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Sums of holomorphic selfmaps
of the unit disk

ABSTRACT. We derive for p > 0 the best constants ¢, for which ’14;’ +
Cp |17?z‘p < 1 whenever |z| < 1. We also determine for 0 < p <1 all complex
numbers ¢ for which the functions 1E

2
unit disk.

Z+ec (%)p are selfmaps of the closed

1. Introduction. Let D = {z € C : |z| < 1} be the open unit disk and
D = {z € C: |z| < 1} its closure. It is very easy to see that whenever
uw(z) = (14 2)/2 and v(2) = (1 — 2)/2, then |u|?> + |v|?> < 1 on D. These
functions and its companions u o p, where p is a general peak-function in a
uniform algebra, play an important role in studying isometric interpolation
problems (see [2], [5]). But also in operator theory, combinations of powers
of u and v were chosen to study algebraic and functional analytic properties
of composition operators on various spaces of analytic functions (see [4], [1]
and [3]). In [4, p. 492], a paper that served as the impetus for our study of
the class of functions u + cvP, the authors assert that for every p > 0 the
function (1+2)/24¢[(z—1)/2]P is a selfmap for D whenever ¢ > 0 is small.
We will show, among other things, that for 0 < p < 1, the maps u + cvP are
selfmaps of the unit disk if and only if ¢ belongs to a certain convex subset
R, of the disk |z +1/2| < 1/2.
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2. The functions |u| 4+ c|v|P. Let u(z) = (1+2)/2 and v(z2) = (1 —z)/2.
In this section we will study the sum |u| + c|v|P for ¢ > 0 and p > 0,
considered as a function on D.

Proposition 2.1. The following assertions are true:

(i) |ul+ 3[vlP <1 on D ifp>2.
(il) maxpl|u| + c|v|P] > 1 for every p with 0 < p < 2 and every ¢ > 0.
(iii) The best possible constant ¢ > 0 for which |u| 4+ clv|? <1 in D is

oo (= 1Pt
P  (p— 2) 22

whenever p > 2 and ¢ = 1/2 whenever p = 2.

Proof. (i) Due to the maximum principle for subharmonic functions, and
symmetry, it is sufficient to evaluate A(z) = |u(z)| + clv(2)|P at z = €
where 0 < 6§ < 7. Note that A(z) = cos(0/2) + c¢sinP(0/2). Now for fixed
p > 2 and ¢ €]0, 3] we have

A < o1 TN
COS — — S — = —— COS™ — COS — —
F) =08y sl g = Ty 08 g 272

on the interval [0, 7].
(ii) Now let 0 < p < 2. We put y =sin(6/2), 0 <y < 1. Then

ey =1—y2+eyf <1
<:>1—y <1+ AEy? — 2P
= P22 -af) < 1.
Noticing that 1 < 2 — cy? < 2, we see that for all ¢, 0 < ¢ < 1, there exists
y (close to 0), such that cy?~2(2 — cyP) > 1. This gives (ii).
(iii) We are looking for the largest ¢ := ¢, such that cos g + ¢ (sin g)p <1
on [0, 7]; that is,

0<6<m.

Let H(t) = A2, If p = 2, then min,_,.1 H(t) = 1; hence ¢y = 5. If
=3

(1-or-
p > 2, then t, := (T; )<2,and
min H(t) = ! = !

0<t<l maxy_,c1 72 (1=t 52 (1—t,)"
—2
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It follows that for p > 2
o gl 21 ()P O
8 pr(p—2p=2  pp2(p—2)-2/2

Remark. We note that lim,_.» ¢, = 1/2, that ¢, is increasing in p, and that
lim, . ¢, = 1.

3. The functions v 4+ cvP, p > 0, ¢ > 0. For p > 0 and ¢ > 0 let
fp,e = u+cvP, where we choose the branch of the logarithm of w, Re w > 0,
that satisfies log 1 = 0 in order to define v” (note that Re v > 0 in D\ {1}).
We are interested in the problem of when f, . is a selfmap of D. For example,
if ¢ > 1, then f,.(—1) =c>1, so fp. is not a selfmap of D. Thus we may
assume throughout this section that 0 < ¢ < 1.

Proposition 3.1. The following assertions are true:

(i) fpe is not a selfmap of D if 0 <p <1 and 0 <c<1.
(ii) fpc is a selfmap of D for every 1 <p < 3 and every 0 < ¢ < 1.

Proof. (i) Let 0 < p < 1. Then for 0 < z < 1 we have

1+«
2

1—=z\” 1- 1-
+c 5 <l<=2"Pc<(1—2)"P,

which is not satisfied for x close to 1.
(ii) If p=1, then for 0 < ¢ < 1,

1 - 1 1 1 1
‘ re Z:‘+C+z<—c>'<+c+—c:1.

5 T 29 2 2

Let 1 <p <3 and c=1. As above, we need only consider the case where
z = ¢e" with 0 < @ < 7. Then

|fp ()] =

6 6 ;
cos 5 — isin”? 3 ! P~ 1)(6-m)/2

Hence ) )
2p 5t 2 cos 3 sin” B sin ¢,
where ¢ = (p — 1)(6 — 7)/2. Since 1 < p < 3, we have that —7 < ¢ < 0.

Hence sinp < 0. Thus

2 0
‘pr(ew)‘ = cos? 5t sin

| fp1(e?)|? < cos? g + sin? g =1.

Now let 1 < p <3 and 0 < ¢ < 1. We fix two points u and w in D (for
instance u = u(z) and w = vP(z) for some z € D.) Note that the case ¢ =1
above implies that v + w € D. Since D is convex, the line segment joining
u€Dand u+w €D, given by {u+ cw : 0 < ¢ < 1}, is contained in D.
Thus the function f, . is a selfmap of D. O
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We remark that ¢ = 1/2 is the best constant in
2

1 1-—
‘ ;z . z <1
but that ¢ can be chosen to be 1 in
1+ 2 1—2\2
-~ < 1.
5 +c< 5 ) pS
(Note that )1'52 + (152)2‘ = ‘% + % <1)
We guess that for all p > 1 we have
1+ 2 1—2\?
<1.
()

In addition to the case 1 < p < 3 we considered above, we can also confirm
this inequality for p = 4 and p = 5.

4. The functions u + cvP, 0 < p < 1, ¢ € C. In this section we
determine all complex numbers ¢ for which f, . is a selfmap of D, whenever
0<p<1l

Lemma 4.1. Let 0 < p < 1. Then the regions

me={(552) "aen)

are strictly decreasing. For p =0, the set Ry coincides with the closed disk
centered at z =1/2 and radius 1/2.

Proof. First we note that the function M, defined by M,(a) = (kTa)l_p is

a conformal map of D onto the interior of R,. If p = 0, then R, is the disk
{z €D :|z—1/2| <1/2}. The boundary of Ry can be represented in polar
coordinates by z(t) = e cost, —m/2 < t < m/2. Consider the principal
branch of the logarithm. Then L := log My(D) is an unbounded convex
domain in the left half-plane, contained in the strip {w € C: [Im w| < §}.
The upper half of the boundary of L is given by the curve €T, parametrised
as logcost + it, 0 < t < w/2. The lower half €~ of the boundary is the
reflection of € with respect to the real axis. The horizontal asymptotes
are the lines Im w = £75. Due to convexity, and the fact that 0 € L,
the image log M,(D) = (1 — p)log My(D) is contained in log My(D) (see
figure). Hence R, C Ry. The same reasoning works for the pairs (p,p’),
0 <p<p <1, instead of (0,p). Hence R,y C R,,. O



Sums of holomorphic selfmaps of the unit disk 111

/2
e+
log z log Rp ! 0
— -
o=
-1/ 2

FIGURE 1. The regions log i, and log Ry.

Lemma 4.2. Let € be the boundary of the domain —R,, 0 < p < 1. Then
t—5(p+1)

wy(t) == e sin! P ( i

of the upper half of €.
Proof. We assume that 0 < § < 7. Then

. -7 l_p
M, (&) = (e"(92) sin Q) .

Hence | M, (e')| = sm P(6/2) and arg(—Mp(e?)) = = — I (1 — p).
Let t = arg(—Mp(e?)). Then t € [Z(1 + p), 7] and

), 5(1+p) <t <, is the polar representation

- 2t —m(p+1)
L—p
Thus
wy(t) := —Mp(e?) = e sin'~ t——p—i—l)‘
If p =0, we get wo(t) = esin(t — %), 5 <t < . It is easy to see that
—Ry is the disk |z +1/2| < 1/2. O

Theorem 4.3. i) Let 0 < p < 1 and c € C. Then the function

142 1—2\’
el =157 4 (55

is a selfmap of D if and only if c € —Ry; that is, if c = — (I_T“)l_p for
some a € D. In particular, if |c| = 1, then fp. is a selfmap of D if and
only if c = —1.

ii) Forp =0, (142)/2+c is a selfmap of D if and only if |c+1/2| < 1/2.

iii) Forp =1, (1 +2)/2+ ¢(1 — 2)/2 is a selfmap of D if and only if
—1<ec<L 1.
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Proof. First we show that whenever f,. is a selfmap of D and 0 <p < 1,
then ¢ = — (I_T“)lfp for some a € D. To this end we use the Denjoy—Wolff
theorem: If f, . is a selfmap of D that is not the identity fi _1, then either
it has a unique fixed point in D or it has a unique boundary fixed point b
with the property that the angular derivative at b is strictly positive and
less than or equal to 1. Now our f, . always has 1 as a fixed point; however
the angular derivative does not exist at that point. Thus we must look for
other fixed points of f, . in D.

So let fpc(a) =a. Thena=1or1—a+ (1 —a)? = 0. The latter is

equivalent to

(4.1) c:—<1;“>1_p.

Thus, a necessary condition for f, . being a selfmap of D, is that ¢ belongs

to the region
N 1—a\"?
Rp::{—< 5 ) :aeD}.

Note that if |¢| = 1, then (4.1) implies that a = ¢ = —1. To deal with the
case p = 1, we proceed in another way. To begin with, let p be arbitrary,
0<p<1.

First we note that (%)p = (152)17. Hence it suffices to deal with those
parameters ¢ that belong to the closed upper half plane. Moreover, since
fp.e(—1) = ¢, we can restrict to parameters ¢ that are in the closed unit
disk. Let ¢ = re’?, where 0 < p <7, 0 < r < 1.

If ¢ = 0, there is nothing to show. So suppose ¢ # 0. For z = e,
0 <6 <m, we have:

j ; 0 . 0 .
fp,c(eze) = /2 cos = + 1€’ sin? 3 eP(0—m)/2

Hence
| fp.e(e)]? = cos? g +r? sin2pg
0 0 -1
+ 2r cos B sin? 5 cos [172(9 -7 — g + go]
= cos? 0 + 72 sin?P —
2 2
0 0 -1
+2rcosisinp§sin [p 5 (0 —m) —Hp] .
Now

p—1
2

: 0 0 0 6
| fpe(e)? <1 = r?sin? 5—1—27” co8 5 sin? 3 sin{ (9—7r)+<p] < sin® 7
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For 6 # 0 we divide by sin?(0/2), which yields

0 o -1 o
72 sin? 5 + 2r cos — sin [p 5 (0 —m7)+ QP] < sin®7P 7

2
Letting  — 0T, gives

1—
(4.2) 2r sin <2p7r + 90) <0.

Thus pT—Hﬂ' <p< ’%371 Hence, if p = 1 we may use our hypothesis that
0 < ¢ <, tosee that ¢ =0 or ¢ = 7. Thus c € [-1,1].

Next we prove the sufficiency of these conditions.

e Let p = 0 and |c+ 1/2| < 1/2. Then ¢ = —1/2 + (1/2)r§, where
0<r<1and [{|=1. Hence

1+ 2 z r |z + [€]
=24 g < BBy,
‘ R A PR N e E
e If p=1,and —1 < ¢ <1, then trivially
1+Z+ 1-=2 1—|—c+ 1-c 1—|—c+1—c<1
c = z .
2 2 2 2 |7 2 2 =

e Now let 0 < p < 1 and suppose that c is located in the closed region
Ry = {— (177“)17]) ta € D}. Let A = 1;2a, B = 1? for a,z € D. We
show that C' := A'"PBP belongs to the disk A = {|z — 1/2| < 1/2}. First
note that Re C > 0. If log denotes the principal branch of the logarithm on
the right-half plane, we obtain that log(A'"PBP) = (1 — p)log A + plog B.
Since the domain L = log A in Lemma 4.1 above is convex, we get that
(1 —p)log A+ plog B € L. Hence A'"PBP € A. Thus, by the case p = 0,
we conclude that

142 1—a\'"P/1-2\" 142
_ — — D. O

The previous result shows that a statement in MacCluer, Ohno and Zhao
[4] is not correct:

The function fy/9; = 1% + 714/ 15z (principal branch) is not a selfmap
of D, however small » > 0 is. In particular, there exists z € D such that

fi/24(2) = 4z _ i /152 ¢ D. Thus the function f1/2,— is not a selfmap,
either.

More generally, let p € ]0,1[. Then none of the maps 132 + ¢ (2 — 1)”
considered in [4] is a selfmap of I whenever ¢ > 0. In fact, for ¢ > 0, write
the function 4% + ¢ (z — 1) as 4% 4 re’™ (152)”. Then the parameter
c = re’™ does not lie in the domain Ry, since its argument is 7p and
7p < 5(1+ p). Our statement now follows from Theorem 4.3.
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5. Convex perturbations. In [4] functions of the type sz + 1 — s for
0 < s < 1 are considered, too. Here we have the following result. Recall
that the disk algebra A(ID) is the space of all functions continuous on D and
holomorphic in D.

Proposition 5.1. Let f € A(D) be a function such that (1 + z)/2 + f(z)
is a selfmap of D. Then, for every s €10,1] there exists a constant c¢s > 0
such that (sz+1—s) + cf is a selfmap of D for every ¢ with 0 < ¢ < cs.

Proof. Let (o, 3) €]0,1[? satisfy a + 3 = 1. Since D is convex, we have

that for every o € [0,1] and z € D

1+2
2

h(z):a(az+1—a)+5[ +f(z)} e D.

h(z) = (aa—i— g) Z+ <a—aa+ g) +6f(2).

Now we have to choose «, @ and o such that s = ac + /2. Then,
automatically, 1 — s = o — o + /2. To see that such a choice is possible,
we use the assumption that = 1—« to obtain that « = (s—1/2)/(c—1/2).
If we now choose o so that, either 1/2 < s <o <1,or 0 <o < s < 1/2,
then 0 < o < 1. Now we may define ¢ by ¢ := 8 = 1 — « to conclude that
(sz+1—38)+csf is a selfmap of D. For example, if s > 1/2 and 0 = 1,
then ¢; =2(1—s);if 0 < s < 1/2 and o = 0, then ¢; = 2s.

Once we have found a constant ¢, for which (sz + 1 —s) + ¢5f is a self-
map of D, it is now easy to see that for every ¢ with 0 < ¢ < ¢4, the map
(sz+1—s)+cf is a selfmap, too. In fact, since D is starlike with respect
to any point @ € D, it follows that a + tb € D whenever a + tgb € D and
0 <t <ty. Hence we get Proposition 5.1. O

We mention here that whenever u + cvP and u + 'vP are selfmaps of
D, then for any convex combination ¢’ := sc 4+ (1 — s)¢’ of the points
¢,d €D, 0< s <1, we have that u + ¢’vP is a selfmap of D, too. In fact,
u~+ "vP = s(u+ cvP) + (1 — s)(u + 'vP) is a convex combination of such
functions. As an application we mention that by Propositions 2.1 and 3.1,
2z 4 o (22)2 45 5 selfmap of D if ¢ belongs to the convex hull of the disk
{|z] < 1/2} and the point 1. Is this also a necessary condition?
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