ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXI, 2007	SECTIO A	129 - 135

MAGDALENA SOBCZAK-KNEĆ

Koebe domains for certain subclasses of starlike functions

ABSTRACT. The Koebe domain's problem in the class of starlike functions with real coefficients was considered by M. T. McGregor [3]. In this paper we determined the Koebe domain for the class of starlike functions with real coefficients and the fixed second coefficient.

1. Introduction. Let S^* denote the class of analytic and univalent functions f in the unit disk $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ such that f(0) = f'(0) - 1 = 0 and

$$\operatorname{Re}\frac{zf'(z)}{f(z)} > 0, \qquad z \in \Delta$$

The class S^* is called the class of starlike functions.

In this paper we will study a subclass of the class S^* , i.e. the class S^*R which contains the starlike functions with real coefficients. In 1964 M. T. McGregor [3] found the set $\bigcap_{f \in S^*R} f(\Delta)$, which is called the Koebe domain for the class S^*R .

Theorem 1 ([3]). The Koebe domain for the class S^*R is symmetric with respect to the real axis and the boundary of this domain in the upper half

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45; Secondary 30C80.

Key words and phrases. Real coefficients, Koebe domain, starlike functions, fixed second coefficient.

plane is given by the polar equation $w = \rho(\theta)e^{i\theta}$, where

(1)
$$\rho(\theta) = \frac{1}{4} \left(\frac{\theta}{\pi}\right)^{-\frac{\theta}{\pi}} \left(1 - \frac{\theta}{\pi}\right)^{\frac{\theta}{\pi} - 1}, \qquad \theta \in [0, \pi].$$

The extremal functions are of the form

$$F_{\theta}(z) = \frac{z}{(1-z)^{\frac{2\theta}{\pi}}(1+z)^{2(1-\frac{\theta}{\pi})}}, \quad z \in \Delta, \quad \theta \in [0,\pi].$$

2. Main Results.

Theorem 2. If $f \in S^*R$ and $\rho e^{i\theta} \notin f(\Delta)$, then $f \prec M \cdot F_{\theta}$, where $M = \frac{\rho}{\rho(\theta)}$, $\theta \in [0, \pi]$ and $\rho(\theta)$ is given by (1).

Proof. Let $f \in S^*R$ and $\rho e^{i\theta} \notin f(\Delta)$. Since $f \in S^*R$, it means that f does not admit values, which are on the rays l and \overline{l} , where

$$l: \{\zeta \in \mathbb{C} : \zeta = \rho e^{i\theta} t, t \ge 1\}, \quad \overline{l}: \{\overline{\zeta} : \zeta \in l\}.$$

The function

$$\frac{\rho}{\rho(\theta)}F_{\theta}$$

maps the unit disk Δ onto the plane \mathbb{C} without the rays l and \overline{l} . Moreover, $f \in S^*R$, so

$$f(\Delta) \subset \frac{\rho}{\rho(\theta)} F_{\theta}(\Delta).$$

From the above as well as from the univalence of F_{θ} we conclude that $f \prec M \cdot F_{\theta}$, where $M = \frac{\rho}{\rho(\theta)}, \ \theta \in [0, \pi]$.

Remark 1. Theorem 1 results from Theorem 2. We have

$$f \prec M \cdot F_{\theta}$$

Hence

$$1 = f'(0) \le M \cdot F'_{\theta}(0).$$

This condition is equivalent to $M \ge 1$.

Let $f = z + a_2 z^2 + \cdots \in S^* R$ and $\rho e^{i\theta} \notin f(\Delta)$. In the next theorem we determine the region of values (ρ, a_2) for a fixed $\theta \in [0, 2\pi]$. In this research we can discuss only $\theta \in [0, \pi]$, because the region of values (ρ, a_2) is symmetric with respect to the real axis.

Theorem 3. If $f = z + a_2 z^2 + \cdots \in S^* R$ and $\rho e^{i\theta} \notin f(\Delta)$, then for a fixed $\theta \in [0, \pi]$, the region of values (ρ, a_2) is of the form

$$A_{\rho,a_2} := \left\{ (\rho, a_2) : \frac{1}{\rho} \left(\frac{\pi}{\theta} - 1 \right)^{\frac{\theta}{\pi} - 1} - 2 \le a_2 \le 2 - \frac{1}{\rho} \left(\frac{\pi}{\theta} - 1 \right)^{\frac{\theta}{\pi}} \right\}.$$

Proof. Let
$$f \in S^*R$$
 and $\rho e^{i\theta} \notin f(\Delta)$. From Theorem 2 and [2] we have

$$f(z) = M \cdot F_{\theta}\left(\frac{h(z)}{M}\right),$$

where $M = \frac{\rho}{\rho(\theta)} \ge 1$. The function h(z) is univalent, with real coefficients, bounded by M and such that

$$M \cdot F_{\theta}\left(\frac{h(z)}{M}\right) \in S^*.$$

Denoting

$$f(z) = z + a_2 z^2 + \dots$$

$$F_{\theta}(z) = z + b_2(\theta) z^2 + \dots$$

$$h(z) = z + c_2 z^2 + \dots$$

we have

$$a_2 = c_2 + \frac{1}{M}b_2(\theta)$$
 and $b_2(\theta) = 2\left(\frac{2\theta}{\pi} - 1\right)$.

For the function h(z), the following inequalities are true [1]:

$$-2\left(1-\frac{1}{M}\right) \le c_2 \le 2\left(1-\frac{1}{M}\right).$$

Hence

$$a_2 \le 2\left(1-\frac{1}{M}\right) + \frac{2}{M}\left(\frac{2\theta}{\pi}-1\right),$$

and consequently

$$a_2 \le 2 - \frac{1}{\rho} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi}}.$$

Moreover,

$$a_2 \ge -2\left(1-\frac{1}{M}\right) + \frac{2}{M}\left(\frac{2\theta}{\pi}-1\right),$$

and

$$a_2 \ge -2 + \frac{1}{\rho} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi} - 1}.$$

Then we have

$$\frac{1}{\rho} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi} - 1} - 2 \le a_2 \le 2 - \frac{1}{\rho} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi}}.$$

We shall prove, that for the fixed $\theta \in [0, \pi]$ and $\rho > \rho(\theta)$ there are functions $f \in S^*R$, $\rho e^{i\theta} \notin f(\Delta)$ such that $\frac{f''(0)}{2!}$ assumes all values from the range

$$\left[\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}-2,\ 2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}\right].$$

We consider the univalent functions

$$w = f_{M,t}(z), \quad f_{M,t}(z) = z + c_2(t)z^2 + \dots$$

for which the following equation is satisfied

$$\frac{z}{1 - 2tz + z^2} = \frac{w}{1 - 2t\frac{w}{M} + \frac{w^2}{M^2}}$$

These functions map the unit disk Δ on the disk |w| < M with one or two slits on the real axis. Their coefficients $c_2(t) = 2t(1 - \frac{1}{M}), t \in [-1, 1]$, assume all values from the range $[-2(1 - \frac{1}{M}), 2(1 - \frac{1}{M})]$. Since the functions

$$f(z) = M \cdot F_{\theta}\left(\frac{h(z)}{M}\right) = z + a_2(t)z^2 + \dots, \text{ where } h(z) = f_{M,t}(z),$$

are starlike, $\rho e^{i\theta} \notin f(\Delta)$, therefore $a_2(t)$ assumes all values from the range $\left[\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}-1}-2, 2-\frac{1}{\rho}\left(\frac{\pi}{\theta}-1\right)^{\frac{\theta}{\pi}}\right]$.

On figure 1 there is the set A_{ρ,a_2} for fixed θ .

FIGURE 1. The set A_{ρ,a_2} for $\theta = \frac{2}{3}\pi$.

Definition 1. We say, that the function f is in S_a^* if $f \in S^*$ and $\frac{1}{2}f''(0) = a$, $a \ge 0$ i.e.

$$S_a^* = \{ f \in S^* : f(z) = z + az^2 + \dots \}$$

Rogosinski in paper [4] determined the Koebe domain for the class S_a^* .

Theorem 4. The Koebe domain for the class S_a^* , $a \in [0, 2)$, is symmetric with respect to the real axis and the boundary of this domain in the upper half plane is given by the polar equation $w = \rho(\theta)e^{i\theta}$, where

$$\rho(\theta) = \frac{2 + a\cos\theta}{4 - a^2}, \quad a \ge 0, \ \theta \in [0, \pi].$$

We determine the Koebe domain for the class S_a^*R consisting of the functions from the class S_a^* which have real coefficients. From Theorem 3 we conclude the following theorem for the class S_a^*R .

Theorem 5. The Koebe domain for the class S_a^*R is symmetric with respect to the real axis and the boundary of this domain in the upper half plane is given by the polar equation $w = \rho_a(\theta)e^{i\theta}$, where

(2)
$$\rho_a(\theta) = \begin{cases} \frac{1}{2-a} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi}}, & \theta \in \left[0, \frac{(2+a)\pi}{4}\right], \\ \frac{1}{2+a} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi} - 1}, & \theta \in \left(\frac{(2+a)\pi}{4}, \pi\right]. \end{cases}$$

Proof. Let $a_2 = a$. From Theorem 3 we have

$$\rho \ge \frac{1}{2-a} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi}}, \quad \text{where} \quad \theta \in \left[0, \frac{(2+a)\pi}{4}\right]$$

and

$$\rho \ge \frac{1}{2+a} \left(\frac{\pi}{\theta} - 1\right)^{\frac{\theta}{\pi} - 1}, \quad \text{where} \quad \theta \in \left(\frac{(2+a)\pi}{4}, \pi\right].$$

On figures 2, 3, 4 there are the Koebe domains for the class S_a^*R for some fixed $a_2 = a$.

FIGURE 2. The Koebe domain for the class $S_a^* R$, a = 0.

FIGURE 3. The Koebe domain for the class $S_a^* R$, a = 1.

FIGURE 4. The Koebe domain for the class $S_a^* R$, a = -1.

Definition 2. We say that the function f(z) is *n*-symmetric function in Δ , if for fixed $z \in \Delta$ the following condition is satisfied

$$f\left(e^{\frac{2\pi i}{n}}z\right) = e^{\frac{2\pi i}{n}}f(z).$$

We say that the set D is *n*-symmetric, if the set satisfies the condition $e^{\frac{2\pi i}{n}}D = D$. The set λD is understood as $\{\lambda z : z \in D\}$.

We denote by S^*R^n the class of starlike and *n*-symmetric functions with real coefficients. From Theorem 5 we have

Corollary 1. The Koebe domain for the class S^*R^n with fixed $a_{n+1} = b$, $n \ge 2$ is n-symmetric, symmetric with respect to the real axis and the line $\zeta = e^{\frac{\pi i}{n}}t$ and the boundary of this domain in the set $\{\zeta \in \mathbb{C} : 0 \le \arg \zeta \le \frac{\pi}{n}\}$ is given by the polar equation $w = \rho_{b,n}(\theta)e^{i\theta}$ where

$$\rho_{b,n}(\theta) = \sqrt[n]{\rho_a(n\theta)}, \quad a = bn, \ 0 \le \theta \le \frac{\pi}{n}.$$

Proof. For the function $f \in S^*R^n$ the following condition is satisfied

(3)
$$f \in S_a^* R \iff g \in S^* R^n, \ \frac{g^{(n+1)}(0)}{(n+1)!} = \frac{a_2}{n}$$

where $g(z) = \sqrt[n]{f(z^n)}$. Let $b = \frac{a_2}{n}$. We determine the set of the form $\bigcap_{S^*R^n} g(\Delta)$. From Theorem 5 we know that the boundary of the Koebe domain in the class S^*R is of the form $w = \rho_a(\theta)e^{i\theta}$ where $\rho_a(\theta)$ is given by (2). From (3) we have

$$\sqrt[n]{w} = \sqrt[n]{\rho_a(t)} e^{\frac{it}{n}}, \quad t \in [0,\pi],$$

and consequently for a = bn, $\theta = \frac{t}{n} \in [0, \frac{\pi}{n}]$ we have

$$\sqrt[n]{w} = \sqrt[n]{\rho_{bn}(n\theta)}e^{i\theta}.$$

References

- [1] Goodman, A. W., Univalent Functions, Mariner Pub. Co., Tampa, 1983.
- [2] Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 52, No. 2 (1998), 95–101.
- [3] McGregor, M. T., On three classes of univalent functions with real coefficients, J. London Math. Soc. 39 (1964), 43–50.
- [4] Rogosinski, W. W., On subordinate functions, Proc. Camb. Phil. Soc. 35 (1939), 1–26.

Magdalena Sobczak-Kneć Department of Applied Mathematics Lublin University of Technology ul. Nadbystrzycka 38D 20-618 Lublin, Poland e-mail: m.sobczak-knec@pollub.pl

Received May 24, 2007