distributions

Abstract. Any homogeneous function is determined by its values on the
unit sphere. We shall prove that an analogous fact is true for homogeneous
distributions.

1. Test functions on the unit sphere. For x, y ∈ Rn we will write

x · y =
n∑

i=1

xiyi

and

|x| =
√
x · x =

√√√√ n∑
i=1

x2
i .

By Sn−1 we denote the unit sphere in Rn, i.e.

Sn−1 = {x ∈ Rn : |x| = 1} .
Let X be a linear space and f : Sn−1 → X. For any α ∈ R we define the
extension of f, of degree α, by the formula

(Eαf) (x) = |x|α f
(
x

|x|

)
, x ∈ Rn \ {0} .
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In the case of α = 0 we have

(E0f) (x) = f

(
x

|x|

)
, x ∈ Rn \ {0} .

Definition 1. Let (X, ‖·‖) be a normed space and f : Sn−1 → X. We
say that f is differentiable at x0 ∈ Sn−1 if there exists a linear operation
A : Rn → X such that

Ax0 = 0 and lim
Sn−13x→x0

f (x)− f (x0)−Ax

|x− x0|
= 0.

It is not very hard to check that such an operation is unique, so that we
call it the spherical derivative of f at the point x0. The spherical derivative of
f at the point x0 will be denoted by ∂Sf (x0) . The mapping f : Sn−1 → X
is called differentiable if ∂Sf (x) exists for all x ∈ Sn−1.
The notion of the spherical derivative agrees with the usual derivative
in the following sense. If f : U → X, where U is an open neighbourhood
of Sn−1, then f is differentiable at x0 ∈ Sn−1 if and only if there exists
∂Sf (x0) . Moreover, for any ξ ∈ Rn with ξ · x0 = 0, we have then

∂Sf (x0) ξ = f ′ (x0) ξ = (E0f)′ (x0) ξ.

The symbol Ck
(
Sn−1, X

)
will stand for the space of all f : Sn−1 → X

having continuous spherical derivatives ∂Sf,
(
∂S

)(2)
f, . . . ,

(
∂S

)(k)
f up to

degree k. For f ∈ Ck
(
Sn−1, X

)
we define

‖f‖Ck = max
j=1,2,...,k

max
x∈Sn−1

∥∥∥(
∂S

)(j)
f (x)

∥∥∥ ,
where

∥∥∥(
∂S

)(j)
f (x)

∥∥∥ denotes the norm of linear operation (
∂S

)(j)
f (x) .

In the case of k = 0 the symbol C0
(
Sn−1, X

)
denotes the space of all

continuous f : Sn−1 → X with the norm

‖f‖C0 = max
x∈Sn−1

‖f (x)‖ .

In the sequel we will consider the space

C∞
(
Sn−1, X

) def=
∞⋂

k=0

Ck
(
Sn−1, X

)
,

being the space of test functions for distributions on the sphere Sn−1,
equipped with the sequence of semi-norms ‖·‖Ck , k = 0, 1, . . . . Clearly,
the space C∞

(
Sn−1, X

)
is locally convex and complete.

It can be shown that any distribution on the sphere Sn−1 in the sense of
[2], see Section 6.3, is a distribution in the following sense.

Definition 2. Any linear continuous functional u : C∞
(
Sn−1,R

)
→ R we

call the distribution on the sphere. The space of all distributions on the
sphere we denote by D′

(
Sn−1,R

)
.
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Since the topology in C∞
(
Sn−1,R

)
is given by the sequence of semi-

norms ‖·‖Ck , k ∈ N0, a linear functional u : C∞
(
Sn−1,R

)
→ R is continuous

if and only if there exist k ∈ N0 and C ≥ 0 such that

|〈u, ϕ〉| ≤ C ‖ϕ‖Ck , ϕ ∈ C∞
(
Sn−1,R

)
.

Each distribution on the sphere is thus of finite degree.
Any continuous function f : Sn−1 → R is a regular distribution {f (x)}
given by

〈{f (x)} , ϕ〉 =
∫

Sn−1

f (x)ϕ (x)Hn−1 (dx) ,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure in Rn.
Let um ∈ D′

(
Sn−1,R

)
, m ∈ N, and u ∈ D′

(
Sn−1,R

)
be given. We say

that
u = lim

m→∞
um

if, for each ϕ ∈ C∞
(
Sn−1,R

)
,

〈u, ϕ〉 = lim
m→∞

〈um, ϕ〉 .

Let us recall that u ∈ D′ (Rn \ {0} ,R) is homogeneous of degree α if

u (ψ) = rα+nu (ψr) ,

for all ψ ∈ C∞0 (Rn \ {0} ,R) and r > 0, where

ψr (x) = ψ (rx) , x ∈ Rn \ {0} .

We will denote by D′α (Rn \ {0} ,R) the space of all distributions u ∈
D′ (Rn \ {0} ,R) homogeneous of degree α. For any u ∈ D′

(
Sn−1,R

)
and

any α ∈ R we define Eαu ∈ D′ (Rn \ {0} ,R) , being the extension of order
α of u, by the formula, see formula (3) of [1], p. 387,

(1) 〈Eαu, ψ〉 =
∫ ∞

0
rα+n−1 〈u, ψr〉 dr, ψ ∈ C∞0 (Rn \ {0} ,R) .

It is easy to prove that Eαu is homogeneous of degree α and

Eα : D′
(
Sn−1,R

)
→ D′α (Rn \ {0} ,R)

is a linear continuous and univalent mapping.

2. Main result. We are going to prove in this section that for any ho-
mogeneous u ∈ D′ (Rn \ {0} ,R) , of degree α, there exists a unique Rαu ∈
D′

(
Sn−1,R

)
such that

EαRαu = u.

In other words Eα is a continuous linear isomorphism between D′
(
Sn−1,R

)
and D′α (Rn \ {0} ,R) .
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Theorem 1. For any u ∈ D′α (Rn \ {0} ,R) we have

u = EαRαu,

where Rα : D′α (Rn \ {0} ,R) → D′
(
Sn−1,R

)
is a linear continuous mapping

given by the formula

〈Rαu, ϕ〉 =
〈
u,

{
ϕ

(
x

|x|

)
ψ0 (|x|)

}〉
, u ∈ D′α (Rn \ {0} ,R) ,

with a fixed ψ0 ∈ C∞0 ((0,∞) ,R) such that

ψ0 ≥ 0,
∫ ∞

0
rn+α−1ψ0 (r) dr = 1.

The proof will be divided into a few steps.

Claim 1. If f ∈ C∞0 (Rn \ {0} ,R) and a ∈ R then the equation

aΦ (x) + x · Φ′ (x) = f (x) , x ∈ Rn \ {0} ,

has exactly one solution Φ ∈ C∞ (Rn \ {0} ,R) given by the formula

Φ (x) =
∫ 1

0
ta−1f (tx) dt, x ∈ Rn \ {0} .

Moreover, if f ∈ C∞0 (Rn \ {0} ,R) and, for each x ∈ Rn \ {0} ,∫ ∞

0
ta−1f (tx) dt = 0

then Φ ∈ C∞0 (Rn \ {0} ,R).

Proof of Claim 1. Let us define

Φ (x) =
∫ 1

0
ta−1f (tx) dt, x ∈ Rn \ {0} .

Clearly Φ ∈ C∞ (Rn \ {0} ,R) . For any x ∈ Rn \ {0} we have

x · Φ′ (x) =
∫ 1

0
tax · f ′ (tx) dt =

∫ 1

0
ta
d

dt
f (tx) dt

= [taf (tx)]t=1
t=0 − a

∫ 1

0
ta−1f (tx) dt

= f (x)− aΦ (x) ,

so that Φ satisfies the equation.
Let us suppose that ψ ∈ C∞ (Rn \ {0} ,R) satisfies the equation. Let

x ∈ Rn \ {0} be fixed arbitrarily. Define

v (t) = ψ (tx) , w (t) = f (tx) , t ∈ (0,∞) .
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For all t > 0 we have
d

dt
(tav (t)) = ata−1v (t) + tav′ (t) = ata−1ψ (tx) + tax · ψ′ (tx)

= ata−1ψ (tx) + ta−1tx · ψ′ (tx)
= ta−1 ·

(
aψ (tx) + tx · ψ′ (tx)

)
= ta−1 · f (tx) = ta−1 · w (t) ,

thus

ψ (x) = v (1) =
∫ 1

0
ta−1w (t) dt =

∫ 1

0
ta−1f (tx) dt = Φ(x) .

Suppose now that f ∈ C∞0 (Rn \ {0} ,R) and, for each x ∈ Rn \ {0} ,∫ ∞

0
ta−1f (tx) dt = 0.

Since supp (f) ⊂ Rn \ {0} there exist a, b ∈ R such that 0 < a < b and

|x| /∈ (a, b) ⇒ f (x) = 0.

Let us fix arbitrarily an x ∈ Rn \ {0} . If |x| ≤ a then

Φ (x) =
∫ 1

0
ta−1f (tx) dt = 0.

If |x| ≥ b then

Φ (x) =
∫ 1

0
ta−1f (tx) dt =

∫ ∞

0
ta−1f (tx) dt = 0.

�

Claim 2. If u ∈ D′α (Rn \ {0} ,R) then〈
u,

{
ϕ

(
x

|x|

)
ψ (|x|)

}〉
= 0

for all ϕ ∈ C∞
(
Sn−1,R

)
and ψ ∈ C∞0 ((0,∞) ,R) such that∫ ∞

0
tn+α−1ψ (t) dt = 0.

Proof of Claim 2. Let us define a = n+ α. Using the Euler’s identity
n∑

i=1

xi
∂

∂xi
u = au,

for any Φ ∈ C∞0 (Rn \ {0} ,R) we obtain〈
u, aΦ +

n∑
i=1

xi
∂

∂xi
Φ

〉
= 0.
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By Claim 1, there exists a Φ ∈ C∞0 (Rn \ {0} ,R) such that

ϕ

(
x

|x|

)
ψ (|x|) = aΦ (x) +

n∑
i=1

xi
∂

∂xi
Φ (x) .

�

Claim 3. If u ∈ D′α (Rn \ {0} ,R) then there exists a distribution Rαu ∈
D′

(
Sn−1,R

)
such that〈
u, ϕ

(
x

|x|

)
ψ (|x|)

〉
= 〈Rαu, ϕ〉 ·

∫ ∞

0
rn+α−1ψ (r) dr,

for all ϕ ∈ C∞
(
Sn−1,R

)
and ψ ∈ C∞0 ((0,∞) ,R) . Moreover,

Rα : D′α (Rn \ {0} ,R) → D′
(
Sn−1,R

)
is a linear continuous mapping.

Proof of Claim 3. Let us fix a ψ0 ∈ C∞0 ((0,∞) ,R) such that

ψ0 ≥ 0,
∫ ∞

0
rn+α−1ψ0 (r) dr = 1.

Define, for all ϕ ∈ C∞
(
Sn−1,R

)
,

〈Rαu, ϕ〉 =
〈
u,

{
ϕ

(
x

|x|

)
ψ0 (|x|)

}〉
.

Clearly Rαu ∈ D′
(
Sn−1,R

)
. For each ψ ∈ C∞0 ((0,∞) ,R) and each r > 0

define

ψ1 (r) = ψ (r)−
(∫ ∞

0
%n+α−1ψ (%) d%

)
· ψ0 (r) .

Since ψ1 ∈ C∞0 ((0,∞) ,R) and∫ ∞

0
rn+α−1ψ1 (r) dr = 0,

we have 〈
u,

{
ϕ

(
x

|x|

)
ψ1 (|x|)

}〉
= 0.

Consequently, for all ϕ ∈ C∞
(
Sn−1,R

)
and ψ ∈ C∞0 ((0,∞) ,R) , we obtain〈

u,

{
ϕ

(
x

|x|

)
ψ (|x|)

}〉
=

∫ ∞

0
rn+α−1ψ (r) dr ·

〈
u,

{
ϕ

(
x

|x|

)
ψ0 (|x|)

}〉
= 〈Rαu, ϕ〉 ·

∫ ∞

0
rn+α−1ψ (r) dr.

The linearity and continuity of the mapping

Rα : D′α (Rn \ {0} ,R) → D′
(
Sn−1,R

)
are obvious. �
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It is easy to check that in the case of regular homogeneous distribution

u = {f (x)} ∈ D′α (Rn \ {0} ,R) ,

the restriction Rαu coincides with f restricted to Sn−1.

Claim 4. Given a homogeneous u ∈ D′α (Rn \ {0} ,R) . Then, for all ϕ ∈
C∞

(
Sn−1,R

)
and ψ ∈ C∞0 ((0,∞) ,R) we have〈

EαRαu,

{
ϕ

(
x

|x|

)
ψ (|x|)

}〉
=

〈
u,

{
ϕ

(
x

|x|

)
ψ (|x|)

}〉
.

Proof of Claim 4. Let us fix arbitrarily ϕ ∈ C∞
(
Sn−1,R

)
and ψ ∈

C∞0 ((0,∞) ,R) . According to the extension formula (1), by Claim 3, we
obtain〈

EαRαu,

{
ϕ

(
x

|x|

)
ψ (|x|)

}〉
=

∫ ∞

0
rn+α−1 〈Rαu, {ϕ (ω)ψ (r)}〉 dr

= 〈Rαu, ϕ〉 ·
∫ ∞

0
rn+α−1ψ (r) dr

=
〈
u,

{
ϕ

(
x

|x|

)
ψ (|x|)

}〉
.

�

Let us define, for f ∈ C∞0 ((0,∞) ,R) and g ∈ C∞0
(
Sn−1,R

)
,

(f ⊗ g) (x) = f (|x|) · g
(
x

|x|

)
, x ∈ Rn \ {0} .

Claim 5. For each ϕ ∈ C∞0 (Rn \ {0} ,R) there exists a sequence

ϕm =
km∑
k=1

tm,kfm,k ⊗ gm,k, m ∈ N,

such that tm,k ∈ R,

fm,k ∈ C∞0 ((0,∞) ,R) , gm,k ∈ C∞0
(
Sn−1,R

)
, k = 1, 2, . . . , km

and

ϕ = lim
m→∞

km∑
k=1

tm,kfm,k ⊗ gm,k

(in the space C∞0 (Rn \ {0} ,R)).

Proof of Claim 5. Since supp (ϕ) ⊂ Rn \ {0}, there exist 0 < a < b <∞
such that

|x| /∈ (a, b) ⇒ ϕ (x) = 0.
Let us define

F (r, ω) = ϕ (rω) , t ∈ (0,∞) , ω ∈ Sn−1.
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There exists an F̃ ∈ C∞0 ((0,∞)× (Rn \ {0}) ,R) such that

F̃ (w) =

{
F

(
r, w
‖w‖

)
if 2

3 ≤ ‖w‖ ≤ 4
3 ,

0 if ‖w‖ < 1
3 or ‖w‖ >

5
3 .

Let us define, for 0 < α < β <∞,

Rα,β = {x ∈ Rn : α < |x| < β} .

By Lemma 1 of [3], p. 48, one can find a sequence

km∑
k=1

tm,kfm,k · gm,k

such that tm,k ∈ R,

fm,k ∈ C∞0 ((0,∞) ,R) , supp (fm,k) ⊂
(

1
2
, 2b

)
,

gm,k ∈ C∞0 (Rn \ {0} ,R) , supp (gm,k) ⊂ R 2
3
, 4
3
, k = 1, 2, . . . , km

and

F̃ = lim
m→∞

km∑
k=1

tm,kfm,k · gm,k

(in the space C∞0
((

1
2 , 2b

)
×R 2

3
, 4
3
,R

)
). Since

F̃

(
|x| , x

|x|

)
= ϕ (x) , x ∈ Rn \ {0} ,

we obtain

ϕ = lim
m→∞

km∑
k=1

tm,kfm,k ⊗ gm,k

(in the space C∞0 (Rn \ {0} ,R)). �

Proof of Theorem 1. By Claim 4, u = EαRαu in the set Z being the
linear hull of the set

C∞0 ((0,∞) ,R)⊗ C∞
(
Sn−1,R

)
of all f ⊗ g where f ∈ C∞0 ((0,∞) ,R) and g ∈ C∞0

(
Sn−1,R

)
. Since, by

Claim 5, the set Z is dense in the space C∞0 (Rn \ {0} ,R), we obtain

u = EαRαu.

�

Corollary 1. Any homogeneous distribution u ∈ D′ (Rn \ {0} ,R) is of fi-
nite order.
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