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A note on transversally Finsler foliations

Abstract. In the paper [5] a definition of transversally Finsler foliation was
given. In this paper we prove a theorem which gives an alternative description
of such foliations similar to the case of Riemannian ones. In our considerations
transversal cone plays important role. This is a Finsler counterpart of the
subspace orthogonal to the leaves.

1. The subduced transversal metric. Let V be a finite dimensional
vector space over reals R.

Definition 1.1. We say that a function F : V → R is a Minkowski norm
on V if it has the following properties:

(i) F (v) ≥ 0 for any v ∈ V and F (v) = 0 if and only if v = 0,
(ii) F (λv) = λF (v) for any v ∈ V and λ > 0,
(iii) F is C∞ on V \ {0},
(iv) for any 0 6= v ∈ V the bilinear, symmetric form gv : V × V → R

gv(u,w) =
1
2

∂2F 2(v + tu + sw)
∂t∂s

|t=0, s=0

is an inner product.

A pair (V, F ) is called a Minkowski space.
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The condition (iv) can be written in the following equivalent form. Let
e1, . . . , en be a basis of the vector space V and (v1, . . . , vn) be coordinates
of a vector v. Then we can express F (v) as a function F (v1, . . . , vn) and
(iv) is equivalent to

(iv)′ the matrix
∂2F 2

∂vi∂vj
is positively definite at any v 6= 0.

It can be proved [1] that a Minkowski norm F satisfies the triangle in-
equality

F (v1 + v2) ≤ F (v1) + F (v2).

A set BF = {v ∈ V : F (v) ≤ 1} is called a unit ball of the norm F . It is
known [3] that a unit ball is a strictly convex set.
Let F1 : V1 → R and F2 : V2 → R be the Minkowski norms on the finite
dimensional vector spaces V1 i V2. Let BF1 and BF2 be the corresponding
unit balls.

Definition 1.2 ([2]). A surjective linear map π : V1 → V2 is called an
isometric submersion if π(BF1) = BF2 .

Let W ⊂ V be a subspace of a Minkowski space (V, F ). Put Q = V/W
and let π : V → Q be a projection. We can define Minkowski norm FQ in
Q in the following way. For [v] = {v + w : w ∈ W} ∈ Q we put

FQ([v]) = inf{F (v + w) : w ∈ W} = inf{F (u) : u ∈ [v]}.

Geometrically FQ([v]) equals to the distance from the origin to the affine
subspace π−1([v]) ⊂ V . Observe that strict convexity of the unit ball implies
that there exists exactly one w0 ∈ W such that FQ([v]) = F (v+w0). Indeed,
suppose that FQ([v]) = F (v + w1) = F (v + w2) = λ, w1 6= w2. Then for any
t ∈ (0, 1)

F (v + tw1 + (1− t)w2) ≤ tF (v + w1) + (1− t)F (v + w2) = FQ([v]) = λ.

But tw1 + (1− t)w2 is an interior point of a strictly convex set

Bλ
F = λ ·BF = {u ∈ V : F (u) ≤ λ},

so F (v + tw1 + (1− t)w2) < λ.

Proposition 1.1. FQ is a Minkowski norm in Q = V/W and π : V → Q
is an isometric submersion of Minkowski spaces (V, F ) and (Q,FQ).

Proof. It is clear that FQ([v]) ≥ 0 and FQ([v]) = 0 if and only if [v] = 0.
For any λ ≥ 0 we have

FQ(λ[v]) = FQ([λv]) = inf{λv + w : w ∈ W} = λ inf
{

v +
1
λ

w : w ∈ W

}
= λ inf{v + w : w ∈ W} = λFQ([v]).
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Let u1 ∈ [v1], u2 ∈ [v2] and FQ([v1]) = F (u1), FQ([v2]) = F (u2). Then

FQ([v1] + [v2]) = FQ([v1 + v2]) = inf{F (u) : u ∈ [v1 + v2]}
≤ F (u1 + u2) ≤ F (u1) + F (u2) = FQ([v1]) + FQ([v2]).

We shall prove that FQ has the property (iv)′.
Let G = 1

2F 2 and GQ = 1
2F 2

Q. Fix a basis v1, . . . , vp, u1, . . . , uq such
that p + q = dim V and W = lin{v1, . . . , vp}. For any [v] ∈ Q, [v] =
y1[u1] + · · ·+ yq[uq] we have

FQ([v]) = inf{F (x1, . . . , xp, y1, . . . , yq) : (x1, . . . , xp) ∈ Rp}.

Let x1(y1, . . . , yq), . . . , xp(y1, . . . , yq) be the functions such that

FQ([v]) = F (x1(y1, . . . , yq), . . . , xp(y1, . . . , yq), y1, . . . , yq).

We want to prove that x1(y1, . . . , yq), . . . , xp(y1, . . . , yq) are C∞ functions
on Rq\{0}. Observe that

FQ(v) = inf{F (u) : u ∈ [v]} ⇔ GQ(v) = inf{G(u) : u ∈ [v]}.

For fixed [v] = y1[u1] + · · · + yq[uq] we can calculate x1(y1, . . . , yq), . . . ,
xp(y1, . . . , yq) as a solution of a system of p equations

∂G

∂x1
(x1, . . . , xp, y1, . . . , yq) = 0

...

∂G

∂xp
(x1, . . . , xp, y1, . . . , yq) = 0.

From the condition (iv)′ it follows that one can use the implicit function
theorem to solve this system with respect to x1, . . . , xp and the solutions
are the C∞ functions of y1, . . . , yq at any (y1, . . . , yq) 6= (0, . . . , 0).
We have proved that

FQ([v]) = F (x1(y1, . . . , yq), . . . , xp(y1, . . . , yq), y1, . . . , yq)

is C∞ functions on Q\{0}. Since

GQ(y1, . . . , yq) = G(x1(y1, . . . , yq), . . . , xp(y1, . . . , yq), y1, . . . , yq)

we have

∂2GQ

∂yα∂yβ
=

∂2G

∂xk∂xi

∂xk

∂yα

∂xi

∂yβ
+

∂2G

∂xk∂yβ

∂xk

∂yα
+

∂2G

∂yα∂xk

∂xk

∂yβ
+

∂2G

∂yα∂yβ
,

where k, i ∈ {1, . . . , p}, α, β ∈ {1, . . . , q}. For v = y1[u1] + · · · + yq[uq] we
put

z1 =
∂xi

∂yα
yα, . . . , zp =

∂xp

∂yα
yα,
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w1 = y1, . . . , wq = yq. Then

∂2GQ

∂yα∂yβ
yαyβ =

∂2G

∂xk∂xi
zkzi + 2

∂2G

∂xi∂yα
ziwα +

∂2G

∂yα∂yβ
wαwβ > 0

for (y1, . . . , yq) 6= (0, . . . , 0). �

The metric FQ is called a subduced metric on Q. Let S = {u ∈ V :
FQ([u]) = F (u)}.

Proposition 1.2. S is a cone in V and S\{0} is a surface in V . The
natural projection π restricted to S\{0} is a diffeomorphism onto Q\{0}.

Proof. Let u ∈ S. There exists [v] such that

F (u) = FQ([v]) = inf{F (v + w) : w ∈ W}.

We have

FQ(λ[v]) = inf{F (λv + w) : w ∈ W} = λ inf
{

F

(
v +

1
λ

w

)
: w ∈ W

}
= λ inf{F (v + w) : w ∈ W} = λF (u) = F (λu),

so λu ∈ S for λ > 0. The rest part of the proposition follows from the proof
of the Proposition 1.1. �

Example. Let V = R3 and

F (v1, v2, v3) =
√

(v1)2 + (v2)2 + (v3)2 + α1v
1 + α2v

2 + α3v
3

where (v1)2 + (v2)2 + (v3)2 < 1. The function F is a Minkowski norm on
R3. Take W = {(0, 0, v3) : v3 ∈ R}. Then R3/W = Q = R2, FR2(v1, v2) =√

(1− α2
3)(v1)2 + (v2)2 + α1v

1 + α2v
2 and

S =

{
(v1, v2, v3) ∈ R3 : v3 =

−α3√
1− α2

3

√
(v1)2 + (v2)2

}
.

Let M be a smooth manifold.

Definition 1.3 ([1], [3], [2]). A smooth positive function F on TM\{0}
such that for each x ∈ M the restriction of F to TxM is a Minkowski norm,
is called a Finsler metric on M .

Definition 1.4 ([4]). A diffeomorphism f : M → M is called a Finsler
isometry if

F (f(x), f∗(v)) = F (x, v)

for any x ∈ M , v ∈ TxM .

Definition 1.5. A vector field v : M → TM is called a Killing vector field
if the local 1-parameter transformations of v are local isometries.
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2. Transversally Finsler foliations. Let (M,F) be a foliated manifold
equipped with a Finsler metric F : TM → R . We denote by TxF the
subspace of TxM tangent to the foliation and put Qx = TxM/TxF . Q =⋃

x∈M Qx is called a normal bundle of a foliation. We suppose that F is
a foliation of codimension q and dim M = p + q. If (x1, . . . , xp, y1, . . . , yq)
are foliated coordinates in an open set U ⊂ M , (a1, . . . , ap, b1, . . . , bq) are
vector coordinates with respect to the basis ∂

∂x1 , . . . , ∂
∂xp , ∂

∂y1 , . . . , ∂
∂yq , then

(y1, . . . , yq) are coordinates in U = U/F and (y1, . . . , yq, b1, . . . , bq) are co-
ordinates in TU . Denote by π a natural projection TM → Q and let p be
a local projection U → U , p(x1, . . . , xp, y1, . . . , yq) = (y1, . . . , yq). We shall
identify the vectors ∂

∂yi with the corresponding vectors tangent to U . For
each x we can define the subduced Minkowski norm FQx : Qx → R.

Proposition 2.1. The function FQ : Q → R, FQ|Qx = FQx has the follow-
ing properties:
(I) for any v ∈ Qx FQ(v) ≥ 0 and FQ(v) = 0 ⇔ v = 0,
(II) FQ(λv) = λFQ(v) for any λ > 0,
(III) FQ is smooth on Q \ {0},
(IV) for any x ∈ M and v, w ∈ Qx the bilinear form

∂2F 2
Q(x, tv + sw)

∂t∂s
|t=0, s=0

is an inner product in Qx.

Proof. Proof follows from the Propositions 1.1 and 1.2. �

FQ will be called a subduced metric on a normal bundle Q. Let Sx denote
a cone at x. Sx will be called a transversal cone at x. Let Bx, BQx denote
the unit balls of metrics F and FQ respectively.
We recall a definition of a Finsler foliation.

Definition 2.1 ([5]). A foliated cocycle {Ui, fi, γij} on a manifold M is
said to be a Finsler foliation F if
a) {Ui} is an open covering of M ,
b) fi : Ui → W is is a submersion, where (W,F ) is a Finsler manifold,
c) γij is a local Finsler isometry of (W,F ) such that for each x ∈ Ui∩Uj

fi(x) = (γij ◦ fj)(x).

The Finsler manifold (W,F ) will be called the transversal manifold of foli-
ation F .

Theorem 2.1. The following conditions are equivalent:
(I) (M,F) is a Finsler foliation,
(II) there exists a Finsler metric F on M such that for an arbitrary foli-
ated coordinate system (x1, . . . , xp, y1, . . . , yq) on an open set U ⊂ M
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and for any locally projectable vector field V such that vx ∈ Sx, F (v)
does not depend on (x1, . . . , xp),

(III) there exists a Finsler metric F on M such that for any foliated
coordinate system (x1, . . . , xp, y1, . . . , yq) on U the image of the unit
ball under the local projection p : U → U is constant along the leaves,

(IV) there exists a metric FQ in Q satisfying the conditions (I)–(IV) of
Proposition 2.1 such that in any foliated coordinate system the image
of the unit ball {v ∈ Q : FQ(v) ≤ 1} under the local projection
p : U → U is constant along the leaves.

Proof. (I)⇒ (II). Let g be an arbitrary Riemannian metric on M . Denote
by F⊥ the bundle orthogonal to the leaves of the foliation. Let fi : Ui →
Ui/F = Wi be a local submersion onto an open set Wi of the transversal
space (W,FW ). Consider foliated coordinates (x1, . . . , xp, y1, . . . , yq) in Ui

such that (y1, . . . , yq) are coordinates in Wi. Choose a basis of F⊥ of the
form

∂

∂y1
+ Ai

1

∂

∂xi
, . . . ,

∂

∂yq
+ Ai

q

∂

∂xi
.

For any v ∈ TxM , v = vF + vF⊥ = vi ∂
∂xi + vα

(
∂

∂yα + Ai
α

∂
∂xi

)
put

F (x, v) =
√

g(vF , vF ) + F 2
W (f∗j (vF⊥)) =

√
‖vF‖2 + F 2

W (f∗j (vF⊥)).

The function F is globally defined on TM because of condition c) of Defi-
nition 2.1.
We have

∂2F 2

∂vi∂vj
= gij ,

∂2F 2

∂vi∂vα
= 0,

∂2F 2

∂vα∂vβ
=

∂2F 2
M

∂vα∂vβ
.

It is easy to check that for the metric F a transversal cone at x is equal to
F⊥

x and the values of F on the locally projectable vector fields with values
in the transversal cone are constant along the leaves.
(II)⇒ (III). Let (U, φ) be a foliated coordinate system, p : U → U/F = U
a local submersion. If Bx is a unit ball at x ∈ U and Sx is a transversal cone
then it is clear that p∗(Bx) = p∗(Bx ∩ Sx). Suppose that w ∈ p∗(Bx2 ∩ Sx2)
and w 6∈ p∗(Bx1 ∩ Sx1), x = p(x1) = p(x2), w = p∗(wx2), wx2 ∈ Bx2 ∩ Sx2 .
We can suppose that F (x2, w2) = 1. Let v be a projectable vector field
along p−1(x) such that vx ∈ Sx and vx2 = wx2 . Then F (x,w) = 1 at any
x ∈ p−1(x) . In particular F (x,w1) = 1 and p∗(vx1) = p∗(wx2) = w ∈
p∗(Bx1 ∩ Sx1).
(III)⇒ (IV). Suppose that F is a Finsler metric such that for any foliated
coordinate system (x1, . . . , xp, y1, . . . , yq) on U the image of the unit ball
under the projection p : U → U is constant along the leaves. Let FQ

be the metric in Q from Proposition 2.1. We know that for any x ∈ U
p(Bx) = p(Bx∩Sx). Any vector from Qx has a unique representation of the
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form [v] where v ∈ Sx and BQx = {[v] ∈ Qx : v ∈ Sx, FQx [v] ≤ 1} = {[v] ∈
Qx : v ∈ Sx, Fx(v) ≤ 1} which implies that the image of the unit ball with
respect to the metric FQ is constant along the leaves.
(IV) ⇒ (I). Cover M with domains Ui of foliated coordinate systems.
Then p∗i induces an isomorphism Qx → Tpi(x)Ui. Thus we can define a
family FU ix

of Finsler metrics FU ix
: TU i → R. But if pi(x1) = pi(x2)

then p∗i (BQx1
) = p∗i (BQx2

). It means that FU ix1
= FU ix2

. Suppose that
Ui ∩ Uj 6= ∅ and γji : pi(Ui ∩ Uj) → pj(Ui ∩ Uj). From the definition of the
metrics FUi it follows that if xj = γji(xi) then FUj

(xj , γ
∗
ji(w)) = FU i

(xi, w),
w ∈ TxiU i. Gluing together the local transversal manifolds U i we get a
transversal Finsler structure (W,FW ) and F is a Finsler foliation. �

Example 2.1. Let v be a Killing vector field without singularities for the
metric F . We shall prove that the integral curves of v form a 1-dimensional
Finsler foliation. Take a foliated coordinate system (y0, y1, . . . , yq) defined
on U such that locally v = ∂

∂y0 . The change of this type of coordinates is of
the form

y0
′
= y0

′
(y0, y1, . . . , yq), y1

′
= y1

′
(y0, y1, . . . , yq), . . . , yq

′
= yq

′
(y0, y1, . . . , yq).

A one-parameter transformation group of the local diffeomorphisms can be
written as follows

φt(y0, y1, . . . , yq) = (y0 + t, y1, . . . , yq).

Let vx ∈ Sx ⊂ TxM be a vector such that

F (x, vx) = inf{F (x, v) : v ∈ TxM, p∗(v) = w},

w ∈ Tp(x)U . If x
′ ∈ U and p(x) = p(x

′
) then there exists t such that

x
′
= φt(x), p∗(φ∗t (v)) = w and

F (x
′
, φ∗t (v)) = inf{F (x

′
, v

′
)) : v

′ ∈ Tx′M, p∗(v
′
) = w}.

We have proved that the norm F is constant along the leaves on the locally
projectable vector fields.

Example 2.2. Let g be a bundle-like metric of a Riemannian foliation F .
Take a basic 1-form ω such that ‖ω‖ ≤ 1. Then F (v) =

√
g(v, v) + ω(v) is

a Finsler metric and the foliation F is transversally Finslerian. The metric
F is called a transversal Randers metric.
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