## MAGDALENA SOBCZAK-KNEĆ

# Koebe domains for certain subclasses of starlike functions 


#### Abstract

The Koebe domain's problem in the class of starlike functions with real coefficients was considered by M. T. McGregor [3]. In this paper we determined the Koebe domain for the class of starlike functions with real coefficients and the fixed second coefficient.


1. Introduction. Let $S^{*}$ denote the class of analytic and univalent functions $f$ in the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$ such that $f(0)=f^{\prime}(0)-1=0$ and

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \quad z \in \Delta
$$

The class $S^{*}$ is called the class of starlike functions.
In this paper we will study a subclass of the class $S^{*}$, i.e. the class $S^{*} R$ which contains the starlike functions with real coefficients. In $1964 \mathrm{M} . \mathrm{T}$. McGregor [3] found the set $\bigcap_{f \in S^{*} R} f(\Delta)$, which is called the Koebe domain for the class $S^{*} R$.

Theorem 1 ([3]). The Koebe domain for the class $S^{*} R$ is symmetric with respect to the real axis and the boundary of this domain in the upper half

[^0]plane is given by the polar equation $w=\rho(\theta) e^{i \theta}$, where
\[

$$
\begin{equation*}
\rho(\theta)=\frac{1}{4}\left(\frac{\theta}{\pi}\right)^{-\frac{\theta}{\pi}}\left(1-\frac{\theta}{\pi}\right)^{\frac{\theta}{\pi}-1}, \quad \theta \in[0, \pi] \tag{1}
\end{equation*}
$$

\]

The extremal functions are of the form

$$
F_{\theta}(z)=\frac{z}{(1-z)^{\frac{2 \theta}{\pi}}(1+z)^{2\left(1-\frac{\theta}{\pi}\right)}}, \quad z \in \Delta, \quad \theta \in[0, \pi] .
$$

## 2. Main Results.

Theorem 2. If $f \in S^{*} R$ and $\rho e^{i \theta} \notin f(\Delta)$, then $f \prec M \cdot F_{\theta}$, where $M=\frac{\rho}{\rho(\theta)}$, $\theta \in[0, \pi]$ and $\rho(\theta)$ is given by (1).
Proof. Let $f \in S^{*} R$ and $\rho e^{i \theta} \notin f(\Delta)$. Since $f \in S^{*} R$, it means that $f$ does not admit values, which are on the rays $l$ and $\bar{l}$, where

$$
l:\left\{\zeta \in \mathbb{C}: \zeta=\rho e^{i \theta} t, t \geq 1\right\}, \quad \bar{l}:\{\bar{\zeta}: \zeta \in l\} .
$$

The function

$$
\frac{\rho}{\rho(\theta)} F_{\theta}
$$

maps the unit disk $\Delta$ onto the plane $\mathbb{C}$ without the rays $l$ and $\bar{l}$. Moreover, $f \in S^{*} R$, so

$$
f(\Delta) \subset \frac{\rho}{\rho(\theta)} F_{\theta}(\Delta) .
$$

From the above as well as from the univalence of $F_{\theta}$ we conclude that $f \prec M \cdot F_{\theta}$, where $M=\frac{\rho}{\rho(\theta)}, \theta \in[0, \pi]$.

Remark 1. Theorem 1 results from Theorem 2. We have

$$
f \prec M \cdot F_{\theta} .
$$

Hence

$$
1=f^{\prime}(0) \leq M \cdot F_{\theta}^{\prime}(0) .
$$

This condition is equivalent to $M \geq 1$.
Let $f=z+a_{2} z^{2}+\cdots \in S^{*} R$ and $\rho e^{i \theta} \notin f(\Delta)$. In the next theorem we determine the region of values $\left(\rho, a_{2}\right)$ for a fixed $\theta \in[0,2 \pi]$. In this research we can discuss only $\theta \in[0, \pi]$, because the region of values $\left(\rho, a_{2}\right)$ is symmetric with respect to the real axis.
Theorem 3. If $f=z+a_{2} z^{2}+\cdots \in S^{*} R$ and $\rho e^{i \theta} \notin f(\Delta)$, then for a fixed $\theta \in[0, \pi]$, the region of values $\left(\rho, a_{2}\right)$ is of the form

$$
A_{\rho, a_{2}}:=\left\{\left(\rho, a_{2}\right): \frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}-2 \leq a_{2} \leq 2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}\right\} .
$$

Proof. Let $f \in S^{*} R$ and $\rho e^{i \theta} \notin f(\Delta)$. From Theorem 2 and [2] we have

$$
f(z)=M \cdot F_{\theta}\left(\frac{h(z)}{M}\right)
$$

where $M=\frac{\rho}{\rho(\theta)} \geq 1$. The function $h(z)$ is univalent, with real coefficients, bounded by $M$ and such that

$$
M \cdot F_{\theta}\left(\frac{h(z)}{M}\right) \in S^{*}
$$

Denoting

$$
\begin{aligned}
f(z) & =z+a_{2} z^{2}+\ldots \\
F_{\theta}(z) & =z+b_{2}(\theta) z^{2}+\ldots \\
h(z) & =z+c_{2} z^{2}+\ldots
\end{aligned}
$$

we have

$$
a_{2}=c_{2}+\frac{1}{M} b_{2}(\theta) \quad \text { and } \quad b_{2}(\theta)=2\left(\frac{2 \theta}{\pi}-1\right)
$$

For the function $h(z)$, the following inequalities are true [1]:

$$
-2\left(1-\frac{1}{M}\right) \leq c_{2} \leq 2\left(1-\frac{1}{M}\right)
$$

Hence

$$
a_{2} \leq 2\left(1-\frac{1}{M}\right)+\frac{2}{M}\left(\frac{2 \theta}{\pi}-1\right)
$$

and consequently

$$
a_{2} \leq 2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}
$$

Moreover,

$$
a_{2} \geq-2\left(1-\frac{1}{M}\right)+\frac{2}{M}\left(\frac{2 \theta}{\pi}-1\right)
$$

and

$$
a_{2} \geq-2+\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}
$$

Then we have

$$
\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}-2 \leq a_{2} \leq 2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}
$$

We shall prove, that for the fixed $\theta \in[0, \pi]$ and $\rho>\rho(\theta)$ there are functions $f \in S^{*} R, \rho e^{i \theta} \notin f(\Delta)$ such that $\frac{f^{\prime \prime}(0)}{2!}$ assumes all values from the range

$$
\left[\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}-2,2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}\right]
$$

We consider the univalent functions

$$
w=f_{M, t}(z), \quad f_{M, t}(z)=z+c_{2}(t) z^{2}+\ldots
$$

for which the following equation is satisfied

$$
\frac{z}{1-2 t z+z^{2}}=\frac{w}{1-2 t \frac{w}{M}+\frac{w^{2}}{M^{2}}}
$$

These functions map the unit disk $\Delta$ on the disk $|w|<M$ with one or two slits on the real axis. Their coefficients $c_{2}(t)=2 t\left(1-\frac{1}{M}\right), t \in[-1,1]$, assume all values from the range $\left[-2\left(1-\frac{1}{M}\right), 2\left(1-\frac{1}{M}\right)\right]$. Since the functions

$$
f(z)=M \cdot F_{\theta}\left(\frac{h(z)}{M}\right)=z+a_{2}(t) z^{2}+\ldots, \text { where } h(z)=f_{M, t}(z)
$$

are starlike, $\rho e^{i \theta} \notin f(\Delta)$, therefore $a_{2}(t)$ assumes all values from the range $\left[\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}-2,2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}\right]$.

On figure 1 there is the set $A_{\rho, a_{2}}$ for fixed $\theta$.


Figure 1. The set $A_{\rho, a_{2}}$ for $\theta=\frac{2}{3} \pi$.

Definition 1. We say, that the function $f$ is in $S_{a}^{*}$ if $f \in S^{*}$ and $\frac{1}{2} f^{\prime \prime}(0)=a$, $a \geq 0$ i.e.

$$
S_{a}^{*}=\left\{f \in S^{*}: f(z)=z+a z^{2}+\ldots\right\}
$$

Rogosinski in paper [4] determined the Koebe domain for the class $S_{a}^{*}$.
Theorem 4. The Koebe domain for the class $S_{a}^{*}, a \in[0,2)$, is symmetric with respect to the real axis and the boundary of this domain in the upper half plane is given by the polar equation $w=\rho(\theta) e^{i \theta}$, where

$$
\rho(\theta)=\frac{2+a \cos \theta}{4-a^{2}}, \quad a \geq 0, \quad \theta \in[0, \pi]
$$

We determine the Koebe domain for the class $S_{a}^{*} R$ consisting of the functions from the class $S_{a}^{*}$ which have real coefficients. From Theorem 3 we conclude the following theorem for the class $S_{a}^{*} R$.

Theorem 5. The Koebe domain for the class $S_{a}^{*} R$ is symmetric with respect to the real axis and the boundary of this domain in the upper half plane is given by the polar equation $w=\rho_{a}(\theta) e^{i \theta}$, where

$$
\rho_{a}(\theta)= \begin{cases}\frac{1}{2-a}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}, & \theta \in\left[0, \frac{(2+a) \pi}{4}\right]  \tag{2}\\ \frac{1}{2+a}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}, & \theta \in\left(\frac{(2+a) \pi}{4}, \pi\right]\end{cases}
$$

Proof. Let $a_{2}=a$. From Theorem 3 we have

$$
\rho \geq \frac{1}{2-a}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}, \quad \text { where } \quad \theta \in\left[0, \frac{(2+a) \pi}{4}\right]
$$

and

$$
\rho \geq \frac{1}{2+a}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}, \quad \text { where } \quad \theta \in\left(\frac{(2+a) \pi}{4}, \pi\right]
$$

On figures $2,3,4$ there are the Koebe domains for the class $S_{a}^{*} R$ for some fixed $a_{2}=a$.


Figure 2. The Koebe domain for the class $S_{a}^{*} R, a=0$.


Figure 3. The Koebe domain for the class $S_{a}^{*} R, a=1$.


Figure 4. The Koebe domain for the class $S_{a}^{*} R, a=-1$.

Definition 2. We say that the function $f(z)$ is $n$-symmetric function in $\Delta$, if for fixed $z \in \Delta$ the following condition is satisfied

$$
f\left(e^{\frac{2 \pi i}{n}} z\right)=e^{\frac{2 \pi i}{n}} f(z)
$$

We say that the set $D$ is $n$-symmetric, if the set satisfies the condition $e^{\frac{2 \pi i}{n}} D=D$. The set $\lambda D$ is understood as $\{\lambda z: z \in D\}$.

We denote by $S^{*} R^{n}$ the class of starlike and $n$-symmetric functions with real coefficients. From Theorem 5 we have

Corollary 1. The Koebe domain for the class $S^{*} R^{n}$ with fixed $a_{n+1}=b$, $n \geq 2$ is $n$-symmetric, symmetric with respect to the real axis and the line $\zeta=e^{\frac{\pi i}{n}} t$ and the boundary of this domain in the set $\left\{\zeta \in \mathbb{C}: 0 \leq \arg \zeta \leq \frac{\pi}{n}\right\}$ is given by the polar equation $w=\rho_{b, n}(\theta) e^{i \theta}$ where

$$
\rho_{b, n}(\theta)=\sqrt[n]{\rho_{a}(n \theta)}, \quad a=b n, 0 \leq \theta \leq \frac{\pi}{n} .
$$

Proof. For the function $f \in S^{*} R^{n}$ the following condition is satisfied

$$
\begin{equation*}
f \in S_{a}^{*} R \Longleftrightarrow g \in S^{*} R^{n}, \frac{g^{(n+1)}(0)}{(n+1)!}=\frac{a_{2}}{n}, \tag{3}
\end{equation*}
$$

where $g(z)=\sqrt[n]{f\left(z^{n}\right)}$. Let $b=\frac{a_{2}}{n}$. We determine the set of the form $\bigcap_{S^{*} R^{n}} g(\Delta)$. From Theorem 5 we know that the boundary of the Koebe domain in the class $S^{*} R$ is of the form $w=\rho_{a}(\theta) e^{i \theta}$ where $\rho_{a}(\theta)$ is given by (2). From (3) we have

$$
\sqrt[n]{w}=\sqrt[n]{\rho_{a}(t)} e^{\frac{i t}{n}}, \quad t \in[0, \pi]
$$

and consequently for $a=b n, \theta=\frac{t}{n} \in\left[0, \frac{\pi}{n}\right]$ we have

$$
\sqrt[n]{w}=\sqrt[n]{\rho_{b n}(n \theta)} e^{i \theta}
$$

## References

[1] Goodman, A. W., Univalent Functions, Mariner Pub. Co., Tampa, 1983.
[2] Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae CurieSkłodowska, Sect. A 52, No. 2 (1998), 95-101.
[3] McGregor, M. T., On three classes of univalent functions with real coefficients, J. London Math. Soc. 39 (1964), 43-50.
[4] Rogosinski, W. W., On subordinate functions, Proc. Camb. Phil. Soc. 35 (1939), 1-26.

Magdalena Sobczak-Kneć<br>Department of Applied Mathematics<br>Lublin University of Technology<br>ul. Nadbystrzycka 38D<br>20-618 Lublin, Poland<br>e-mail: m.sobczak-knec@pollub.pl

Received May 24, 2007


[^0]:    2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
    Key words and phrases. Real coefficients, Koebe domain, starlike functions, fixed second coefficient.

