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Koebe domains for certain subclasses
of starlike functions

Abstract. The Koebe domain’s problem in the class of starlike functions
with real coefficients was considered by M. T. McGregor [3]. In this paper
we determined the Koebe domain for the class of starlike functions with real
coefficients and the fixed second coefficient.

1. Introduction. Let S∗ denote the class of analytic and univalent func-
tions f in the unit disk ∆ = {z ∈ C : |z| < 1} such that f(0) = f ′(0)−1 = 0
and

Re
zf ′(z)
f(z)

> 0, z ∈ ∆.

The class S∗ is called the class of starlike functions.
In this paper we will study a subclass of the class S∗, i.e. the class S∗R
which contains the starlike functions with real coefficients. In 1964 M. T.
McGregor [3] found the set

⋂
f∈S∗R f(∆), which is called the Koebe domain

for the class S∗R.

Theorem 1 ([3]). The Koebe domain for the class S∗R is symmetric with
respect to the real axis and the boundary of this domain in the upper half
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plane is given by the polar equation w = ρ(θ)eiθ, where

(1) ρ(θ) =
1
4

(
θ

π

)− θ
π

(
1− θ

π

) θ
π
−1

, θ ∈ [0, π].

The extremal functions are of the form

Fθ(z) =
z

(1− z)
2θ
π (1 + z)2(1−

θ
π

)
, z ∈ ∆, θ ∈ [0, π].

2. Main Results.

Theorem 2. If f ∈ S∗R and ρeiθ /∈ f(∆), then f ≺ M ·Fθ, whereM = ρ
ρ(θ) ,

θ ∈ [0, π] and ρ(θ) is given by (1).

Proof. Let f ∈ S∗R and ρeiθ /∈ f(∆). Since f ∈ S∗R, it means that f does
not admit values, which are on the rays l and l, where

l : {ζ ∈ C : ζ = ρeiθt, t ≥ 1}, l : {ζ : ζ ∈ l}.

The function
ρ

ρ(θ)
Fθ

maps the unit disk ∆ onto the plane C without the rays l and l. Moreover,
f ∈ S∗R, so

f(∆) ⊂ ρ

ρ(θ)
Fθ(∆).

From the above as well as from the univalence of Fθ we conclude that
f ≺ M · Fθ, where M = ρ

ρ(θ) , θ ∈ [0, π]. �

Remark 1. Theorem 1 results from Theorem 2. We have

f ≺ M · Fθ.

Hence
1 = f ′(0) ≤ M · F ′

θ(0).

This condition is equivalent to M ≥ 1.

Let f = z + a2z
2 + · · · ∈ S∗R and ρeiθ /∈ f(∆). In the next theorem

we determine the region of values (ρ, a2) for a fixed θ ∈ [0, 2π]. In this
research we can discuss only θ ∈ [0, π], because the region of values (ρ, a2)
is symmetric with respect to the real axis.

Theorem 3. If f = z + a2z
2 + · · · ∈ S∗R and ρeiθ /∈ f(∆), then for a fixed

θ ∈ [0, π], the region of values (ρ, a2) is of the form

Aρ,a2 :=
{

(ρ, a2) :
1
ρ

(π

θ
− 1

) θ
π
−1
− 2 ≤ a2 ≤ 2− 1

ρ

(π

θ
− 1

) θ
π

}
.
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Proof. Let f ∈ S∗R and ρeiθ /∈ f(∆). From Theorem 2 and [2] we have

f(z) = M · Fθ

(
h(z)
M

)
,

where M = ρ
ρ(θ) ≥ 1. The function h(z) is univalent, with real coefficients,

bounded by M and such that

M · Fθ

(
h(z)
M

)
∈ S∗.

Denoting

f(z) = z + a2z
2 + . . .

Fθ(z) = z + b2(θ)z2 + . . .

h(z) = z + c2z
2 + . . . .

we have

a2 = c2 +
1
M

b2(θ) and b2(θ) = 2
(

2θ

π
− 1

)
.

For the function h(z), the following inequalities are true [1]:

−2
(

1− 1
M

)
≤ c2 ≤ 2

(
1− 1

M

)
.

Hence

a2 ≤ 2
(

1− 1
M

)
+

2
M

(
2θ

π
− 1

)
,

and consequently

a2 ≤ 2− 1
ρ

(π

θ
− 1

) θ
π

.

Moreover,

a2 ≥ −2
(

1− 1
M

)
+

2
M

(
2θ

π
− 1

)
,

and

a2 ≥ −2 +
1
ρ

(π

θ
− 1

) θ
π
−1

.

Then we have

1
ρ

(π

θ
− 1

) θ
π
−1
− 2 ≤ a2 ≤ 2− 1

ρ

(π

θ
− 1

) θ
π

.

We shall prove, that for the fixed θ ∈ [0, π] and ρ > ρ(θ) there are functions
f ∈ S∗R, ρeiθ /∈ f(∆) such that f ′′(0)

2! assumes all values from the range[
1
ρ

(π

θ
− 1

) θ
π
−1
− 2, 2− 1

ρ

(π

θ
− 1

) θ
π

]
.
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We consider the univalent functions

w = fM,t(z), fM,t(z) = z + c2(t)z2 + . . .

for which the following equation is satisfied
z

1− 2tz + z2
=

w

1− 2t w
M + w2

M2

.

These functions map the unit disk ∆ on the disk |w| < M with one or
two slits on the real axis. Their coefficients c2(t) = 2t(1 − 1

M ), t ∈ [−1, 1],
assume all values from the range [−2(1− 1

M ), 2(1− 1
M )]. Since the functions

f(z) = M · Fθ

(
h(z)
M

)
= z + a2(t)z2 + . . . , where h(z) = fM,t (z),

are starlike, ρeiθ /∈ f(∆), therefore a2(t) assumes all values from the range[
1
ρ

(
π
θ − 1

) θ
π
−1 − 2, 2− 1

ρ

(
π
θ − 1

) θ
π

]
. �

On figure 1 there is the set Aρ,a2 for fixed θ.

Figure 1. The set Aρ,a2 for θ = 2
3π.

Definition 1. We say, that the function f is in S∗
a if f ∈ S∗ and 1

2f ′′(0) = a,
a ≥ 0 i.e.

S∗
a = {f ∈ S∗ : f(z) = z + az2 + . . . }.

Rogosinski in paper [4] determined the Koebe domain for the class S∗
a.

Theorem 4. The Koebe domain for the class S∗
a, a ∈ [0, 2), is symmetric

with respect to the real axis and the boundary of this domain in the upper
half plane is given by the polar equation w = ρ(θ)eiθ, where

ρ(θ) =
2 + a cos θ

4− a2
, a ≥ 0, θ ∈ [0, π].
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We determine the Koebe domain for the class S∗
aR consisting of the func-

tions from the class S∗
a which have real coefficients. From Theorem 3 we

conclude the following theorem for the class S∗
aR.

Theorem 5. The Koebe domain for the class S∗
aR is symmetric with respect

to the real axis and the boundary of this domain in the upper half plane is
given by the polar equation w = ρa(θ)eiθ, where

(2) ρa(θ) =


1

2−a

(
π
θ − 1

) θ
π , θ ∈

[
0, (2+a)π

4

]
,

1
2+a

(
π
θ − 1

) θ
π
−1

, θ ∈
(

(2+a)π
4 , π

]
.

Proof. Let a2 = a. From Theorem 3 we have

ρ ≥ 1
2− a

(π

θ
− 1

) θ
π

, where θ ∈
[
0,

(2 + a)π
4

]
and

ρ ≥ 1
2 + a

(π

θ
− 1

) θ
π
−1

, where θ ∈
(

(2 + a)π
4

, π

]
. �

On figures 2, 3, 4 there are the Koebe domains for the class S∗
aR for some

fixed a2 = a.

Figure 2. The Koebe domain for the class S∗
aR, a = 0.
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Figure 3. The Koebe domain for the class S∗
aR, a = 1.

Figure 4. The Koebe domain for the class S∗
aR, a = −1.
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Definition 2. We say that the function f(z) is n-symmetric function in ∆,
if for fixed z ∈ ∆ the following condition is satisfied

f
(
e

2πi
n z

)
= e

2πi
n f(z).

We say that the set D is n-symmetric, if the set satisfies the condition
e

2πi
n D = D. The set λD is understood as {λz : z ∈ D}.

We denote by S∗Rn the class of starlike and n-symmetric functions with
real coefficients. From Theorem 5 we have

Corollary 1. The Koebe domain for the class S∗Rn with fixed an+1 = b,
n ≥ 2 is n-symmetric, symmetric with respect to the real axis and the line
ζ = e

πi
n t and the boundary of this domain in the set

{
ζ ∈ C : 0 ≤ arg ζ ≤ π

n

}
is given by the polar equation w = ρb,n(θ)eiθ where

ρb,n(θ) = n
√

ρa(nθ), a = bn, 0 ≤ θ ≤ π

n
.

Proof. For the function f ∈ S∗Rn the following condition is satisfied

(3) f ∈ S∗
aR ⇐⇒ g ∈ S∗Rn,

g(n+1)(0)
(n + 1)!

=
a2

n
,

where g(z) = n
√

f(zn). Let b = a2
n . We determine the set of the form⋂

S∗Rn g(∆). From Theorem 5 we know that the boundary of the Koebe
domain in the class S∗R is of the form w = ρa(θ)eiθ where ρa(θ) is given by
(2). From (3) we have

n
√

w = n
√

ρa(t)e
it
n , t ∈ [0, π],

and consequently for a = bn, θ = t
n ∈ [0, π

n ] we have
n
√

w = n
√

ρbn(nθ)eiθ. �
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