ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA

ANDRZEJ MIERNOWSKI

A note on transversally Finsler foliations

Abstract

In the paper [5] a definition of transversally Finsler foliation was given. In this paper we prove a theorem which gives an alternative description of such foliations similar to the case of Riemannian ones. In our considerations transversal cone plays important role. This is a Finsler counterpart of the subspace orthogonal to the leaves.

1. The subduced transversal metric. Let V be a finite dimensional vector space over reals \mathbb{R}.

Definition 1.1. We say that a function $F: V \rightarrow \mathbb{R}$ is a Minkowski norm on V if it has the following properties:
(i) $F(v) \geq 0$ for any $v \in V$ and $F(v)=0$ if and only if $v=0$,
(ii) $F(\lambda v)=\lambda F(v)$ for any $v \in V$ and $\lambda>0$,
(iii) F is C^{∞} on $V \backslash\{0\}$,
(iv) for any $0 \neq v \in V$ the bilinear, symmetric form $g_{v}: V \times V \rightarrow \mathbb{R}$

$$
g_{v}(u, w)=\left.\frac{1}{2} \frac{\partial^{2} F^{2}(v+t u+s w)}{\partial t \partial s}\right|_{t=0, s=0}
$$

is an inner product.
A pair (V, F) is called a Minkowski space.

[^0]The condition (iv) can be written in the following equivalent form. Let e_{1}, \ldots, e_{n} be a basis of the vector space V and $\left(v^{1}, \ldots, v^{n}\right)$ be coordinates of a vector v. Then we can express $F(v)$ as a function $F\left(v^{1}, \ldots, v^{n}\right)$ and (iv) is equivalent to
(iv) ${ }^{\prime}$ the matrix $\frac{\partial^{2} F^{2}}{\partial v^{i} \partial v^{j}}$ is positively definite at any $v \neq 0$.

It can be proved [1] that a Minkowski norm F satisfies the triangle inequality

$$
F\left(v_{1}+v_{2}\right) \leq F\left(v_{1}\right)+F\left(v_{2}\right) .
$$

A set $B_{F}=\{v \in V: F(v) \leq 1\}$ is called a unit ball of the norm F. It is known [3] that a unit ball is a strictly convex set.

Let $F_{1}: V_{1} \rightarrow \mathbb{R}$ and $F_{2}: V_{2} \rightarrow \mathbb{R}$ be the Minkowski norms on the finite dimensional vector spaces V_{1} i V_{2}. Let $B_{F_{1}}$ and $B_{F_{2}}$ be the corresponding unit balls.

Definition 1.2 ([2]). A surjective linear map $\pi: V_{1} \rightarrow V_{2}$ is called an isometric submersion if $\pi\left(B_{F_{1}}\right)=B_{F_{2}}$.

Let $W \subset V$ be a subspace of a Minkowski space (V, F). Put $Q=V / W$ and let $\pi: V \rightarrow Q$ be a projection. We can define Minkowski norm F_{Q} in Q in the following way. For $[v]=\{v+w: w \in W\} \in Q$ we put

$$
F_{Q}([v])=\inf \{F(v+w): w \in W\}=\inf \{F(u): u \in[v]\}
$$

Geometrically $F_{Q}([v])$ equals to the distance from the origin to the affine subspace $\pi^{-1}([v]) \subset V$. Observe that strict convexity of the unit ball implies that there exists exactly one $w_{0} \in W$ such that $F_{Q}([v])=F\left(v+w_{0}\right)$. Indeed, suppose that $F_{Q}([v])=F\left(v+w_{1}\right)=F\left(v+w_{2}\right)=\lambda, w_{1} \neq w_{2}$. Then for any $t \in(0,1)$

$$
F\left(v+t w_{1}+(1-t) w_{2}\right) \leq t F\left(v+w_{1}\right)+(1-t) F\left(v+w_{2}\right)=F_{Q}([v])=\lambda
$$

But $t w_{1}+(1-t) w_{2}$ is an interior point of a strictly convex set

$$
B_{F}^{\lambda}=\lambda \cdot B_{F}=\{u \in V: F(u) \leq \lambda\}
$$

so $F\left(v+t w_{1}+(1-t) w_{2}\right)<\lambda$.
Proposition 1.1. F_{Q} is a Minkowski norm in $Q=V / W$ and $\pi: V \rightarrow Q$ is an isometric submersion of Minkowski spaces (V, F) and $\left(Q, F_{Q}\right)$.

Proof. It is clear that $F_{Q}([v]) \geq 0$ and $F_{Q}([v])=0$ if and only if $[v]=0$. For any $\lambda \geq 0$ we have

$$
\begin{aligned}
F_{Q}(\lambda[v]) & =F_{Q}([\lambda v])=\inf \{\lambda v+w: w \in W\}=\lambda \inf \left\{v+\frac{1}{\lambda} w: w \in W\right\} \\
& =\lambda \inf \{v+w: w \in W\}=\lambda F_{Q}([v]) .
\end{aligned}
$$

Let $u_{1} \in\left[v_{1}\right], u_{2} \in\left[v_{2}\right]$ and $F_{Q}\left(\left[v_{1}\right]\right)=F\left(u_{1}\right), F_{Q}\left(\left[v_{2}\right]\right)=F\left(u_{2}\right)$. Then

$$
\begin{aligned}
F_{Q}\left(\left[v_{1}\right]+\left[v_{2}\right]\right) & =F_{Q}\left(\left[v_{1}+v_{2}\right]\right)=\inf \left\{F(u): u \in\left[v_{1}+v_{2}\right]\right\} \\
& \leq F\left(u_{1}+u_{2}\right) \leq F\left(u_{1}\right)+F\left(u_{2}\right)=F_{Q}\left(\left[v_{1}\right]\right)+F_{Q}\left(\left[v_{2}\right]\right)
\end{aligned}
$$

We shall prove that F_{Q} has the property (iv)'.
Let $G=\frac{1}{2} F^{2}$ and $G_{Q}=\frac{1}{2} F_{Q}^{2}$. Fix a basis $v_{1}, \ldots, v_{p}, u_{1}, \ldots, u_{q}$ such that $p+q=\operatorname{dim} V$ and $W=\operatorname{lin}\left\{v_{1}, \ldots, v_{p}\right\}$. For any $[v] \in Q,[v]=$ $y^{1}\left[u_{1}\right]+\cdots+y^{q}\left[u_{q}\right]$ we have

$$
F_{Q}([v])=\inf \left\{F\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right):\left(x^{1}, \ldots, x^{p}\right) \in \mathbb{R}^{p}\right\}
$$

Let $x^{1}\left(y^{1}, \ldots, y^{q}\right), \ldots, x^{p}\left(y^{1}, \ldots, y^{q}\right)$ be the functions such that

$$
F_{Q}([v])=F\left(x^{1}\left(y^{1}, \ldots, y^{q}\right), \ldots, x^{p}\left(y^{1}, \ldots, y^{q}\right), y^{1}, \ldots, y^{q}\right)
$$

We want to prove that $x^{1}\left(y^{1}, \ldots, y^{q}\right), \ldots, x^{p}\left(y^{1}, \ldots, y^{q}\right)$ are C^{∞} functions on $\mathbb{R}^{q} \backslash\{0\}$. Observe that

$$
F_{Q}(v)=\inf \{F(u): u \in[v]\} \Leftrightarrow G_{Q}(v)=\inf \{G(u): u \in[v]\}
$$

For fixed $[v]=y^{1}\left[u_{1}\right]+\cdots+y^{q}\left[u_{q}\right]$ we can calculate $x^{1}\left(y^{1}, \ldots, y^{q}\right), \ldots$, $x^{p}\left(y^{1}, \ldots, y^{q}\right)$ as a solution of a system of p equations

$$
\begin{gathered}
\frac{\partial G}{\partial x^{1}}\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)=0 \\
\vdots \\
\frac{\partial G}{\partial x^{p}}\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)=0
\end{gathered}
$$

From the condition (iv) ${ }^{\prime}$ it follows that one can use the implicit function theorem to solve this system with respect to x^{1}, \ldots, x^{p} and the solutions are the C^{∞} functions of y^{1}, \ldots, y^{q} at any $\left(y^{1}, \ldots, y^{q}\right) \neq(0, \ldots, 0)$.

We have proved that

$$
F_{Q}([v])=F\left(x^{1}\left(y^{1}, \ldots, y^{q}\right), \ldots, x^{p}\left(y^{1}, \ldots, y^{q}\right), y^{1}, \ldots, y^{q}\right)
$$

is C^{∞} functions on $Q \backslash\{0\}$. Since

$$
G_{Q}\left(y^{1}, \ldots, y^{q}\right)=G\left(x^{1}\left(y^{1}, \ldots, y^{q}\right), \ldots, x^{p}\left(y^{1}, \ldots, y^{q}\right), y^{1}, \ldots, y^{q}\right)
$$

we have

$$
\frac{\partial^{2} G_{Q}}{\partial y^{\alpha} \partial y^{\beta}}=\frac{\partial^{2} G}{\partial x^{k} \partial x^{i}} \frac{\partial x^{k}}{\partial y^{\alpha}} \frac{\partial x^{i}}{\partial y^{\beta}}+\frac{\partial^{2} G}{\partial x^{k} \partial y^{\beta}} \frac{\partial x^{k}}{\partial y^{\alpha}}+\frac{\partial^{2} G}{\partial y^{\alpha} \partial x^{k}} \frac{\partial x^{k}}{\partial y^{\beta}}+\frac{\partial^{2} G}{\partial y^{\alpha} \partial y^{\beta}}
$$

where $k, i \in\{1, \ldots, p\}, \alpha, \beta \in\{1, \ldots, q\}$. For $v=y^{1}\left[u_{1}\right]+\cdots+y^{q}\left[u_{q}\right]$ we put

$$
z^{1}=\frac{\partial x^{i}}{\partial y^{\alpha}} y^{\alpha}, \ldots, z^{p}=\frac{\partial x^{p}}{\partial y^{\alpha}} y^{\alpha}
$$

$w^{1}=y^{1}, \ldots, w^{q}=y^{q}$. Then

$$
\frac{\partial^{2} G_{Q}}{\partial y^{\alpha} \partial y^{\beta}} y^{\alpha} y^{\beta}=\frac{\partial^{2} G}{\partial x^{k} \partial x^{i}} z^{k} z^{i}+2 \frac{\partial^{2} G}{\partial x^{i} \partial y^{\alpha}} z^{i} w^{\alpha}+\frac{\partial^{2} G}{\partial y^{\alpha} \partial y^{\beta}} w^{\alpha} w^{\beta}>0
$$

for $\left(y^{1}, \ldots, y^{q}\right) \neq(0, \ldots, 0)$.
The metric F_{Q} is called a subduced metric on Q. Let $S=\{u \in V$: $\left.F_{Q}([u])=F(u)\right\}$.

Proposition 1.2. S is a cone in V and $S \backslash\{0\}$ is a surface in V. The natural projection π restricted to $S \backslash\{0\}$ is a diffeomorphism onto $Q \backslash\{0\}$.

Proof. Let $u \in S$. There exists $[v]$ such that

$$
F(u)=F_{Q}([v])=\inf \{F(v+w): w \in W\}
$$

We have

$$
\begin{aligned}
F_{Q}(\lambda[v]) & =\inf \{F(\lambda v+w): w \in W\}=\lambda \inf \left\{F\left(v+\frac{1}{\lambda} w\right): w \in W\right\} \\
& =\lambda \inf \{F(v+w): w \in W\}=\lambda F(u)=F(\lambda u)
\end{aligned}
$$

so $\lambda u \in S$ for $\lambda>0$. The rest part of the proposition follows from the proof of the Proposition 1.1.

Example. Let $V=\mathbb{R}^{3}$ and

$$
F\left(v^{1}, v^{2}, v^{3}\right)=\sqrt{\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}}+\alpha_{1} v^{1}+\alpha_{2} v^{2}+\alpha_{3} v^{3}
$$

where $\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}+\left(v^{3}\right)^{2}<1$. The function F is a Minkowski norm on \mathbb{R}^{3}. Take $W=\left\{\left(0,0, v^{3}\right): v^{3} \in \mathbb{R}\right\}$. Then $\mathbb{R}^{3} / W=Q=\mathbb{R}^{2}, F_{\mathbb{R}^{2}}\left(v^{1}, v^{2}\right)=$ $\sqrt{\left(1-\alpha_{3}^{2}\right)\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}}+\alpha_{1} v^{1}+\alpha_{2} v^{2}$ and

$$
S=\left\{\left(v^{1}, v^{2}, v^{3}\right) \in \mathbb{R}^{3}: v^{3}=\frac{-\alpha_{3}}{\sqrt{1-\alpha_{3}^{2}}} \sqrt{\left(v^{1}\right)^{2}+\left(v^{2}\right)^{2}}\right\}
$$

Let M be a smooth manifold.
Definition 1.3 ([1], [3], [2]). A smooth positive function F on $T M \backslash\{0\}$ such that for each $x \in M$ the restriction of F to $T_{x} M$ is a Minkowski norm, is called a Finsler metric on M.

Definition 1.4 ([4]). A diffeomorphism $f: M \rightarrow M$ is called a Finsler isometry if

$$
F\left(f(x), f_{*}(v)\right)=F(x, v)
$$

for any $x \in M, v \in T_{x} M$.
Definition 1.5. A vector field $v: M \rightarrow T M$ is called a Killing vector field if the local 1-parameter transformations of v are local isometries.
2. Transversally Finsler foliations. Let (M, \mathcal{F}) be a foliated manifold equipped with a Finsler metric $F: T M \rightarrow \mathbb{R}$. We denote by $T_{x} \mathcal{F}$ the subspace of $T_{x} M$ tangent to the foliation and put $Q_{x}=T_{x} M / T_{x} \mathcal{F} . Q=$ $\bigcup_{x \in M} Q_{x}$ is called a normal bundle of a foliation. We suppose that \mathcal{F} is a foliation of codimension q and $\operatorname{dim} M=p+q$. If $\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)$ are foliated coordinates in an open set $U \subset M,\left(a^{1}, \ldots, a^{p}, b^{1}, \ldots, b^{q}\right)$ are vector coordinates with respect to the basis $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{p}}, \frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{q}}$, then $\left(y^{1}, \ldots, y^{q}\right)$ are coordinates in $\bar{U}=U / \mathcal{F}$ and $\left(y^{1}, \ldots, y^{q}, b^{1}, \ldots, b^{q}\right)$ are coordinates in $T \bar{U}$. Denote by π a natural projection $T M \rightarrow Q$ and let p be a local projection $U \rightarrow \bar{U}, p\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)=\left(y^{1}, \ldots, y^{q}\right)$. We shall identify the vectors $\frac{\partial}{\partial y^{i}}$ with the corresponding vectors tangent to \bar{U}. For each x we can define the subduced Minkowski norm $F_{Q_{x}}: Q_{x} \rightarrow \mathbb{R}$.
Proposition 2.1. The function $F_{Q}: Q \rightarrow \mathbb{R},\left.F_{Q}\right|_{Q_{x}}=F_{Q_{x}}$ has the following properties:
(I) for any $v \in Q_{x} F_{Q}(v) \geq 0$ and $F_{Q}(v)=0 \Leftrightarrow v=0$,
(II) $F_{Q}(\lambda v)=\lambda F_{Q}(v)$ for any $\lambda>0$,
(III) F_{Q} is smooth on $Q \backslash\{0\}$,
(IV) for any $x \in M$ and $v, w \in Q_{x}$ the bilinear form

$$
\left.\frac{\partial^{2} F_{Q}^{2}(x, t v+s w)}{\partial t \partial s}\right|_{t=0, s=0}
$$

is an inner product in Q_{x}.
Proof. Proof follows from the Propositions 1.1 and 1.2.
F_{Q} will be called a subduced metric on a normal bundle Q. Let S_{x} denote a cone at $x . S_{x}$ will be called a transversal cone at x. Let $B_{x}, B_{Q_{x}}$ denote the unit balls of metrics F and F_{Q} respectively.

We recall a definition of a Finsler foliation.
Definition 2.1 ([5]). A foliated cocycle $\left\{U_{i}, f_{i}, \gamma_{i j}\right\}$ on a manifold M is said to be a Finsler foliation \mathcal{F} if
a) $\left\{U_{i}\right\}$ is an open covering of M,
b) $f_{i}: U_{i} \rightarrow W$ is is a submersion, where (W, F) is a Finsler manifold,
c) $\gamma_{i j}$ is a local Finsler isometry of (W, F) such that for each $x \in U_{i} \cap U_{j}$

$$
f_{i}(x)=\left(\gamma_{i j} \circ f_{j}\right)(x)
$$

The Finsler manifold (W, F) will be called the transversal manifold of foliation \mathcal{F}.

Theorem 2.1. The following conditions are equivalent:
(I) (M, \mathcal{F}) is a Finsler foliation,
(II) there exists a Finsler metric F on M such that for an arbitrary foliated coordinate system $\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)$ on an open set $U \subset M$
and for any locally projectable vector field V such that $v_{x} \in S_{x}, F(v)$ does not depend on $\left(x^{1}, \ldots, x^{p}\right)$,
(III) there exists a Finsler metric F on M such that for any foliated coordinate system $\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)$ on U the image of the unit ball under the local projection $p: U \rightarrow \bar{U}$ is constant along the leaves,
(IV) there exists a metric F_{Q} in Q satisfying the conditions (I)-(IV) of Proposition 2.1 such that in any foliated coordinate system the image of the unit ball $\left\{v \in Q: F_{Q}(v) \leq 1\right\}$ under the local projection $p: U \rightarrow \bar{U}$ is constant along the leaves.

Proof. (I) \Rightarrow (II). Let g be an arbitrary Riemannian metric on M. Denote by \mathcal{F}^{\perp} the bundle orthogonal to the leaves of the foliation. Let $f_{i}: U_{i} \rightarrow$ $U_{i} / \mathcal{F}=W_{i}$ be a local submersion onto an open set W_{i} of the transversal space $\left(W, F_{W}\right)$. Consider foliated coordinates $\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)$ in U_{i} such that $\left(y^{1}, \ldots, y^{q}\right)$ are coordinates in W_{i}. Choose a basis of \mathcal{F}^{\perp} of the form

$$
\frac{\partial}{\partial y^{1}}+A_{1}^{i} \frac{\partial}{\partial x^{i}}, \ldots, \frac{\partial}{\partial y^{q}}+A_{q}^{i} \frac{\partial}{\partial x^{i}}
$$

For any $v \in T_{x} M, v=v_{\mathcal{F}}+v_{\mathcal{F} \perp}=v^{i} \frac{\partial}{\partial x^{i}}+v^{\alpha}\left(\frac{\partial}{\partial y^{\alpha}}+A_{\alpha}^{i} \frac{\partial}{\partial x^{i}}\right)$ put

$$
F(x, v)=\sqrt{g\left(v_{\mathcal{F}}, v_{\mathcal{F}}\right)+F_{W}^{2}\left(f_{j}^{*}\left(v_{\mathcal{F}^{\perp}}\right)\right)}=\sqrt{\left\|v_{\mathcal{F}}\right\|^{2}+F_{W}^{2}\left(f_{j}^{*}\left(v_{\mathcal{F}^{\perp}}\right)\right)}
$$

The function F is globally defined on $T M$ because of condition c) of Definition 2.1.

We have

$$
\frac{\partial^{2} F^{2}}{\partial v^{i} \partial v^{j}}=g_{i j}, \quad \frac{\partial^{2} F^{2}}{\partial v^{i} \partial v^{\alpha}}=0, \quad \frac{\partial^{2} F^{2}}{\partial v^{\alpha} \partial v^{\beta}}=\frac{\partial^{2} F_{M}^{2}}{\partial v^{\alpha} \partial v^{\beta}}
$$

It is easy to check that for the metric F a transversal cone at x is equal to \mathcal{F}_{x}^{\perp} and the values of F on the locally projectable vector fields with values in the transversal cone are constant along the leaves.
$(\mathrm{II}) \Rightarrow(\mathrm{III})$. Let (U, ϕ) be a foliated coordinate system, $p: U \rightarrow U / \mathcal{F}=\bar{U}$ a local submersion. If B_{x} is a unit ball at $x \in U$ and S_{x} is a transversal cone then it is clear that $p^{*}\left(B_{x}\right)=p^{*}\left(B_{x} \cap S_{x}\right)$. Suppose that $\bar{w} \in p^{*}\left(B_{x_{2}} \cap S_{x_{2}}\right)$ and $\bar{w} \notin p^{*}\left(B_{x_{1}} \cap S_{x_{1}}\right), \bar{x}=p\left(x_{1}\right)=p\left(x_{2}\right), \bar{w}=p^{*}\left(w_{x_{2}}\right), w_{x_{2}} \in B_{x_{2}} \cap S_{x_{2}}$. We can suppose that $F\left(x_{2}, w_{2}\right)=1$. Let v be a projectable vector field along $p^{-1}(\bar{x})$ such that $v_{x} \in S_{x}$ and $v_{x_{2}}=w_{x_{2}}$. Then $F(x, w)=1$ at any $x \in p^{-1}(\bar{x})$. In particular $F\left(x, w_{1}\right)=1$ and $p^{*}\left(v_{x_{1}}\right)=p^{*}\left(w_{x_{2}}\right)=\bar{w} \in$ $p^{*}\left(B_{x_{1}} \cap S_{x_{1}}\right)$.
$(\mathrm{III}) \Rightarrow(\mathrm{IV})$. Suppose that F is a Finsler metric such that for any foliated coordinate system $\left(x^{1}, \ldots, x^{p}, y^{1}, \ldots, y^{q}\right)$ on U the image of the unit ball under the projection $p: U \rightarrow \bar{U}$ is constant along the leaves. Let F_{Q} be the metric in Q from Proposition 2.1. We know that for any $x \in U$ $p\left(B_{x}\right)=p\left(B_{x} \cap S_{x}\right)$. Any vector from Q_{x} has a unique representation of the
form $[v]$ where $v \in S_{x}$ and $B_{Q_{x}}=\left\{[v] \in Q_{x}: v \in S_{x}, F_{Q_{x}}[v] \leq 1\right\}=\{[v] \in$ $\left.Q_{x}: v \in S_{x}, F_{x}(v) \leq 1\right\}$ which implies that the image of the unit ball with respect to the metric F_{Q} is constant along the leaves.
$(\mathrm{IV}) \Rightarrow(\mathrm{I})$. Cover M with domains U_{i} of foliated coordinate systems. Then p_{i}^{*} induces an isomorphism $Q_{x} \rightarrow T_{p_{i}(x)} \overline{U_{i}}$. Thus we can define a family $F_{\bar{U}_{i} x}$ of Finsler metrics $F_{\bar{U}_{i} x}: T \bar{U}_{i} \rightarrow \mathbb{R}$. But if $p_{i}\left(x_{1}\right)=p_{i}\left(x_{2}\right)$ then $p_{i}^{*}\left(B_{Q_{x_{1}}}\right)=p_{i}^{*}\left(B_{Q_{x_{2}}}\right)$. It means that $F_{\bar{U}_{i} x_{1}}=F_{\bar{U}_{i} x_{2}}$. Suppose that $U_{i} \cap U_{j} \neq \emptyset$ and $\gamma_{j i}: p_{i}\left(U_{i} \cap U_{j}\right) \rightarrow p_{j}\left(U_{i} \cap U_{j}\right)$. From the definition of the metrics $F_{U_{i}}$ it follows that if $\bar{x}_{j}=\gamma_{j i}\left(\bar{x}_{i}\right)$ then $F_{\bar{U}_{j}}\left(\bar{x}_{j}, \gamma_{j i}^{*}(w)\right)=F_{\bar{U}_{i}}\left(\bar{x}_{i}, w\right)$, $w \in T_{\bar{x}_{i}} \bar{U}_{i}$. Gluing together the local transversal manifolds \bar{U}_{i} we get a transversal Finsler structure $\left(W, F_{W}\right)$ and \mathcal{F} is a Finsler foliation.

Example 2.1. Let v be a Killing vector field without singularities for the metric F. We shall prove that the integral curves of v form a 1-dimensional Finsler foliation. Take a foliated coordinate system $\left(y^{0}, y^{1}, \ldots, y^{q}\right)$ defined on U such that locally $v=\frac{\partial}{\partial y^{0}}$. The change of this type of coordinates is of the form
$y^{0^{\prime}}=y^{0^{\prime}}\left(y^{0}, y^{1}, \ldots, y^{q}\right), y^{1^{\prime}}=y^{1^{\prime}}\left(y^{0}, y^{1}, \ldots, y^{q}\right), \ldots, y^{q^{\prime}}=y^{q^{\prime}}\left(y^{0}, y^{1}, \ldots, y^{q}\right)$.
A one-parameter transformation group of the local diffeomorphisms can be written as follows

$$
\phi_{t}\left(y^{0}, y^{1}, \ldots, y^{q}\right)=\left(y^{0}+t, y^{1}, \ldots, y^{q}\right)
$$

Let $v_{x} \in S_{x} \subset T_{x} M$ be a vector such that

$$
F\left(x, v_{x}\right)=\inf \left\{F(x, v): v \in T_{x} M, p^{*}(v)=w\right\}
$$

$w \in T_{p(x)} \bar{U}$. If $x^{\prime} \in U$ and $p(x)=p\left(x^{\prime}\right)$ then there exists t such that $x^{\prime}=\phi_{t}(x), p^{*}\left(\phi_{t}^{*}(v)\right)=w$ and

$$
\left.F\left(x^{\prime}, \phi_{t}^{*}(v)\right)=\inf \left\{F\left(x^{\prime}, v^{\prime}\right)\right): v^{\prime} \in T_{x^{\prime}} M, p^{*}\left(v^{\prime}\right)=w\right\}
$$

We have proved that the norm F is constant along the leaves on the locally projectable vector fields.

Example 2.2. Let g be a bundle-like metric of a Riemannian foliation \mathcal{F}. Take a basic 1 -form ω such that $\|\omega\| \leq 1$. Then $F(v)=\sqrt{g(v, v)}+\omega(v)$ is a Finsler metric and the foliation \mathcal{F} is transversally Finslerian. The metric F is called a transversal Randers metric.

References

[1] Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Springer-Verlag, Berlin, 1994.
[2] Álvarez Paiva, J. C., Durán, C. E., Isometric submersions of Finsler manifolds, Proc. Amer. Math. Soc. 129 (2001), 2409-2417.
[3] Bao, D., Chern, S.-S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics 200, Springer-Verlag, Berlin, 2000.
[4] Deng, S., Hou, Z., The group of isometries of Finsler space, Pacific J. Math. 207 (2002), 149-155
[5] Miernowski, A., Mozgawa, W., Lift of the Finsler foliation to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214.

Andrzej Miernowski
Institute of Mathematics
M. Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: mierand@golem.umcs.lublin.pl
Received July 24, 2006

[^0]: 2000 Mathematics Subject Classification. 53C12.
 Key words and phrases. Finsler foliation, isometric submersion, transversal cone.

