## ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

| VOL. LX, 2006 | SECTIO A | 23 - 30 |
|---------------|----------|---------|
| VOL. LA, 2000 | SECTIO A | 23-30   |

#### LEOPOLD KOCZAN and PAWEŁ ZAPRAWA

# Covering domains for the class of typically real odd functions

ABSTRACT. A set  $\bigcup_{f \in T^{(2)}} f(D)$  is called the covering domain for the class  $T^{(2)}$  of typically real odd functions over some fixed set D. This set is denoted by  $L_{T^{(2)}}(D)$ . We find sets  $L_{T^{(2)}}(\Delta_r)$  and  $L_{T^{(2)}}(H)$ , where  $\Delta_r = \{z \in \mathbf{C} : |z| < r\}, r \in (0, 1)$  and  $H = \{z \in \Delta : |1 + z^2| > 2|z|\}$  is one of the domains of univalence for  $T^{(2)}$ .

Let A denote the class of all functions that are analytic in the unit disk  $\Delta = \{z \in \mathbf{C} : |z| < 1\}$  and normalized by f(0) = f'(0) - 1 = 0. For a given domain  $D \subset \Delta$ , a set  $\bigcup_{f \in A} f(D)$  is called the *covering domain* for the class A over the set D, and is denoted by  $L_A(D)$ . This generalized definition was introduced in [2]. Domains  $L_A(D)$  are characterized by the following, easy to prove, properties

- 1. if all functions of the class A are univalent in  $\Delta$  and  $f \in A \Leftrightarrow e^{-i\varphi}f(ze^{i\varphi}) \in A$  for arbitrary  $\varphi \in R$ , then  $L_A(\Delta_r) = \Delta_{M(r)}$ , where  $M(r) = \max\{|f(z)| : f \in A, z \in \partial \Delta_r\};$
- 2. if all functions of the class A have real coefficients, and D is symmetric with respect to the real axis, then  $L_A(D)$  is symmetric with respect to the real axis;
- 3. if all functions of the class A have real coefficients,  $f \in A \Leftrightarrow -f(-z) \in A$ , and D is symmetric with respect to both axes of

<sup>2000</sup> Mathematics Subject Classification. Primary 30C45. Secondary 30C75. Key words and phrases. Typically real functions, covering domain.

the complex plane, then  $L_A(D)$  is symmetric with respect to both axes;

- 4. if  $D_1 \subset D_2$ , then  $L_A(D_1) \subset L_A(D_2)$ ;
- 5. if  $A_1 \subset A_2 \subset A$ , then  $L_{A_1}(D) \subset L_{A_2}(D)$ .

In this paper we derive some covering domains for the class  $T^{(2)}$  consisting of typically real odd functions. Sets  $\Delta_r = \{z \in \mathbf{C} : |z| < r\}, r \in (0, 1)$  and  $H = \{z \in \Delta : |1 + z^2| > 2|z|\}$  are considered. Some related results for the class T of typically real functions the reader can find in [4].

Recall that

$$T^{(2)} = \{ f \in A : \operatorname{Im} z \operatorname{Im} f(z) \ge 0, \ f(-z) = -f(z) \text{ for } z \in \Delta \}.$$

It is known (see for example [2]) that

$$f \in T^{(2)} \Leftrightarrow f(z) \equiv \int_0^1 \frac{z(1+z^2)}{(1+z^2)^2 - 4z^2 t} d\mu(t),$$

where  $\mu$  is a probability measure on [0, 1].

For a given  $r \in (0, 1)$  we can determine  $L_{T^{(2)}}(\Delta_r)$  considering

(1) 
$$\max\left\{ |f(z)| : f \in T^{(2)}, \operatorname{Arg} f(z) = \alpha, |z| = r \right\},$$

with fixed  $\alpha \in [0, 2\pi]$ . It is easy to observe that for  $z \in \Delta \setminus \{0\}$  the set  $\{f(z): f \in T^{(2)}\}$  coincides with a segment of the disk, whose boundary contains the origin, in case Re  $z \operatorname{Im} z \neq 0$ , and coincides with a line segment included in one of the axes of the complex plane, in case Re  $z \operatorname{Im} z = 0$ . In both cases  $0 \notin \{f(z): f \in T^{(2)}\}$ . Therefore, the maximum (1) is equal to

(2) 
$$\max\{|f_t(z)|: t \in [0,1], \operatorname{Arg} f(z) = \alpha, |z| = r\},\$$

where the functions  $f_t$  are extreme points of  $T^{(2)}$ , i.e.

$$f_t(z) = \frac{z(1+z^2)}{(1+z^2)^2 - 4z^2t}, \ z \in \Delta, \ t \in [0,1].$$

Throughout the paper we write  $2m = r^2 + 1/r^2$ , m > 1. We also use the notation:  $\partial D$  for the boundary of D,  $\operatorname{int} D$  for the interior of D,  $\operatorname{cl} D$  for the closure of D.

The following properties of  $f_t$  will be used to calculate the maximum (2).

Lemma 1. Let  $0 \le t \le 1$ . Then

1. Re 
$$\frac{zf'_t(z)}{f_t(z)} \ge 0$$
 for  $|z| \le \sqrt{t+1} - \sqrt{t}$ ;  
2. Re  $\frac{zf'_t(z)}{f_t(z)} \ge 0$  for  $\sqrt{t+1} - \sqrt{t} < |z| < 1$   
and  $\cos(2\arg z) \ge \frac{1}{2} \left(4t - \frac{1}{|z|^2} - |z|^2\right)$ .

**Proof.** Observe that  $\operatorname{Re} \frac{zf'_t(z)}{f_t(z)} \ge 0$  if and only if  $(m + \cos 2\varphi)^2 - 4t^2 + 4t - 4t \cos^2 2\varphi \ge 0.$ 

where r = |z|,  $\varphi = \arg z$ . Let  $-\infty < \alpha < \beta < +\infty$ . It is obvious that any real polynomial h of at most second degree such that  $h(\alpha) \ge 0$ ,  $h(\beta) \ge 0$  and  $h'(\alpha) \ge 0$  or  $h'(\beta) \le 0$  is nonnegative on  $[\alpha, \beta]$ . Put  $x = \cos 2\varphi$  and let  $h(x) \equiv (m+x)^2 - 4t^2 + 4t - 4tx^2$ .

1. In the case  $\rho \leq (\sqrt{t+1} - \sqrt{t})^2$  we get  $m \geq 1 + 2t$ ,  $h(-1) \geq 0$ ,  $h(1) \geq 4m > 4$ ,  $h'(-1) = 2(m+4t-1) \geq 12t \geq 0$ , so  $h(x) \geq 0$  for  $-1 \leq x \leq 1$ .

2. If  $(\sqrt{t+1} - \sqrt{t})^2 < \rho < 1$  then 1 < m < 1+2t, |2t-m| < 1,  $h(2t-m) \ge 8t(1-t) \ge 0$ ,  $h(1) > 4(1-t^2) \ge 0$ ,  $2th'(1) - h'(2t-m) = -4tm \le 0$ . Hence  $h'(2t-m) \ge 0$  or  $h'(1) \le 0$ , i.e.  $h(x) \ge 0$  for  $2t - m \le x \le 1$ . The proof is complete.

### Lemma 2. Let $0 \le t \le 1$ . Then

- 1.  $f_t$  is univalent in  $\Delta_r$  if  $r \in (0, \sqrt{t+1} \sqrt{t}]$ , and is nonunivalent in  $\Delta_r$  if  $r \in (\sqrt{t+1} \sqrt{t}, 1)$ ;
- 2.  $f_t(\Delta_r)$  is a starlike domain for each  $r \in (0, 1)$ ;
- 3. the boundary of  $f_t(\Delta_r)$  lying in the first quadrant of the complex plane is of the form
  - (i)  $\{f_t(re^{i\varphi}): \varphi \in [0, \frac{\pi}{2}]\}$  for  $r \in (0, \sqrt{t+1} \sqrt{t}]$ , (ii)  $\{f_t(re^{i\varphi}): \varphi \in [0, \varphi(t, r)]\}$  for  $r \in (\sqrt{t+1} - \sqrt{t}, 1)$ , where  $\varphi(t, r) = \frac{1}{2} \arccos(2t - m)$ .

**Proof.** By Lemma 1, each  $f_t$ ,  $t \in [0, 1]$ , is univalent and starlike in  $\Delta_R$ ,  $R = \sqrt{t+1} - \sqrt{t}$ . Hence  $\partial f_t(\Delta_r) = \{f_t(re^{i\varphi}) : \varphi \in [0, 2\pi)\}$  for  $0 < r \leq R$ .

Let  $r \in (R, 1)$ . Each function  $f_t$  is not univalent in  $\Delta_r$  because  $f'_t(iR) = 0$ . Observe that the set

$$\left\{ z \in \mathbf{C} : |z| = r, \ \cos(2\arg z) \ge \frac{1}{2} \left( 4t - \frac{1}{|z|^2} - |z|^2 \right) \right\}$$

consists of two arcs  $\Gamma_1$ ,  $\Gamma_2$ , where

$$\Gamma_1 = \left\{ r e^{i\varphi} : \varphi \in \left[ -\varphi(t,r), \varphi(t,r) \right] \right\},$$
  
$$\Gamma_2 = \left\{ r e^{i\varphi} : \varphi \in \left[ \pi - \varphi(t,r), \pi + \varphi(t,r) \right] \right\}.$$

Moreover,  $f_t(\Gamma_1 \cup \Gamma_2)$  is a closed curve without intersection points. Combining it with Lemma 1 we get the point (ii) of 3 and starlikeness of  $f_t(\Delta_r)$ .  $\Box$ 

**Lemma 3.** For a fixed  $r \in (0, 1)$ ,

- 1.  $|f_0(re^{i\varphi})|$  is an increasing function of  $\varphi \in [0, \frac{\pi}{2}]$ ,
- 2.  $|f_1(re^{i\varphi})|$  is a decreasing function of  $\varphi \in [0, \frac{\pi}{2}]$ .

**Proof.** Observe that  $|f(re^{i\varphi})|$  is an increasing function of  $\varphi \in [0, \frac{\pi}{2}]$  if  $\operatorname{Re} \frac{ire^{i\varphi}f'(re^{i\varphi})}{f(re^{i\varphi})} \geq 0$ , and is a decreasing function if  $\operatorname{Re} \frac{ire^{i\varphi}f'(re^{i\varphi})}{f(re^{i\varphi})} \leq 0$ . For this reason and from equalities

$$\operatorname{Im} z^{2} \cdot \operatorname{Im} \frac{z f_{0}'(z)}{f_{0}(z)} = \frac{-2(\operatorname{Im} z^{2})^{2}}{|1+z^{2}|^{2}}$$

and

$$\operatorname{Im} z^{2} \cdot \operatorname{Im} \frac{zf_{1}'(z)}{f_{1}(z)} = \frac{2(\operatorname{Im} z^{2})^{2}(2+|1+z^{2}|^{2}+2|z|^{4})}{|1-z^{4}|^{2}},$$

the assertion follows.

With fixed  $r \in (0, 1)$  let us denote

(3) 
$$\begin{aligned} \gamma_0 : \varphi \longrightarrow f_0(re^{i\varphi}), \ \varphi \in R, \\ \gamma_1 : \varphi \longrightarrow f_1(re^{i\varphi}), \ \varphi \in R. \end{aligned}$$

**Lemma 4.** The boundary of  $f_0(\Delta_r) \cup f_1(\Delta_r)$  in the first quadrant of the complex plane coincides with

1. 
$$\gamma_1([0,\varphi_1]) \cup \gamma_0([\varphi_0,\frac{\pi}{2}]) \text{ for } r \in (0,\frac{1}{2}(\sqrt{5}-1)],$$
  
2.  $\gamma_1([0,\frac{\pi}{2}]) \text{ for } r \in (\frac{1}{2}(\sqrt{5}-1),1),$ 

where

(4) 
$$\varphi_1 = \frac{1}{2} \arccos\left(\frac{1}{2}\left(m - \sqrt{m^2 + 4}\right)\right), \ \varphi_0 = \pi - 3\varphi_1.$$

**Proof.** Let  $z_0 = re^{i\varphi}$ ,  $z_1 = re^{i\phi}$  and  $\varphi, \phi \in [0, \frac{\pi}{2}]$ . In order to describe the common points of  $\gamma_0([0, \frac{\pi}{2}])$  and  $\gamma_1([0, \frac{\pi}{2}])$  we shall solve the equation  $f_0(z_0) = f_1(z_1), |z_0| = |z_1| = r$ , which is equivalent to

(5) 
$$z_0 + \frac{1}{z_0} = z_1 + \frac{1}{z_1} - \frac{4}{z_1 + \frac{1}{z_1}},$$

and hence to

(6) 
$$\begin{cases} \cos\varphi = \left(1 - \frac{2}{m + \cos 2\phi}\right)\cos\phi\\ \sin\varphi = \left(1 + \frac{2}{m + \cos 2\phi}\right)\sin\phi. \end{cases}$$

From this system we obtain  $\cos^2 2\phi + m \cos 2\phi - 1 = 0$ . Thus  $\cos 2\phi = \frac{1}{2} \left( -m + \sqrt{m^2 + 4} \right) \in \left( 0, \frac{1}{2} (\sqrt{5} - 1) \right)$  and  $\cos 3\phi = -\cos \varphi$ . The solution of (6) is

$$\begin{cases} \phi = \frac{1}{2} \arccos\left(\frac{1}{2}\left(m - \sqrt{m^2 + 4}\right)\right), \\ \varphi = \pi - 3\phi. \end{cases}$$

Observe that  $\varphi \in [0, \frac{\pi}{2}]$  if and only if  $\phi \in [\frac{\pi}{6}, \frac{\pi}{3}]$ , and consequently, if  $|\cos 2\phi| \leq \frac{1}{2}$ . This inequality holds only for  $m \geq \frac{3}{2}$  and hence for  $r \in$ 

26

 $(0, \frac{1}{2}(\sqrt{5}-1)]$ . In the case  $r \in (\frac{1}{2}(\sqrt{5}-1), 1)$  the system (6) has no solutions for  $\varphi, \phi \in [0, \frac{\pi}{2}]$ .

Additionally, if  $r \in (0, \frac{1}{2}(\sqrt{5}-1)]$  then  $f_0(r) = \frac{r}{1+r^2} < \frac{r(1+r^2)}{(1-r^2)^2} = f_1(r)$ and  $f_0(ir)/i = \frac{r}{1-r^2} > \frac{r(1-r^2)}{(1+r^2)^2} = f_1(ir)/i.$ 



FIGURE 1.  $L_{T^{(2)}}(\Delta_r)$  for r = 0.3 and r = 0.7.

Theorem 1.

$$L_{T^{(2)}}(\Delta_r) = f_0(\Delta_r) \cup f_1(\Delta_r) \text{ for } r \in \left(0, \frac{1}{2}(\sqrt{5}-1)\right),$$
  
$$L_{T^{(2)}}(\Delta_r) = f_1(\Delta_r) \text{ for } r \in \left[\frac{1}{2}(\sqrt{5}-1), 1\right).$$

**Proof.** Let  $r \in (0,1)$  be fixed and let L denote the set  $\bigcup_{0 \le t \le 1} f_t(\Delta_r)$ . According to Lemma 1 and Lemma 2, each set  $f_t(\Delta_r)$  is starlike with respect to 0, hence L is starlike with respect to the origin. We know that the maxima (1) and (2) are equal. For this reason we shall consider the function

(7) 
$$F(t,\varphi) \equiv f_t(re^{i\varphi}), \text{ with } t \in [0,1] \text{ and } \varphi \in R.$$

The boundary of L is contained in the set  $F([0,1] \times R)$ .

Observe that if  $(t_0, \varphi_0) \in int([0, 1] \times R)$  and the jacobian  $J_F(t_0, \varphi_0)$  is nonzero, then  $F(t_0, \varphi_0) \in int L$ . Therefore the set  $\partial L$  is included in the set  $\{F(t, \varphi) : (t, \varphi) \in B\}$ , where

$$B = \{(t, \varphi) : J_F(t, \varphi) = 0 \text{ or } t(1-t) = 0, \ \varphi \in R\}.$$

The equation  $J_F(t,\varphi) = 0$ , i.e.

$$\begin{vmatrix} \frac{\partial \operatorname{Re} F}{\partial t} & \frac{\partial \operatorname{Re} F}{\partial \varphi} \\ \frac{\partial \operatorname{Im} F}{\partial t} & \frac{\partial \operatorname{Im} F}{\partial \varphi} \end{vmatrix} (t, \varphi) = 0$$

is equivalent to

(8) 
$$\operatorname{Im}\left(\frac{\overline{\partial F}}{\partial t} \cdot \frac{\partial F}{\partial \varphi}\right)(t, \varphi) = 0.$$

Since

$$\begin{split} \frac{\partial F}{\partial t} &= \frac{4r^3 e^{3i\varphi}(1+r^2 e^{2i\varphi})}{[(1+r^2 e^{2i\varphi})^2 - 4tr^2 e^{2i\varphi}]^2},\\ \frac{\partial F}{\partial \varphi} &= \frac{ir e^{i\varphi}[(1+r^2 e^{2i\varphi})^2 + 4tr^2 e^{2i\varphi}]}{[(1+r^2 e^{2i\varphi})^2 - 4tr^2 e^{2i\varphi}]^2}, \end{split}$$

we can rewrite (8) as follows

$$\operatorname{Re}\left\{r^{2}e^{-2i\varphi}\left(1+r^{2}e^{-2i\varphi}\right)\left(1-r^{2}e^{2i\varphi}\right)\left[\left(1+r^{2}e^{2i\varphi}\right)^{2}+4tr^{2}e^{2i\varphi}\right]\right\}=0.$$

We eventually obtain

(9) 
$$2t + (m + \cos 2\varphi) \cos 2\varphi = 0$$

The points  $(t, \varphi) \in [0, 1] \times R$  satisfy (9) only if  $\lambda(m) \leq \cos 2\varphi \leq 0$ , where

$$\lambda(m) = \begin{cases} -1 & \text{for } m \le 3, \\ \frac{\sqrt{m^2 - 8} - m}{2} & \text{for } m > 3. \end{cases}$$

Consider the curve

(10) 
$$\gamma: \varphi \longrightarrow F\left(-\frac{1}{2}(m+\cos 2\varphi)\cos 2\varphi,\varphi\right), \ \varphi \in R$$

and the curves  $\gamma_0$  and  $\gamma_1$  defined by (3).

We claim that  $\gamma(\{\varphi \in R : \lambda(m) \le \cos 2\varphi \le 0\})$  is included in the closed domain bounded by  $\gamma_0(R)$ , i.e. in  $f_0(\overline{\Delta_r})$ .

Indeed, we have

$$\frac{1}{F}\left(-\frac{1}{2}(m+\cos 2\varphi)\cos 2\varphi,\varphi\right) = \frac{1}{re^{i\varphi}} + re^{i\varphi} + \frac{2(m+\cos 2\varphi)\cos 2\varphi}{\frac{1}{re^{i\varphi}} + re^{i\varphi}}$$
$$= 2\left(\frac{1}{r}+r\right)\cos^3\varphi - 2i\left(\frac{1}{r}-r\right)\sin^3\varphi,$$

i.e. (10) restricted to  $[0, 2\pi)$  is a Jordan curve, and

$$1/F(0,\psi) = \frac{1}{re^{i\psi}} + re^{i\psi} = \left(\frac{1}{r} + r\right)\cos\psi - i\left(\frac{1}{r} - r\right)\sin\psi.$$

The equation  $F(0,\psi) = F\left(-\frac{1}{2}(m+\cos 2\varphi)\cos 2\varphi,\varphi\right)$  is equivalent to the system

$$\begin{cases} 2\cos^3\varphi = \cos\psi\\ 2\sin^3\varphi = \sin\psi. \end{cases}$$

It is easy to check that the only solution of this system for  $\varphi, \psi \in [0, \frac{\pi}{2}]$  is  $\varphi = \psi = \frac{\pi}{4}$ . It means that the sets  $\gamma([0, \frac{\pi}{2}])$  and  $\gamma_0([0, \frac{\pi}{2}])$  have only one common point.

Moreover,

$$\gamma(0) = \frac{1}{2(\frac{1}{r} + r)} < \frac{1}{\frac{1}{r} + r} = \gamma_0(0)$$

and

$$\gamma(\frac{\pi}{2})/i = \frac{1}{2\left(\frac{1}{r} - r\right)} < \frac{1}{\frac{1}{r} - r} = \gamma_0(\frac{\pi}{2})/i.$$

Therefore  $\gamma([0, \frac{\pi}{2}]) \subset f_0(\overline{\Delta_r})$  and, by symmetry of  $\gamma(R)$  with respect to both axes of the complex plane, we have  $\gamma(R) \subset f_0(\overline{\Delta_r})$ . Consequently,  $\partial L \subset \gamma_0(R) \cup \gamma_1(R)$ . The assertion of the theorem follows now from Lemma 4.  $\Box$ 

From Theorem 1 and Lemma 4 it immediately follows

**Corollary 1.** If  $r \in (0, \frac{1}{2}(\sqrt{5}-1))$  then the boundary of  $L_{T^{(2)}}(\Delta_r)$  lying in the first quadrant of the complex plane coincides with  $\gamma_1([0, \varphi_1]) \cup \gamma_0([\varphi_0, \frac{\pi}{2}])$ , where  $\varphi_1$  and  $\varphi_0$  are defined by (4).

We conclude from Theorem 1 that for  $f \in T^{(2)}$  and |z| = r the following sharp bound holds:

$$|\operatorname{Im} f(z)| \leq \begin{cases} \max_{z \in \partial \Delta_r} \left\{ \operatorname{Im} f_0(z), \operatorname{Im} f_1(z) \right\} & \text{for } r \in \left(0, \frac{1}{2}(\sqrt{5} - 1)\right), \\ \max_{z \in \partial \Delta_r} \operatorname{Im} f_1(z) & \text{for } r \in \left[\frac{1}{2}(\sqrt{5} - 1), 1\right). \end{cases}$$

Denote  $x = (\frac{1}{r} + r)^2$ ,

$$g(r) = \left(\frac{1}{r} - r\right) \frac{(2 - x + \sqrt{2x^2 + 4})(2x - 2 + \sqrt{2x^2 + 4})^2 \sqrt{3x - 2\sqrt{2x^2 + 4}}}{16x^2(x - 4)^2}$$

and

$$h(x) = x^5 - 124x^4 + 4064x^3 - 21632x^2 + 256x + 5120.$$

A simple but extensive calculation leads to

**Corollary 2.** For  $f \in T^{(2)}$  and  $r \in (0,1)$  we have

$$\left|\operatorname{Im} f\left(re^{i\varphi}\right)\right| \leq \begin{cases} \frac{r}{1-r^2} & for \quad r \in (0, r_*), \\ g(r) & for \quad r \in [r_*, 1), \end{cases}$$

where  $r_* = 0.483...$  is the only solution of the equation  $h\left(\left(\frac{1}{r}+r\right)^2\right) = 0$  in  $(\sqrt{2}-1,1)$ .

It is interesting to describe the covering domain for the class  $T^{(2)}$  over the set H, where  $H = \{z \in \Delta : |1 + z^2| > 2|z|\}$ . The lens-shaped set H is the domain of univalence for  $T^{(2)}$  ([3], see also [1]). We apply this property of H in the proof of the following theorem.

**Theorem 2.**  $L_{T^{(2)}}(H) = f_0(H) \cup f_1(H).$ 

**Proof.** Observe that  $f_1(H) = \mathbb{C} \setminus \{i\varrho : \varrho \in (-\infty, -\frac{1}{4}] \cup [\frac{1}{4}, \infty)\}$ . The set H is symmetric with respect to both axes as well as each set f(H) for all  $f \in T^{(2)}$ . From this and from univalence of each  $f \in T^{(2)}$  in H we conclude that for  $z \in H$  there is  $\operatorname{Re} f(z) = 0 \Leftrightarrow \operatorname{Re} z = 0$ .

For this reason it suffices to calculate  $\max\left\{\frac{1}{i}f(ir_0): f \in T^{(2)}\right\}, r_0 = \sqrt{2} - 1$ . We have

$$\max\left\{\frac{1}{i}f(ir_0): f \in T^{(2)}\right\} = \max\left\{\frac{r_0(1-r_0^2)}{(1-r_0^2)^2 + 4r_0^2t}: t \in [0,1]\right\}$$
$$= \frac{r_0}{1-r_0^2} = \frac{1}{2} = \frac{1}{i}f_0(ir_0).$$

Hence the set  $\{i\varrho : \varrho \geq \frac{1}{2}\}$  is disjoint from  $L_{T^{(2)}}(H)$ . This fact and the symmetry of  $L_{T^{(2)}}(H)$  with respect to the real axis completes the proof.  $\Box$ 

We get from Theorem 2

Corollary 3.  $L_{T^{(2)}}(H) = \mathbf{C} \setminus \{i\varrho : \varrho \in (-\infty, -\frac{1}{2}] \cup [\frac{1}{2}, \infty)\}.$ 

**Corollary 4.** For arbitrary domain  $D \supset cl(H) \setminus \{-1, 1\}$  we have  $L_{T^{(2)}}(D) = C$ .

### References

- [1] Goluzin, G., On typically real functions, Mat. Sbornik N. S. 27(69) (1950), 201–218.
- [2] Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52.2 (1998), 103–112.
- [3] Koczan, L., Zaprawa, P., Domains of univalence for typically-real odd functions, Complex Variables Theory Appl. 48, No. 1 (2003), 1–17.
- [4] Koczan, L., Zaprawa, P., On covering problems in the class of typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 51–65.

Leopold Koczan Department of Applied Mathematics Lublin University of Technology ul. Nadbystrzycka 38 D 20-618 Lublin, Poland e-mail: l.koczan@pollub.pl Paweł Zaprawa Department of Applied Mathematics Lublin University of Technology ul. Nadbystrzycka 38 D 20-618 Lublin, Poland e-mail: p.zaprawa@pollub.pl

Received April 11, 2006