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Sums of holomorphic selfmaps
of the unit disk

Abstract. We derive for p > 0 the best constants cp for which
∣∣ 1+z

2

∣∣ +

cp

∣∣ 1−z
2

∣∣p ≤ 1 whenever |z| ≤ 1. We also determine for 0 ≤ p ≤ 1 all complex
numbers c for which the functions 1+z

2
+ c

(
1−z
2

)p are selfmaps of the closed
unit disk.

1. Introduction. Let D = {z ∈ C : |z| < 1} be the open unit disk and
D = {z ∈ C : |z| ≤ 1} its closure. It is very easy to see that whenever
u(z) = (1 + z)/2 and v(z) = (1 − z)/2, then |u|2 + |v|2 ≤ 1 on D. These
functions and its companions u ◦ p, where p is a general peak-function in a
uniform algebra, play an important role in studying isometric interpolation
problems (see [2], [5]). But also in operator theory, combinations of powers
of u and v were chosen to study algebraic and functional analytic properties
of composition operators on various spaces of analytic functions (see [4], [1]
and [3]). In [4, p. 492], a paper that served as the impetus for our study of
the class of functions u + cvp, the authors assert that for every p > 0 the
function (1+ z)/2+ c[(z−1)/2]p is a selfmap for D whenever c > 0 is small.
We will show, among other things, that for 0 ≤ p < 1, the maps u + cvp are
selfmaps of the unit disk if and only if c belongs to a certain convex subset
Rp of the disk |z + 1/2| ≤ 1/2.
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2. The functions |u| + c|v|p. Let u(z) = (1+ z)/2 and v(z) = (1− z)/2.
In this section we will study the sum |u| + c|v|p for c > 0 and p > 0,
considered as a function on D.

Proposition 2.1. The following assertions are true:

(i) |u|+ 1
2 |v|

p ≤ 1 on D if p ≥ 2.
(ii) maxD[|u|+ c|v|p] > 1 for every p with 0 < p < 2 and every c > 0.
(iii) The best possible constant c > 0 for which |u|+ c|v|p ≤ 1 in D is

cp :=
(p− 1)p−1

pp/2 (p− 2)(p−2)/2

whenever p > 2 and c = 1/2 whenever p = 2.

Proof. (i) Due to the maximum principle for subharmonic functions, and
symmetry, it is sufficient to evaluate ∆(z) = |u(z)| + c|v(z)|p at z = eiθ

where 0 ≤ θ ≤ π. Note that ∆(z) = cos(θ/2) + c sinp(θ/2). Now for fixed
p ≥ 2 and c ∈ ]0, 1

2 ] we have

∆(z) ≤ cos
θ

2
+

1
2

sin2 θ

2
= −1

2
cos2

θ

2
+ cos

θ

2
+

1
2

= 1− 1
2

(
cos

θ

2
− 1

)2

≤ 1

on the interval [0, π].
(ii) Now let 0 < p < 2. We put y = sin(θ/2), 0 ≤ y ≤ 1. Then

∆(eiθ) =
√

1− y2 + cyp ≤ 1

⇐⇒ 1− y2 ≤ 1 + c2y2p − 2cyp

⇐⇒ cyp−2(2− cyp) ≤ 1.

Noticing that 1 ≤ 2− cyp ≤ 2, we see that for all c, 0 < c ≤ 1, there exists
y (close to 0), such that cyp−2(2− cyp) > 1. This gives (ii).
(iii) We are looking for the largest c := cp such that cos θ

2 + c
(
sin θ

2

)p ≤ 1
on [0, π]; that is,

c ≤
1− cos θ

2

(sin θ
2)

p = 21−p ·

√√√√ (sin2 θ
4)

2−p

(1− sin2 θ
4)

p , 0 < θ ≤ π.

Let H(t) = t2−p

(1−t)p . If p = 2, then min0<t≤ 1
2
H(t) = 1; hence c2 = 1

2 . If

p > 2, then tp := p−2
2(p−1) < 1

2 , and

min
0<t≤ 1

2

H(t) =
1

max0<t≤ 1
2
tp−2 (1− t)p

=
1

tp−2
p (1− tp)

p
.
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It follows that for p > 2

cp = 21−p ·

√
22p−2(p− 1)2p−2

pp(p− 2)p−2
=

(p− 1)p−1

pp/2(p− 2)(p−2)/2
. �

Remark. We note that limp→2 cp = 1/2, that cp is increasing in p, and that
limp→∞ cp = 1.

3. The functions u + cvp, p > 0, c > 0. For p > 0 and c > 0 let
fp,c = u+ cvp, where we choose the branch of the logarithm of w, Re w > 0,
that satisfies log 1 = 0 in order to define vp (note that Re v > 0 in D \ {1}).
We are interested in the problem of when fp,c is a selfmap ofD. For example,
if c > 1, then fp,c(−1) = c > 1, so fp,c is not a selfmap of D. Thus we may
assume throughout this section that 0 < c ≤ 1.

Proposition 3.1. The following assertions are true:
(i) fp,c is not a selfmap of D if 0 < p < 1 and 0 < c ≤ 1.
(ii) fp,c is a selfmap of D for every 1 ≤ p ≤ 3 and every 0 < c ≤ 1.

Proof. (i) Let 0 < p < 1. Then for 0 < x < 1 we have

1 + x

2
+ c

(
1− x

2

)p

≤ 1 ⇐⇒ 21−pc ≤ (1− x)1−p,

which is not satisfied for x close to 1.
(ii) If p = 1, then for 0 < c ≤ 1,∣∣∣∣1 + z

2
+ c

1− z

2

∣∣∣∣ =
∣∣∣∣12 +

c

2
+ z

(
1
2
− c

2

)∣∣∣∣ ≤ 1
2

+
c

2
+

1
2
− c

2
= 1.

Let 1 < p ≤ 3 and c = 1. As above, we need only consider the case where
z = eiθ with 0 < θ < π. Then

|fp,1(eiθ)| =
∣∣∣∣cos

θ

2
− i sinp θ

2
ei(p−1)(θ−π)/2

∣∣∣∣ .

Hence ∣∣∣fp,1(eiθ)
∣∣∣2 = cos2

θ

2
+ sin2p θ

2
+ 2 cos

θ

2
sinp θ

2
sinϕ,

where ϕ = (p − 1)(θ − π)/2. Since 1 < p ≤ 3, we have that −π ≤ ϕ ≤ 0.
Hence sinϕ ≤ 0. Thus

|fp,1(eiθ)|2 ≤ cos2
θ

2
+ sin2 θ

2
= 1.

Now let 1 < p ≤ 3 and 0 < c < 1. We fix two points u and w in D (for
instance u = u(z) and w = vp(z) for some z ∈ D.) Note that the case c = 1
above implies that u + w ∈ D. Since D is convex, the line segment joining
u ∈ D and u + w ∈ D, given by {u + cw : 0 ≤ c ≤ 1}, is contained in D.
Thus the function fp,c is a selfmap of D. �
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We remark that c = 1/2 is the best constant in∣∣∣∣1 + z

2

∣∣∣∣ + c

∣∣∣∣1− z

2

∣∣∣∣2 ≤ 1,

but that c can be chosen to be 1 in∣∣∣∣∣1 + z

2
+ c

(
1− z

2

)2
∣∣∣∣∣ ≤ 1.

(Note that
∣∣∣1+z

2 +
(

1−z
2

)2
∣∣∣ =

∣∣∣3
4 + z2

4

∣∣∣ ≤ 1.)
We guess that for all p ≥ 1 we have∣∣∣∣1 + z

2
+

(
1− z

2

)p∣∣∣∣ ≤ 1.

In addition to the case 1 ≤ p ≤ 3 we considered above, we can also confirm
this inequality for p = 4 and p = 5.

4. The functions u + cvp, 0 ≤ p ≤ 1, c ∈ C. In this section we
determine all complex numbers c for which fp,c is a selfmap of D, whenever
0 ≤ p ≤ 1.

Lemma 4.1. Let 0 ≤ p < 1. Then the regions

Rp :=

{(
1− a

2

)1−p

: a ∈ D

}
are strictly decreasing. For p = 0, the set R0 coincides with the closed disk
centered at z = 1/2 and radius 1/2.

Proof. First we note that the function Mp defined by Mp(a) =
(

1−a
2

)1−p is
a conformal map of D onto the interior of Rp. If p = 0, then Rp is the disk
{z ∈ D : |z− 1/2| ≤ 1/2}. The boundary of R0 can be represented in polar
coordinates by z(t) = eit cos t, −π/2 ≤ t ≤ π/2. Consider the principal
branch of the logarithm. Then L := log M0(D) is an unbounded convex
domain in the left half-plane, contained in the strip {w ∈ C : |Im w| < π

2 }.
The upper half of the boundary of L is given by the curve C+, parametrised
as log cos t + it, 0 ≤ t ≤ π/2. The lower half C− of the boundary is the
reflection of C+ with respect to the real axis. The horizontal asymptotes
are the lines Im w = ±π

2 . Due to convexity, and the fact that 0 ∈ L,
the image log Mp(D) = (1 − p) log M0(D) is contained in log M0(D) (see
figure). Hence Rp ⊆ R0. The same reasoning works for the pairs (p, p′),
0 ≤ p < p′ < 1, instead of (0, p). Hence Rp′ ⊆ Rp. �
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Figure 1. The regions log Rp and log R0.

Lemma 4.2. Let C be the boundary of the domain −Rp, 0 ≤ p < 1. Then

wp(t) := eit sin1−p
(

t−π
2
(p+1)

1−p

)
, π

2 (1 + p) ≤ t ≤ π, is the polar representation
of the upper half of C.

Proof. We assume that 0 ≤ θ ≤ π. Then

Mp(eiθ) =
(

ei( θ−π
2

) sin
θ

2

)1−p

.

Hence |Mp(eiθ)| = sin1−p(θ/2) and arg(−Mp(eiθ)) = π − π−θ
2 (1− p).

Let t = arg(−Mp(eiθ)). Then t ∈ [π
2 (1 + p), π] and

θ =
2t− π(p + 1)

1− p
.

Thus

wp(t) := −Mp(eiθ) = eit sin1−p

(
t− π

2 (p + 1)
1− p

)
.

If p = 0, we get w0(t) = eit sin(t − π
2 ), π

2 ≤ t ≤ π. It is easy to see that
−R0 is the disk |z + 1/2| ≤ 1/2. �

Theorem 4.3. i) Let 0 < p < 1 and c ∈ C. Then the function

fp,c(z) =
1 + z

2
+ c

(
1− z

2

)p

is a selfmap of D if and only if c ∈ −Rp; that is, if c = −
(

1−a
2

)1−p for
some a ∈ D. In particular, if |c| = 1, then fp,c is a selfmap of D if and
only if c = −1.
ii) For p = 0, (1+z)/2+c is a selfmap of D if and only if |c+1/2| ≤ 1/2.
iii) For p = 1, (1 + z)/2 + c(1 − z)/2 is a selfmap of D if and only if

−1 ≤ c ≤ 1.
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Proof. First we show that whenever fp,c is a selfmap of D and 0 ≤ p < 1,
then c = −

(
1−a
2

)1−p for some a ∈ D. To this end we use the Denjoy–Wolff
theorem: If fp,c is a selfmap of D that is not the identity f1,−1, then either
it has a unique fixed point in D or it has a unique boundary fixed point b
with the property that the angular derivative at b is strictly positive and
less than or equal to 1. Now our fp,c always has 1 as a fixed point; however
the angular derivative does not exist at that point. Thus we must look for
other fixed points of fp,c in D.
So let fp,c(a) = a. Then a = 1 or 1 − a + 2c

2p (1 − a)p = 0. The latter is
equivalent to

(4.1) c = −
(

1− a

2

)1−p

.

Thus, a necessary condition for fp,c being a selfmap of D, is that c belongs
to the region

R∗p :=

{
−

(
1− a

2

)1−p

: a ∈ D

}
.

Note that if |c| = 1, then (4.1) implies that a = c = −1. To deal with the
case p = 1, we proceed in another way. To begin with, let p be arbitrary,
0 < p ≤ 1.
First we note that

(
1−z
2

)p =
(

1−z
2

)p
. Hence it suffices to deal with those

parameters c that belong to the closed upper half plane. Moreover, since
fp,c(−1) = c, we can restrict to parameters c that are in the closed unit
disk. Let c = reiϕ, where 0 ≤ ϕ ≤ π, 0 < r ≤ 1.
If c = 0, there is nothing to show. So suppose c 6= 0. For z = eiθ,

0 ≤ θ ≤ π, we have:

fp,c(eiθ) = eiθ/2 cos
θ

2
+ reiϕ sinp θ

2
eip(θ−π)/2.

Hence

|fp,c(eiθ)|2 = cos2
θ

2
+ r2 sin2p θ

2

+ 2r cos
θ

2
sinp θ

2
cos

[
p− 1

2
(θ − π)− π

2
+ ϕ

]
= cos2

θ

2
+ r2 sin2p θ

2

+ 2r cos
θ

2
sinp θ

2
sin

[
p− 1

2
(θ − π) + ϕ

]
.

Now

|fp,c(eiθ)|2 ≤ 1 ⇐⇒ r2 sin2p θ

2
+2r cos

θ

2
sinp θ

2
sin

[
p− 1

2
(θ−π)+ϕ

]
≤ sin2 θ

2
.
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For θ 6= 0 we divide by sinp(θ/2), which yields

r2 sinp θ

2
+ 2r cos

θ

2
sin

[
p− 1

2
(θ − π) + ϕ

]
≤ sin2−p θ

2
.

Letting θ → 0+, gives

(4.2) 2r sin
(

1− p

2
π + ϕ

)
≤ 0.

Thus p+1
2 π ≤ ϕ ≤ p+3

2 π. Hence, if p = 1 we may use our hypothesis that
0 ≤ ϕ ≤ π, to see that ϕ = 0 or ϕ = π. Thus c ∈ [−1, 1].
Next we prove the sufficiency of these conditions.
• Let p = 0 and |c + 1/2| ≤ 1/2. Then c = −1/2 + (1/2)rξ, where

0 ≤ r ≤ 1 and |ξ| = 1. Hence∣∣∣∣1 + z

2
+ c

∣∣∣∣ =
∣∣∣z
2

+
r

2
ξ
∣∣∣ ≤ |z|+ |ξ|

2
≤ 1.

• If p = 1, and −1 ≤ c ≤ 1, then trivially∣∣∣∣1 + z

2
+ c

1− z

2

∣∣∣∣ =
∣∣∣∣1 + c

2
+ z

1− c

2

∣∣∣∣ ≤ 1 + c

2
+

1− c

2
≤ 1.

• Now let 0 < p < 1 and suppose that c is located in the closed region
R∗p :=

{
−

(
1−a
2

)1−p : a ∈ D
}
. Let A = 1−a

2 , B = 1−z
2 for a, z ∈ D. We

show that C := A1−pBp belongs to the disk ∆ = {|z − 1/2| ≤ 1/2}. First
note that Re C ≥ 0. If log denotes the principal branch of the logarithm on
the right-half plane, we obtain that log(A1−pBp) = (1 − p) log A + p log B.
Since the domain L = log ∆ in Lemma 4.1 above is convex, we get that
(1 − p) log A + p log B ∈ L. Hence A1−pBp ∈ ∆. Thus, by the case p = 0,
we conclude that

1 + z

2
−

(
1− a

2

)1−p (
1− z

2

)p

=
1 + z

2
− C ∈ D. �

The previous result shows that a statement in MacCluer, Ohno and Zhao
[4] is not correct:

The function f1/2,ir = 1+z
2 + ri

√
1−z
2 (principal branch) is not a selfmap

of D, however small r > 0 is. In particular, there exists z ∈ D such that

f1/2,i(z) = 1+z
2 − i

√
1−z
2 /∈ D. Thus the function f1/2,−i is not a selfmap,

either.
More generally, let p ∈ ]0, 1[. Then none of the maps 1+z

2 + t (z − 1)p

considered in [4] is a selfmap of D whenever t > 0. In fact, for t > 0, write
the function 1+z

2 + t (z − 1)p as 1+z
2 + reiπp

(
1−z
2

)p. Then the parameter
c = reiπp does not lie in the domain R∗p, since its argument is πp and
πp < π

2 (1 + p). Our statement now follows from Theorem 4.3.
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5. Convex perturbations. In [4] functions of the type sz + 1 − s for
0 < s < 1 are considered, too. Here we have the following result. Recall
that the disk algebra A(D) is the space of all functions continuous on D and
holomorphic in D.

Proposition 5.1. Let f ∈ A(D) be a function such that (1 + z)/2 + f(z)
is a selfmap of D. Then, for every s ∈ ]0, 1[ there exists a constant cs > 0
such that (sz + 1− s) + cf is a selfmap of D for every c with 0 ≤ c ≤ cs.

Proof. Let (α, β) ∈]0, 1[2 satisfy α + β = 1. Since D is convex, we have
that for every σ ∈ [0, 1] and z ∈ D

h(z) = α(σz + 1− σ) + β

[
1 + z

2
+ f(z)

]
∈ D.

But

h(z) =
(

ασ +
β

2

)
z +

(
α− ασ +

β

2

)
+ βf(z).

Now we have to choose α, β and σ such that s = ασ + β/2. Then,
automatically, 1− s = α− ασ + β/2. To see that such a choice is possible,
we use the assumption that β = 1−α to obtain that α = (s−1/2)/(σ−1/2).
If we now choose σ so that, either 1/2 < s < σ ≤ 1, or 0 ≤ σ < s < 1/2,
then 0 < α < 1. Now we may define cs by cs := β = 1− α to conclude that
(sz + 1 − s) + csf is a selfmap of D. For example, if s > 1/2 and σ = 1,
then cs = 2(1− s); if 0 < s < 1/2 and σ = 0, then cs = 2s.
Once we have found a constant cs for which (sz + 1 − s) + csf is a self-
map of D, it is now easy to see that for every c with 0 ≤ c ≤ cs, the map
(sz + 1− s) + cf is a selfmap, too. In fact, since D is starlike with respect
to any point a ∈ D, it follows that a + tb ∈ D whenever a + t0b ∈ D and
0 ≤ t ≤ t0. Hence we get Proposition 5.1. �

We mention here that whenever u + cvp and u + c′vp are selfmaps of
D, then for any convex combination c′′ := sc + (1 − s)c′ of the points
c, c′ ∈ D, 0 < s < 1, we have that u + c′′vp is a selfmap of D, too. In fact,
u + c′′vp = s(u + cvp) + (1 − s)(u + c′vp) is a convex combination of such
functions. As an application we mention that by Propositions 2.1 and 3.1,
1+z
2 + c

(
1−z
2

)2 is a selfmap of D if c belongs to the convex hull of the disk
{|z| ≤ 1/2} and the point 1. Is this also a necessary condition?
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