ANNALES
UNIVERSITATIS MARIAECURIE-SKŁODOWSKA
LUBLIN - POLONIA

VOL. LX, 2006

LEOPOLD KOCZAN and PAWEŁ ZAPRAWA

Covering domains for the class of typically real odd functions

Abstract

A set $\bigcup_{f \in T^{(2)}} f(D)$ is called the covering domain for the class $T^{(2)}$ of typically real odd functions over some fixed set D. This set is denoted by $L_{T^{(2)}}(D)$. We find sets $L_{T^{(2)}}\left(\Delta_{r}\right)$ and $L_{T^{(2)}}(H)$, where $\Delta_{r}=\{z \in \mathbf{C}$: $|z|<r\}, r \in(0,1)$ and $H=\left\{z \in \Delta:\left|1+z^{2}\right|>2|z|\right\}$ is one of the domains of univalence for $T^{(2)}$.

Let A denote the class of all functions that are analytic in the unit disk $\Delta=\{z \in \mathbf{C}:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. For a given domain $D \subset \Delta$, a set $\bigcup_{f \in A} f(D)$ is called the covering domain for the class A over the set D, and is denoted by $L_{A}(D)$. This generalized definition was introduced in [2]. Domains $L_{A}(D)$ are characterized by the following, easy to prove, properties

1. if all functions of the class A are univalent in Δ and $f \in A \Leftrightarrow$ $e^{-i \varphi} f\left(z e^{i \varphi}\right) \in A$ for arbitrary $\varphi \in R$, then $L_{A}\left(\Delta_{r}\right)=\Delta_{M(r)}$, where $M(r)=\max \left\{|f(z)|: f \in A, z \in \partial \Delta_{r}\right\} ;$
2. if all functions of the class A have real coefficients, and D is symmetric with respect to the real axis, then $L_{A}(D)$ is symmetric with respect to the real axis;
3. if all functions of the class A have real coefficients, $f \in A \Leftrightarrow$ $-f(-z) \in A$, and D is symmetric with respect to both axes of
[^0]Key words and phrases. Typically real functions, covering domain.
the complex plane, then $L_{A}(D)$ is symmetric with respect to both axes;
4. if $D_{1} \subset D_{2}$, then $L_{A}\left(D_{1}\right) \subset L_{A}\left(D_{2}\right)$;
5. if $A_{1} \subset A_{2} \subset A$, then $L_{A_{1}}(D) \subset L_{A_{2}}(D)$.

In this paper we derive some covering domains for the class $T^{(2)}$ consisting of typically real odd functions. Sets $\Delta_{r}=\{z \in \mathbf{C}:|z|<r\}, r \in(0,1)$ and $H=\left\{z \in \Delta:\left|1+z^{2}\right|>2|z|\right\}$ are considered. Some related results for the class T of typically real functions the reader can find in [4].

Recall that

$$
T^{(2)}=\{f \in A: \operatorname{Im} z \operatorname{Im} f(z) \geq 0, f(-z)=-f(z) \text { for } z \in \Delta\}
$$

It is known (see for example [2]) that

$$
f \in T^{(2)} \Leftrightarrow f(z) \equiv \int_{0}^{1} \frac{z\left(1+z^{2}\right)}{\left(1+z^{2}\right)^{2}-4 z^{2} t} d \mu(t)
$$

where μ is a probability measure on $[0,1]$.
For a given $r \in(0,1)$ we can determine $L_{T^{(2)}}\left(\Delta_{r}\right)$ considering

$$
\begin{equation*}
\max \left\{|f(z)|: f \in T^{(2)}, \operatorname{Arg} f(z)=\alpha,|z|=r\right\} \tag{1}
\end{equation*}
$$

with fixed $\alpha \in[0,2 \pi]$. It is easy to observe that for $z \in \Delta \backslash\{0\}$ the set $\left\{f(z): f \in T^{(2)}\right\}$ coincides with a segment of the disk, whose boundary contains the origin, in case $\operatorname{Re} z \operatorname{Im} z \neq 0$, and coincides with a line segment included in one of the axes of the complex plane, in case $\operatorname{Re} z \operatorname{Im} z=0$. In both cases $0 \notin\left\{f(z): f \in T^{(2)}\right\}$. Therefore, the maximum (1) is equal to

$$
\begin{equation*}
\max \left\{\left|f_{t}(z)\right|: t \in[0,1], \operatorname{Arg} f(z)=\alpha,|z|=r\right\} \tag{2}
\end{equation*}
$$

where the functions f_{t} are extreme points of $T^{(2)}$, i.e.

$$
f_{t}(z)=\frac{z\left(1+z^{2}\right)}{\left(1+z^{2}\right)^{2}-4 z^{2} t}, z \in \Delta, t \in[0,1]
$$

Throughout the paper we write $2 m=r^{2}+1 / r^{2}, m>1$. We also use the notation: ∂D for the boundary of $D, \operatorname{int} D$ for the interior of $D, \operatorname{cl} D$ for the closure of D.

The following properties of f_{t} will be used to calculate the maximum (2).
Lemma 1. Let $0 \leq t \leq 1$. Then

1. $\operatorname{Re} \frac{z f_{t}^{\prime}(z)}{f_{t}(z)} \geq 0$ for $|z| \leq \sqrt{t+1}-\sqrt{t}$;
2. $\operatorname{Re} \frac{z f_{t}^{\prime}(z)}{f_{t}(z)} \geq 0$ for $\sqrt{t+1}-\sqrt{t}<|z|<1$ and $\cos (2 \arg z) \geq \frac{1}{2}\left(4 t-\frac{1}{|z|^{2}}-|z|^{2}\right)$.

Proof. Observe that $\operatorname{Re} \frac{z f_{t}^{\prime}(z)}{f_{t}(z)} \geq 0$ if and only if

$$
(m+\cos 2 \varphi)^{2}-4 t^{2}+4 t-4 t \cos ^{2} 2 \varphi \geq 0
$$

where $r=|z|, \varphi=\arg z$. Let $-\infty<\alpha<\beta<+\infty$. It is obvious that any real polynomial h of at most second degree such that $h(\alpha) \geq 0, h(\beta) \geq 0$ and $h^{\prime}(\alpha) \geq 0$ or $h^{\prime}(\beta) \leq 0$ is nonnegative on $[\alpha, \beta]$. Put $x=\cos 2 \varphi$ and let $h(x) \equiv(m+x)^{2}-4 t^{2}+4 t-4 t x^{2}$.

1. In the case $\rho \leq(\sqrt{t+1}-\sqrt{t})^{2}$ we get $m \geq 1+2 t, h(-1) \geq 0$, $h(1) \geq 4 m>4, h^{\prime}(-1)=2(m+4 t-1) \geq 12 t \geq 0$, so $h(x) \geq 0$ for $-1 \leq x \leq 1$.
2. If $(\sqrt{t+1}-\sqrt{t})^{2}<\rho<1$ then $1<m<1+2 t,|2 t-m|<1, h(2 t-m) \geq$ $8 t(1-t) \geq 0, h(1)>4\left(1-t^{2}\right) \geq 0,2 t h^{\prime}(1)-h^{\prime}(2 t-m)=-4 t m \leq 0$. Hence $h^{\prime}(2 t-m) \geq 0$ or $h^{\prime}(1) \leq 0$, i.e. $h(x) \geq 0$ for $2 t-m \leq x \leq 1$. The proof is complete.

Lemma 2. Let $0 \leq t \leq 1$. Then

1. f_{t} is univalent in Δ_{r} if $r \in(0, \sqrt{t+1}-\sqrt{t}]$, and is nonunivalent in Δ_{r} if $r \in(\sqrt{t+1}-\sqrt{t}, 1)$;
2. $f_{t}\left(\Delta_{r}\right)$ is a starlike domain for each $r \in(0,1)$;
3. the boundary of $f_{t}\left(\Delta_{r}\right)$ lying in the first quadrant of the complex plane is of the form
(i) $\left\{f_{t}\left(r e^{i \varphi}\right): \varphi \in\left[0, \frac{\pi}{2}\right]\right\}$ for $r \in(0, \sqrt{t+1}-\sqrt{t}]$,
(ii) $\left\{f_{t}\left(r e^{i \varphi}\right): \varphi \in[0, \varphi(t, r)]\right\}$ for $r \in(\sqrt{t+1}-\sqrt{t}, 1)$, where $\varphi(t, r)=\frac{1}{2} \arccos (2 t-m)$.

Proof. By Lemma 1, each $f_{t}, t \in[0,1]$, is univalent and starlike in Δ_{R}, $R=\sqrt{t+1}-\sqrt{t}$. Hence $\partial f_{t}\left(\Delta_{r}\right)=\left\{f_{t}\left(r e^{i \varphi}\right): \varphi \in[0,2 \pi)\right\}$ for $0<r \leq R$.

Let $r \in(R, 1)$. Each function f_{t} is not univalent in Δ_{r} because $f_{t}^{\prime}(i R)=0$. Observe that the set

$$
\left\{z \in \mathbf{C}:|z|=r, \cos (2 \arg z) \geq \frac{1}{2}\left(4 t-\frac{1}{|z|^{2}}-|z|^{2}\right)\right\}
$$

consists of two $\operatorname{arcs} \Gamma_{1}, \Gamma_{2}$, where

$$
\begin{aligned}
& \Gamma_{1}=\left\{r e^{i \varphi}: \varphi \in[-\varphi(t, r), \varphi(t, r)]\right\} \\
& \Gamma_{2}=\left\{r e^{i \varphi}: \varphi \in[\pi-\varphi(t, r), \pi+\varphi(t, r)]\right\}
\end{aligned}
$$

Moreover, $f_{t}\left(\Gamma_{1} \cup \Gamma_{2}\right)$ is a closed curve without intersection points. Combining it with Lemma 1 we get the point (ii) of 3 and starlikeness of $f_{t}\left(\Delta_{r}\right)$.

Lemma 3. For a fixed $r \in(0,1)$,

1. $\left|f_{0}\left(r e^{i \varphi}\right)\right|$ is an increasing function of $\varphi \in\left[0, \frac{\pi}{2}\right]$,
2. $\left|f_{1}\left(r e^{i \varphi}\right)\right|$ is a decreasing function of $\varphi \in\left[0, \frac{\pi}{2}\right]$.

Proof. Observe that $\left|f\left(r e^{i \varphi}\right)\right|$ is an increasing function of $\varphi \in\left[0, \frac{\pi}{2}\right]$ if $\operatorname{Re} \frac{i r e^{i \varphi} f^{\prime}\left(r e^{i \varphi}\right)}{f\left(r e^{i \varphi}\right)} \geq 0$, and is a decreasing function if $\operatorname{Re} \frac{i r e^{i \varphi} f^{\prime}\left(r e^{i \varphi}\right)}{f\left(r e^{i \varphi}\right)} \leq 0$.

For this reason and from equalities

$$
\operatorname{Im} z^{2} \cdot \operatorname{Im} \frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=\frac{-2\left(\operatorname{Im} z^{2}\right)^{2}}{\left|1+z^{2}\right|^{2}}
$$

and

$$
\operatorname{Im} z^{2} \cdot \operatorname{Im} \frac{z f_{1}^{\prime}(z)}{f_{1}(z)}=\frac{2\left(\operatorname{Im} z^{2}\right)^{2}\left(2+\left|1+z^{2}\right|^{2}+2|z|^{4}\right)}{\left|1-z^{4}\right|^{2}}
$$

the assertion follows.
With fixed $r \in(0,1)$ let us denote

$$
\begin{align*}
& \gamma_{0}: \varphi \longrightarrow f_{0}\left(r e^{i \varphi}\right), \varphi \in R \\
& \gamma_{1}: \varphi \longrightarrow f_{1}\left(r e^{i \varphi}\right), \varphi \in R \tag{3}
\end{align*}
$$

Lemma 4. The boundary of $f_{0}\left(\Delta_{r}\right) \cup f_{1}\left(\Delta_{r}\right)$ in the first quadrant of the complex plane coincides with

1. $\gamma_{1}\left(\left[0, \varphi_{1}\right]\right) \cup \gamma_{0}\left(\left[\varphi_{0}, \frac{\pi}{2}\right]\right)$ for $r \in\left(0, \frac{1}{2}(\sqrt{5}-1)\right]$,
2. $\gamma_{1}\left(\left[0, \frac{\pi}{2}\right]\right)$ for $r \in\left(\frac{1}{2}(\sqrt{5}-1), 1\right)$,
where

$$
\begin{equation*}
\varphi_{1}=\frac{1}{2} \arccos \left(\frac{1}{2}\left(m-\sqrt{m^{2}+4}\right)\right), \varphi_{0}=\pi-3 \varphi_{1} . \tag{4}
\end{equation*}
$$

Proof. Let $z_{0}=r e^{i \varphi}, z_{1}=r e^{i \phi}$ and $\varphi, \phi \in\left[0, \frac{\pi}{2}\right]$. In order to describe the common points of $\gamma_{0}\left(\left[0, \frac{\pi}{2}\right]\right)$ and $\gamma_{1}\left(\left[0, \frac{\pi}{2}\right]\right)$ we shall solve the equation $f_{0}\left(z_{0}\right)=f_{1}\left(z_{1}\right),\left|z_{0}\right|=\left|z_{1}\right|=r$, which is equivalent to

$$
\begin{equation*}
z_{0}+\frac{1}{z_{0}}=z_{1}+\frac{1}{z_{1}}-\frac{4}{z_{1}+\frac{1}{z_{1}}} \tag{5}
\end{equation*}
$$

and hence to

$$
\left\{\begin{array}{l}
\cos \varphi=\left(1-\frac{2}{m+\cos 2 \phi}\right) \cos \phi \tag{6}\\
\sin \varphi=\left(1+\frac{2}{m+\cos 2 \phi}\right) \sin \phi
\end{array}\right.
$$

From this system we obtain $\cos ^{2} 2 \phi+m \cos 2 \phi-1=0$. Thus $\cos 2 \phi=$ $\frac{1}{2}\left(-m+\sqrt{m^{2}+4}\right) \in\left(0, \frac{1}{2}(\sqrt{5}-1)\right)$ and $\cos 3 \phi=-\cos \varphi$. The solution of (6) is

$$
\left\{\begin{array}{l}
\phi=\frac{1}{2} \arccos \left(\frac{1}{2}\left(m-\sqrt{m^{2}+4}\right)\right) \\
\varphi=\pi-3 \phi
\end{array}\right.
$$

Observe that $\varphi \in\left[0, \frac{\pi}{2}\right]$ if and only if $\phi \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$, and consequently, if $|\cos 2 \phi| \leq \frac{1}{2}$. This inequality holds only for $m \geq \frac{3}{2}$ and hence for $r \in$
$\left(0, \frac{1}{2}(\sqrt{5}-1)\right]$. In the case $r \in\left(\frac{1}{2}(\sqrt{5}-1), 1\right)$ the system (6) has no solutions for $\varphi, \phi \in\left[0, \frac{\pi}{2}\right]$.

Additionally, if $r \in\left(0, \frac{1}{2}(\sqrt{5}-1)\right]$ then $f_{0}(r)=\frac{r}{1+r^{2}}<\frac{r\left(1+r^{2}\right)}{\left(1-r^{2}\right)^{2}}=f_{1}(r)$ and $f_{0}(i r) / i=\frac{r}{1-r^{2}}>\frac{r\left(1-r^{2}\right)}{\left(1+r^{2}\right)^{2}}=f_{1}(i r) / i$.

Figure 1. $L_{T^{(2)}}\left(\Delta_{r}\right)$ for $r=0.3$ and $r=0.7$.

Theorem 1.

$$
\begin{aligned}
& L_{T^{(2)}}\left(\Delta_{r}\right)=f_{0}\left(\Delta_{r}\right) \cup f_{1}\left(\Delta_{r}\right) \text { for } r \in\left(0, \frac{1}{2}(\sqrt{5}-1)\right), \\
& L_{T^{(2)}}\left(\Delta_{r}\right)=f_{1}\left(\Delta_{r}\right) \text { for } r \in\left[\frac{1}{2}(\sqrt{5}-1), 1\right)
\end{aligned}
$$

Proof. Let $r \in(0,1)$ be fixed and let L denote the set $\bigcup_{0 \leq t \leq 1} f_{t}\left(\Delta_{r}\right)$. According to Lemma 1 and Lemma 2, each set $f_{t}\left(\Delta_{r}\right)$ is starlike with respect to 0 , hence L is starlike with respect to the origin. We know that the maxima (1) and (2) are equal. For this reason we shall consider the function

$$
\begin{equation*}
F(t, \varphi) \equiv f_{t}\left(r e^{i \varphi}\right), \text { with } t \in[0,1] \text { and } \varphi \in R . \tag{7}
\end{equation*}
$$

The boundary of L is contained in the set $F([0,1] \times R)$.
Observe that if $\left(t_{0}, \varphi_{0}\right) \in \operatorname{int}([0,1] \times R)$ and the jacobian $J_{F}\left(t_{0}, \varphi_{0}\right)$ is nonzero, then $F\left(t_{0}, \varphi_{0}\right) \in \operatorname{int} L$. Therefore the set ∂L is included in the set $\{F(t, \varphi):(t, \varphi) \in B\}$, where

$$
B=\left\{(t, \varphi): J_{F}(t, \varphi)=0 \text { or } t(1-t)=0, \varphi \in R\right\} .
$$

The equation $J_{F}(t, \varphi)=0$, i.e.

$$
\left|\begin{array}{ll}
\frac{\partial \mathrm{Re} F}{\partial t} & \frac{\partial \mathrm{Re} F}{\partial \varphi} \\
\frac{\partial \mathrm{Im} F}{\partial t} & \frac{\partial \operatorname{Im} F}{\partial \varphi}
\end{array}\right|(t, \varphi)=0
$$

is equivalent to

$$
\begin{equation*}
\operatorname{Im}\left(\overline{\frac{\partial F}{\partial t}} \cdot \frac{\partial F}{\partial \varphi}\right)(t, \varphi)=0 \tag{8}
\end{equation*}
$$

Since

$$
\begin{gathered}
\frac{\partial F}{\partial t}=\frac{4 r^{3} e^{3 i \varphi}\left(1+r^{2} e^{2 i \varphi}\right)}{\left[\left(1+r^{2} e^{2 i \varphi}\right)^{2}-4 t r^{2} e^{2 i \varphi}\right]^{2}}, \\
\frac{\partial F}{\partial \varphi}=\frac{i r e^{i \varphi}\left[\left(1+r^{2} e^{2 i \varphi}\right)^{2}+4 t r^{2} e^{2 i \varphi}\right]}{\left[\left(1+r^{2} e^{2 i \varphi}\right)^{2}-4 t r^{2} e^{2 i \varphi}\right]^{2}},
\end{gathered}
$$

we can rewrite (8) as follows

$$
\operatorname{Re}\left\{r^{2} e^{-2 i \varphi}\left(1+r^{2} e^{-2 i \varphi}\right)\left(1-r^{2} e^{2 i \varphi}\right)\left[\left(1+r^{2} e^{2 i \varphi}\right)^{2}+4 t r^{2} e^{2 i \varphi}\right]\right\}=0
$$

We eventually obtain

$$
\begin{equation*}
2 t+(m+\cos 2 \varphi) \cos 2 \varphi=0 . \tag{9}
\end{equation*}
$$

The points $(t, \varphi) \in[0,1] \times R$ satisfy (9) only if $\lambda(m) \leq \cos 2 \varphi \leq 0$, where

$$
\lambda(m)=\left\{\begin{array}{lll}
-1 & \text { for } & m \leq 3 \\
\frac{\sqrt{m^{2}-8}-m}{2} & \text { for } & m>3
\end{array}\right.
$$

Consider the curve

$$
\begin{equation*}
\gamma: \varphi \longrightarrow F\left(-\frac{1}{2}(m+\cos 2 \varphi) \cos 2 \varphi, \varphi\right), \varphi \in R \tag{10}
\end{equation*}
$$

and the curves γ_{0} and γ_{1} defined by (3).
We claim that $\gamma(\{\varphi \in R: \lambda(m) \leq \cos 2 \varphi \leq 0\})$ is included in the closed domain bounded by $\gamma_{0}(R)$, i.e. in $f_{0}\left(\overline{\Delta_{r}}\right)$.

Indeed, we have

$$
\begin{aligned}
1 / F\left(-\frac{1}{2}(m+\cos 2 \varphi) \cos 2 \varphi, \varphi\right) & =\frac{1}{r e^{i \varphi}}+r e^{i \varphi}+\frac{2(m+\cos 2 \varphi) \cos 2 \varphi}{\frac{1}{r e^{i \varphi}}+r e^{i \varphi}} \\
& =2\left(\frac{1}{r}+r\right) \cos ^{3} \varphi-2 i\left(\frac{1}{r}-r\right) \sin ^{3} \varphi,
\end{aligned}
$$

i.e. (10) restricted to $[0,2 \pi)$ is a Jordan curve, and

$$
1 / F(0, \psi)=\frac{1}{r e^{i \psi}}+r e^{i \psi}=\left(\frac{1}{r}+r\right) \cos \psi-i\left(\frac{1}{r}-r\right) \sin \psi .
$$

The equation $F(0, \psi)=F\left(-\frac{1}{2}(m+\cos 2 \varphi) \cos 2 \varphi, \varphi\right)$ is equivalent to the system

$$
\left\{\begin{array}{l}
2 \cos ^{3} \varphi=\cos \psi \\
2 \sin ^{3} \varphi=\sin \psi
\end{array}\right.
$$

It is easy to check that the only solution of this system for $\varphi, \psi \in\left[0, \frac{\pi}{2}\right]$ is $\varphi=\psi=\frac{\pi}{4}$. It means that the sets $\gamma\left(\left[0, \frac{\pi}{2}\right]\right)$ and $\gamma_{0}\left(\left[0, \frac{\pi}{2}\right]\right)$ have only one common point.

Moreover,

$$
\gamma(0)=\frac{1}{2\left(\frac{1}{r}+r\right)}<\frac{1}{\frac{1}{r}+r}=\gamma_{0}(0)
$$

and

$$
\gamma\left(\frac{\pi}{2}\right) / i=\frac{1}{2\left(\frac{1}{r}-r\right)}<\frac{1}{\frac{1}{r}-r}=\gamma_{0}\left(\frac{\pi}{2}\right) / i .
$$

Therefore $\gamma\left(\left[0, \frac{\pi}{2}\right]\right) \subset f_{0}\left(\overline{\Delta_{r}}\right)$ and, by symmetry of $\gamma(R)$ with respect to both axes of the complex plane, we have $\gamma(R) \subset f_{0}\left(\overline{\Delta_{r}}\right)$. Consequently, $\partial L \subset$ $\gamma_{0}(R) \cup \gamma_{1}(R)$. The assertion of the theorem follows now from Lemma 4.

From Theorem 1 and Lemma 4 it immediately follows
Corollary 1. If $r \in\left(0, \frac{1}{2}(\sqrt{5}-1)\right)$ then the boundary of $L_{T^{(2)}}\left(\Delta_{r}\right)$ lying in the first quadrant of the complex plane coincides with $\gamma_{1}\left(\left[0, \varphi_{1}\right]\right) \cup \gamma_{0}\left(\left[\varphi_{0}, \frac{\pi}{2}\right]\right)$, where φ_{1} and φ_{0} are defined by (4).

We conclude from Theorem 1 that for $f \in T^{(2)}$ and $|z|=r$ the following sharp bound holds:

$$
|\operatorname{Im} f(z)| \leq \begin{cases}\max _{z \in \partial \Delta_{r}}\left\{\operatorname{Im} f_{0}(z), \operatorname{Im} f_{1}(z)\right\} & \text { for } r \in\left(0, \frac{1}{2}(\sqrt{5}-1)\right) \\ \max _{z \in \partial \Delta_{r}} \operatorname{Im} f_{1}(z) & \text { for } r \in\left[\frac{1}{2}(\sqrt{5}-1), 1\right)\end{cases}
$$

Denote $x=\left(\frac{1}{r}+r\right)^{2}$,
$g(r)=\left(\frac{1}{r}-r\right) \frac{\left(2-x+\sqrt{2 x^{2}+4}\right)\left(2 x-2+\sqrt{2 x^{2}+4}\right)^{2} \sqrt{3 x-2 \sqrt{2 x^{2}+4}}}{16 x^{2}(x-4)^{2}}$,
and

$$
h(x)=x^{5}-124 x^{4}+4064 x^{3}-21632 x^{2}+256 x+5120
$$

A simple but extensive calculation leads to
Corollary 2. For $f \in T^{(2)}$ and $r \in(0,1)$ we have

$$
\left|\operatorname{Im} f\left(r e^{i \varphi}\right)\right| \leq\left\{\begin{array}{lll}
\frac{r}{1-r^{2}} & \text { for } & r \in\left(0, r_{*}\right) \\
g(r) & \text { for } & r \in\left[r_{*}, 1\right)
\end{array}\right.
$$

where $r_{*}=0.483 \ldots$ is the only solution of the equation $h\left(\left(\frac{1}{r}+r\right)^{2}\right)=0$ in $(\sqrt{2}-1,1)$.

It is interesting to describe the covering domain for the class $T^{(2)}$ over the set H, where $H=\left\{z \in \Delta:\left|1+z^{2}\right|>2|z|\right\}$. The lens-shaped set H is the domain of univalence for $T^{(2)}$ ([3], see also [1]). We apply this property of H in the proof of the following theorem.

Theorem 2. $L_{T^{(2)}}(H)=f_{0}(H) \cup f_{1}(H)$.

Proof. Observe that $f_{1}(H)=\mathbf{C} \backslash\left\{i \varrho: \varrho \in\left(-\infty,-\frac{1}{4}\right] \cup\left[\frac{1}{4}, \infty\right)\right\}$. The set H is symmetric with respect to both axes as well as each set $f(H)$ for all $f \in T^{(2)}$. From this and from univalence of each $f \in T^{(2)}$ in H we conclude that for $z \in H$ there is $\operatorname{Re} f(z)=0 \Leftrightarrow \operatorname{Re} z=0$.

For this reason it suffices to calculate $\max \left\{\frac{1}{i} f\left(i r_{0}\right): f \in T^{(2)}\right\}, r_{0}=$ $\sqrt{2}-1$. We have

$$
\begin{aligned}
\max \left\{\frac{1}{i} f\left(i r_{0}\right): f \in T^{(2)}\right\} & =\max \left\{\frac{r_{0}\left(1-r_{0}^{2}\right)}{\left(1-r_{0}^{2}\right)^{2}+4 r_{0}^{2} t}: t \in[0,1]\right\} \\
& =\frac{r_{0}}{1-r_{0}^{2}}=\frac{1}{2}=\frac{1}{i} f_{0}\left(i r_{0}\right) .
\end{aligned}
$$

Hence the set $\left\{i \varrho: \varrho \geq \frac{1}{2}\right\}$ is disjoint from $L_{T^{(2)}}(H)$. This fact and the symmetry of $L_{T^{(2)}}(H)$ with respect to the real axis completes the proof.

We get from Theorem 2
Corollary 3. $L_{T^{(2)}}(H)=\mathbf{C} \backslash\left\{i \varrho: \varrho \in\left(-\infty,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, \infty\right)\right\}$.
Corollary 4. For arbitrary domain $D \supset \operatorname{cl}(H) \backslash\{-1,1\}$ we have $L_{T^{(2)}}(D)=$ C.

References

[1] Goluzin, G., On typically real functions, Mat. Sbornik N. S. 27(69) (1950), 201-218.
[2] Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52.2 (1998), 103-112.
[3] Koczan, L., Zaprawa, P., Domains of univalence for typically-real odd functions, Complex Variables Theory Appl. 48, No. 1 (2003), 1-17.
[4] Koczan, L., Zaprawa, P., On covering problems in the class of typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 51-65.

Leopold Koczan
Department of Applied Mathematics Lublin University of Technology
ul. Nadbystrzycka 38 D
20-618 Lublin, Poland
e-mail: l.koczan@pollub.pl

Paweł Zaprawa
Department of Applied Mathematics Lublin University of Technology
ul. Nadbystrzycka 38 D
20-618 Lublin, Poland
e-mail: p.zaprawa@pollub.pl

Received April 11, 2006

[^0]: 2000 Mathematics Subject Classification. Primary 30C45. Secondary 30C75.

