ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LX, 2006

SECTIO A

57 - 64

ANDRZEJ MIERNOWSKI

A note on transversally Finsler foliations

ABSTRACT. In the paper [5] a definition of transversally Finsler foliation was given. In this paper we prove a theorem which gives an alternative description of such foliations similar to the case of Riemannian ones. In our considerations transversal cone plays important role. This is a Finsler counterpart of the subspace orthogonal to the leaves.

1. The subduced transversal metric. Let V be a finite dimensional vector space over reals \mathbb{R} .

Definition 1.1. We say that a function $F : V \to \mathbb{R}$ is a Minkowski norm on V if it has the following properties:

- (i) $F(v) \ge 0$ for any $v \in V$ and F(v) = 0 if and only if v = 0,
- (ii) $F(\lambda v) = \lambda F(v)$ for any $v \in V$ and $\lambda > 0$,
- (iii) F is C^{∞} on $V \setminus \{0\}$,
- (iv) for any $0 \neq v \in V$ the bilinear, symmetric form $g_v : V \times V \to \mathbb{R}$

$$g_v(u,w) = \frac{1}{2} \frac{\partial^2 F^2(v+tu+sw)}{\partial t \partial s}|_{t=0,\ s=0}$$

is an inner product.

A pair (V, F) is called a Minkowski space.

²⁰⁰⁰ Mathematics Subject Classification. 53C12.

Key words and phrases. Finsler foliation, isometric submersion, transversal cone.

The condition (iv) can be written in the following equivalent form. Let e_1, \ldots, e_n be a basis of the vector space V and (v^1, \ldots, v^n) be coordinates of a vector v. Then we can express F(v) as a function $F(v^1, \ldots, v^n)$ and (iv) is equivalent to

(iv)' the matrix $\frac{\partial^2 F^2}{\partial v^i \partial v^j}$ is positively definite at any $v \neq 0$.

It can be proved [1] that a Minkowski norm F satisfies the triangle inequality

$$F(v_1 + v_2) \le F(v_1) + F(v_2).$$

A set $B_F = \{v \in V : F(v) \leq 1\}$ is called a unit ball of the norm F. It is known [3] that a unit ball is a strictly convex set.

Let $F_1 : V_1 \to \mathbb{R}$ and $F_2 : V_2 \to \mathbb{R}$ be the Minkowski norms on the finite dimensional vector spaces V_1 i V_2 . Let B_{F_1} and B_{F_2} be the corresponding unit balls.

Definition 1.2 ([2]). A surjective linear map $\pi : V_1 \to V_2$ is called an isometric submersion if $\pi(B_{F_1}) = B_{F_2}$.

Let $W \subset V$ be a subspace of a Minkowski space (V, F). Put Q = V/Wand let $\pi : V \to Q$ be a projection. We can define Minkowski norm F_Q in Q in the following way. For $[v] = \{v + w : w \in W\} \in Q$ we put

$$F_Q([v]) = \inf\{F(v+w) : w \in W\} = \inf\{F(u) : u \in [v]\}.$$

Geometrically $F_Q([v])$ equals to the distance from the origin to the affine subspace $\pi^{-1}([v]) \subset V$. Observe that strict convexity of the unit ball implies that there exists exactly one $w_0 \in W$ such that $F_Q([v]) = F(v+w_0)$. Indeed, suppose that $F_Q([v]) = F(v+w_1) = F(v+w_2) = \lambda, w_1 \neq w_2$. Then for any $t \in (0,1)$

$$F(v + tw_1 + (1 - t)w_2) \le tF(v + w_1) + (1 - t)F(v + w_2) = F_Q([v]) = \lambda.$$

But $tw_1 + (1-t)w_2$ is an interior point of a strictly convex set

$$B_F^{\lambda} = \lambda \cdot B_F = \{ u \in V : F(u) \le \lambda \},\$$

so $F(v + tw_1 + (1 - t)w_2) < \lambda$.

Proposition 1.1. F_Q is a Minkowski norm in Q = V/W and $\pi : V \to Q$ is an isometric submersion of Minkowski spaces (V, F) and (Q, F_Q) .

Proof. It is clear that $F_Q([v]) \ge 0$ and $F_Q([v]) = 0$ if and only if [v] = 0. For any $\lambda \ge 0$ we have

$$F_Q(\lambda[v]) = F_Q([\lambda v]) = \inf\{\lambda v + w : w \in W\} = \lambda \inf\left\{v + \frac{1}{\lambda}w : w \in W\right\}$$
$$= \lambda \inf\{v + w : w \in W\} = \lambda F_Q([v]).$$

Let $u_1 \in [v_1], u_2 \in [v_2]$ and $F_Q([v_1]) = F(u_1), F_Q([v_2]) = F(u_2)$. Then $F_Q([v_1] + [v_2]) = F_Q([v_1 + v_2]) = \inf\{F(u) : u \in [v_1 + v_2]\}$ $\leq F(u_1 + u_2) \leq F(u_1) + F(u_2) = F_Q([v_1]) + F_Q([v_2]).$

We shall prove that F_Q has the property (iv)'.

Let $G = \frac{1}{2}F^2$ and $G_Q = \frac{1}{2}F_Q^2$. Fix a basis $v_1, \ldots, v_p, u_1, \ldots, u_q$ such that $p + q = \dim V$ and $W = \lim\{v_1, \ldots, v_p\}$. For any $[v] \in Q$, $[v] = y^1[u_1] + \cdots + y^q[u_q]$ we have

$$F_Q([v]) = \inf\{F(x^1, \dots, x^p, y^1, \dots, y^q) : (x^1, \dots, x^p) \in \mathbb{R}^p\}.$$

Let $x^1(y^1, \ldots, y^q), \ldots, x^p(y^1, \ldots, y^q)$ be the functions such that

$$F_Q([v]) = F(x^1(y^1, \dots, y^q), \dots, x^p(y^1, \dots, y^q), y^1, \dots, y^q).$$

We want to prove that $x^1(y^1, \ldots, y^q), \ldots, x^p(y^1, \ldots, y^q)$ are C^{∞} functions on $\mathbb{R}^q \setminus \{0\}$. Observe that

$$F_Q(v) = \inf\{F(u) : u \in [v]\} \Leftrightarrow G_Q(v) = \inf\{G(u) : u \in [v]\}.$$

For fixed $[v] = y^1[u_1] + \cdots + y^q[u_q]$ we can calculate $x^1(y^1, \ldots, y^q), \ldots, x^p(y^1, \ldots, y^q)$ as a solution of a system of p equations

$$\frac{\partial G}{\partial x^1}(x^1,\dots,x^p,y^1,\dots,y^q) = 0$$

$$\vdots$$

$$\frac{\partial G}{\partial x^p}(x^1,\dots,x^p,y^1,\dots,y^q) = 0.$$

From the condition (iv)' it follows that one can use the implicit function theorem to solve this system with respect to x^1, \ldots, x^p and the solutions are the C^{∞} functions of y^1, \ldots, y^q at any $(y^1, \ldots, y^q) \neq (0, \ldots, 0)$.

We have proved that

$$F_Q([v]) = F(x^1(y^1, \dots, y^q), \dots, x^p(y^1, \dots, y^q), y^1, \dots, y^q)$$

is C^{∞} functions on $Q \setminus \{0\}$. Since

$$G_Q(y^1, \dots, y^q) = G(x^1(y^1, \dots, y^q), \dots, x^p(y^1, \dots, y^q), y^1, \dots, y^q)$$

we have

$$\frac{\partial^2 G_Q}{\partial y^\alpha \partial y^\beta} = \frac{\partial^2 G}{\partial x^k \partial x^i} \frac{\partial x^k}{\partial y^\alpha} \frac{\partial x^i}{\partial y^\beta} + \frac{\partial^2 G}{\partial x^k \partial y^\beta} \frac{\partial x^k}{\partial y^\alpha} + \frac{\partial^2 G}{\partial y^\alpha \partial x^k} \frac{\partial x^k}{\partial y^\beta} + \frac{\partial^2 G}{\partial y^\alpha \partial y^\beta},$$

where $k, i \in \{1, ..., p\}, \alpha, \beta \in \{1, ..., q\}$. For $v = y^1[u_1] + \cdots + y^q[u_q]$ we put

$$z^1 = \frac{\partial x^i}{\partial y^{\alpha}} y^{\alpha}, \dots, z^p = \frac{\partial x^p}{\partial y^{\alpha}} y^{\alpha},$$

 $w^1 = y^1, \dots, w^q = y^q$. Then

$$\frac{\partial^2 G_Q}{\partial y^{\alpha} \partial y^{\beta}} y^{\alpha} y^{\beta} = \frac{\partial^2 G}{\partial x^k \partial x^i} z^k z^i + 2 \frac{\partial^2 G}{\partial x^i \partial y^{\alpha}} z^i w^{\alpha} + \frac{\partial^2 G}{\partial y^{\alpha} \partial y^{\beta}} w^{\alpha} w^{\beta} > 0$$

$$+ (y^1, \dots, y^q) \neq (0, \dots, 0).$$

for $(y^1, \dots, y^q) \neq (0, \dots, 0).$

The metric F_Q is called a subduced metric on Q. Let $S = \{u \in V : F_Q([u]) = F(u)\}.$

Proposition 1.2. S is a cone in V and $S \setminus \{0\}$ is a surface in V. The natural projection π restricted to $S \setminus \{0\}$ is a diffeomorphism onto $Q \setminus \{0\}$.

Proof. Let $u \in S$. There exists [v] such that

$$F(u) = F_Q([v]) = \inf\{F(v+w) : w \in W\}.$$

We have

$$F_Q(\lambda[v]) = \inf\{F(\lambda v + w) : w \in W\} = \lambda \inf\left\{F\left(v + \frac{1}{\lambda}w\right) : w \in W\right\}$$
$$= \lambda \inf\{F(v + w) : w \in W\} = \lambda F(u) = F(\lambda u),$$

so $\lambda u \in S$ for $\lambda > 0$. The rest part of the proposition follows from the proof of the Proposition 1.1.

Example. Let $V = \mathbb{R}^3$ and

$$F(v^1, v^2, v^3) = \sqrt{(v^1)^2 + (v^2)^2 + (v^3)^2} + \alpha_1 v^1 + \alpha_2 v^2 + \alpha_3 v^3$$

where $(v^1)^2 + (v^2)^2 + (v^3)^2 < 1$. The function F is a Minkowski norm on \mathbb{R}^3 . Take $W = \{(0, 0, v^3) : v^3 \in \mathbb{R}\}$. Then $\mathbb{R}^3/W = Q = \mathbb{R}^2$, $F_{\mathbb{R}^2}(v^1, v^2) = \sqrt{(1 - \alpha_3^2)(v^1)^2 + (v^2)^2} + \alpha_1 v^1 + \alpha_2 v^2$ and

$$S = \left\{ (v^1, v^2, v^3) \in \mathbb{R}^3 : v^3 = \frac{-\alpha_3}{\sqrt{1 - \alpha_3^2}} \sqrt{(v^1)^2 + (v^2)^2} \right\}.$$

Let M be a smooth manifold.

Definition 1.3 ([1], [3], [2]). A smooth positive function F on $TM \setminus \{0\}$ such that for each $x \in M$ the restriction of F to $T_x M$ is a Minkowski norm, is called a Finsler metric on M.

Definition 1.4 ([4]). A diffeomorphism $f : M \to M$ is called a Finsler isometry if

$$F(f(x), f_*(v)) = F(x, v)$$

for any $x \in M$, $v \in T_x M$.

Definition 1.5. A vector field $v: M \to TM$ is called a Killing vector field if the local 1-parameter transformations of v are local isometries.

2. Transversally Finsler foliations. Let (M, \mathcal{F}) be a foliated manifold equipped with a Finsler metric $F : TM \to \mathbb{R}$. We denote by $T_x \mathcal{F}$ the subspace of $T_x M$ tangent to the foliation and put $Q_x = T_x M/T_x \mathcal{F}$. $Q = \bigcup_{x \in M} Q_x$ is called a normal bundle of a foliation. We suppose that \mathcal{F} is a foliation of codimension q and dim M = p + q. If $(x^1, \ldots, x^p, y^1, \ldots, y^q)$ are foliated coordinates in an open set $U \subset M$, $(a^1, \ldots, a^p, b^1, \ldots, b^q)$ are vector coordinates with respect to the basis $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^p}, \frac{\partial}{\partial y^1}, \ldots, \frac{\partial}{\partial y^q}$, then (y^1, \ldots, y^q) are coordinates in $\overline{U} = U/\mathcal{F}$ and $(y^1, \ldots, y^q, b^1, \ldots, b^q)$ are coordinates in $T\overline{U}$. Denote by π a natural projection $TM \to Q$ and let p be a local projection $U \to \overline{U}, p(x^1, \ldots, x^p, y^1, \ldots, y^q) = (y^1, \ldots, y^q)$. We shall identify the vectors $\frac{\partial}{\partial y^i}$ with the corresponding vectors tangent to \overline{U} . For each x we can define the subduced Minkowski norm $F_{Q_x} : Q_x \to \mathbb{R}$.

Proposition 2.1. The function $F_Q : Q \to \mathbb{R}$, $F_Q|_{Q_x} = F_{Q_x}$ has the following properties:

- (I) for any $v \in Q_x$ $F_Q(v) \ge 0$ and $F_Q(v) = 0 \Leftrightarrow v = 0$,
- (II) $F_Q(\lambda v) = \lambda F_Q(v)$ for any $\lambda > 0$,
- (III) F_Q is smooth on $Q \setminus \{0\}$,
- (IV) for any $x \in M$ and $v, w \in Q_x$ the bilinear form

$$\frac{\partial^2 F_Q^2(x, tv + sw)}{\partial t \partial s}\Big|_{t=0, s=0}$$

is an inner product in Q_x .

Proof. Proof follows from the Propositions 1.1 and 1.2.

 F_Q will be called a subduced metric on a normal bundle Q. Let S_x denote a cone at x. S_x will be called a transversal cone at x. Let B_x , B_{Q_x} denote the unit balls of metrics F and F_Q respectively.

We recall a definition of a Finsler foliation.

Definition 2.1 ([5]). A foliated cocycle $\{U_i, f_i, \gamma_{ij}\}$ on a manifold M is said to be a Finsler foliation \mathcal{F} if

- a) $\{U_i\}$ is an open covering of M,
- b) $f_i: U_i \to W$ is a submersion, where (W, F) is a Finsler manifold,
- c) γ_{ij} is a local Finsler isometry of (W, F) such that for each $x \in U_i \cap U_j$

$$f_i(x) = (\gamma_{ij} \circ f_j)(x).$$

The Finsler manifold (W, F) will be called the transversal manifold of foliation \mathcal{F} .

Theorem 2.1. The following conditions are equivalent:

- (I) (M, \mathcal{F}) is a Finsler foliation,
- (II) there exists a Finsler metric F on M such that for an arbitrary foliated coordinate system $(x^1, \ldots, x^p, y^1, \ldots, y^q)$ on an open set $U \subset M$

and for any locally projectable vector field V such that $v_x \in S_x$, F(v)does not depend on (x^1, \ldots, x^p) ,

- (III) there exists a Finsler metric F on M such that for any foliated coordinate system $(x^1, \ldots, x^p, y^1, \ldots, y^q)$ on U the image of the unit ball under the local projection $p: U \to \overline{U}$ is constant along the leaves,
- (IV) there exists a metric F_Q in Q satisfying the conditions (I)–(IV) of Proposition 2.1 such that in any foliated coordinate system the image of the unit ball { $v \in Q : F_Q(v) \leq 1$ } under the local projection $p: U \to \overline{U}$ is constant along the leaves.

Proof. (I) \Rightarrow (II). Let g be an arbitrary Riemannian metric on M. Denote by \mathcal{F}^{\perp} the bundle orthogonal to the leaves of the foliation. Let $f_i : U_i \rightarrow U_i/\mathcal{F} = W_i$ be a local submersion onto an open set W_i of the transversal space (W, F_W) . Consider foliated coordinates $(x^1, \ldots, x^p, y^1, \ldots, y^q)$ in U_i such that (y^1, \ldots, y^q) are coordinates in W_i . Choose a basis of \mathcal{F}^{\perp} of the form

$$\frac{\partial}{\partial y^1} + A^i_1 \frac{\partial}{\partial x^i}, \dots, \frac{\partial}{\partial y^q} + A^i_q \frac{\partial}{\partial x^i}.$$

For any $v \in T_x M$, $v = v_{\mathcal{F}} + v_{\mathcal{F}^{\perp}} = v^i \frac{\partial}{\partial x^i} + v^{\alpha} \left(\frac{\partial}{\partial y^{\alpha}} + A^i_{\alpha} \frac{\partial}{\partial x^i} \right)$ put $F(x, v) = \sqrt{a(v - v_{\mathcal{F}}) + F^2(f^*(v_{\mathcal{F}^{\perp}}))} = \sqrt{||v - ||^2 + F^2(f^*(v_{\mathcal{F}^{\perp}}))}$

$$F(x,v) = \sqrt{g(v_{\mathcal{F}}, v_{\mathcal{F}}) + F_W^2(f_j^*(v_{\mathcal{F}^{\perp}}))} = \sqrt{\|v_{\mathcal{F}}\|^2 + F_W^2(f_j^*(v_{\mathcal{F}^{\perp}}))}.$$

The function F is globally defined on TM because of condition c) of Definition 2.1.

We have

$$\frac{\partial^2 F^2}{\partial v^i \partial v^j} = g_{ij}, \qquad \frac{\partial^2 F^2}{\partial v^i \partial v^\alpha} = 0, \qquad \frac{\partial^2 F^2}{\partial v^\alpha \partial v^\beta} = \frac{\partial^2 F_M^2}{\partial v^\alpha \partial v^\beta}.$$

It is easy to check that for the metric F a transversal cone at x is equal to \mathcal{F}_x^{\perp} and the values of F on the locally projectable vector fields with values in the transversal cone are constant along the leaves.

(II) \Rightarrow (III). Let (U, ϕ) be a foliated coordinate system, $p: U \to U/\mathcal{F} = \overline{U}$ a local submersion. If B_x is a unit ball at $x \in U$ and S_x is a transversal cone then it is clear that $p^*(B_x) = p^*(B_x \cap S_x)$. Suppose that $\overline{w} \in p^*(B_{x_2} \cap S_{x_2})$ and $\overline{w} \notin p^*(B_{x_1} \cap S_{x_1}), \overline{x} = p(x_1) = p(x_2), \overline{w} = p^*(w_{x_2}), w_{x_2} \in B_{x_2} \cap S_{x_2}$. We can suppose that $F(x_2, w_2) = 1$. Let v be a projectable vector field along $p^{-1}(\overline{x})$ such that $v_x \in S_x$ and $v_{x_2} = w_{x_2}$. Then F(x, w) = 1 at any $x \in p^{-1}(\overline{x})$. In particular $F(x, w_1) = 1$ and $p^*(v_{x_1}) = p^*(w_{x_2}) = \overline{w} \in$ $p^*(B_{x_1} \cap S_{x_1})$.

(III) \Rightarrow (IV). Suppose that F is a Finsler metric such that for any foliated coordinate system $(x^1, \ldots, x^p, y^1, \ldots, y^q)$ on U the image of the unit ball under the projection $p : U \to \overline{U}$ is constant along the leaves. Let F_Q be the metric in Q from Proposition 2.1. We know that for any $x \in U$ $p(B_x) = p(B_x \cap S_x)$. Any vector from Q_x has a unique representation of the form [v] where $v \in S_x$ and $B_{Q_x} = \{[v] \in Q_x : v \in S_x, F_{Q_x}[v] \le 1\} = \{[v] \in Q_x : v \in S_x, F_x(v) \le 1\}$ which implies that the image of the unit ball with respect to the metric F_Q is constant along the leaves.

(IV) \Rightarrow (I). Cover M with domains U_i of foliated coordinate systems. Then p_i^* induces an isomorphism $Q_x \to T_{p_i(x)}\overline{U_i}$. Thus we can define a family $F_{\overline{U}_i x}$ of Finsler metrics $F_{\overline{U}_i x}: T\overline{U}_i \to \mathbb{R}$. But if $p_i(x_1) = p_i(x_2)$ then $p_i^*(B_{Q_{x_1}}) = p_i^*(B_{Q_{x_2}})$. It means that $F_{\overline{U}_i x_1} = F_{\overline{U}_i x_2}$. Suppose that $U_i \cap U_j \neq \emptyset$ and $\gamma_{ji}: p_i(U_i \cap U_j) \to p_j(U_i \cap U_j)$. From the definition of the metrics F_{U_i} it follows that if $\overline{x}_j = \gamma_{ji}(\overline{x}_i)$ then $F_{\overline{U}_j}(\overline{x}_j, \gamma_{ji}^*(w)) = F_{\overline{U}_i}(\overline{x}_i, w)$, $w \in T_{\overline{x}_i}\overline{U}_i$. Gluing together the local transversal manifolds \overline{U}_i we get a transversal Finsler structure (W, F_W) and \mathcal{F} is a Finsler foliation. \Box

Example 2.1. Let v be a Killing vector field without singularities for the metric F. We shall prove that the integral curves of v form a 1-dimensional Finsler foliation. Take a foliated coordinate system (y^0, y^1, \ldots, y^q) defined on U such that locally $v = \frac{\partial}{\partial y^0}$. The change of this type of coordinates is of the form

$$y^{0'} = y^{0'}(y^0, y^1, \dots, y^q), y^{1'} = y^{1'}(y^0, y^1, \dots, y^q), \dots, y^{q'} = y^{q'}(y^0, y^1, \dots, y^q).$$

A one-parameter transformation group of the local diffeomorphisms can be written as follows

$$\phi_t(y^0, y^1, \dots, y^q) = (y^0 + t, y^1, \dots, y^q).$$

Let $v_x \in S_x \subset T_x M$ be a vector such that

$$F(x, v_x) = \inf\{F(x, v) : v \in T_x M, \ p^*(v) = w\},\$$

 $w \in T_{p(x)}\overline{U}$. If $x' \in U$ and p(x) = p(x') then there exists t such that $x' = \phi_t(x), \ p^*(\phi_t^*(v)) = w$ and

$$F(x', \phi_t^*(v)) = \inf\{F(x', v')) : v' \in T_{x'}M, \ p^*(v') = w\}$$

We have proved that the norm F is constant along the leaves on the locally projectable vector fields.

Example 2.2. Let g be a bundle-like metric of a Riemannian foliation \mathcal{F} . Take a basic 1-form ω such that $\|\omega\| \leq 1$. Then $F(v) = \sqrt{g(v, v)} + \omega(v)$ is a Finsler metric and the foliation \mathcal{F} is transversally Finslerian. The metric F is called a transversal Randers metric.

References

- Abate, M., Patrizio, G., Finsler Metrics A Global Approach, Springer-Verlag, Berlin, 1994.
- [2] Álvarez Paiva, J. C., Durán, C. E., Isometric submersions of Finsler manifolds, Proc. Amer. Math. Soc. 129 (2001), 2409–2417.
- [3] Bao, D., Chern, S.-S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer-Verlag, Berlin, 2000.

- [4] Deng, S., Hou, Z., The group of isometries of Finsler space, Pacific J. Math. 207 (2002), 149–155.
- [5] Miernowski, A., Mozgawa, W., Lift of the Finsler foliation to its normal bundle, Differential Geom. Appl. 24 (2006), 209–214.

Andrzej Miernowski

Institute of Mathematics

M. Curie-Skłodowska University

pl. Marii Curie-Skłodowskiej 1

20-031 Lublin, Poland

e-mail: mierand @golem.umcs.lublin.pl

Received July 24, 2006