RAYMOND MORTINI and RUDOLF RUPP

Sums of holomorphic selfmaps of the unit disk

Abstract

We derive for $p>0$ the best constants c_{p} for which $\left|\frac{1+z}{2}\right|+$ $c_{p}\left|\frac{1-z}{2}\right|^{p} \leq 1$ whenever $|z| \leq 1$. We also determine for $0 \leq p \leq 1$ all complex numbers c for which the functions $\frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{p}$ are selfmaps of the closed unit disk.

1. Introduction. Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk and $\mathbf{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ its closure. It is very easy to see that whenever $u(z)=(1+z) / 2$ and $v(z)=(1-z) / 2$, then $|u|^{2}+|v|^{2} \leq 1$ on \mathbf{D}. These functions and its companions $u \circ p$, where p is a general peak-function in a uniform algebra, play an important role in studying isometric interpolation problems (see [2], [5]). But also in operator theory, combinations of powers of u and v were chosen to study algebraic and functional analytic properties of composition operators on various spaces of analytic functions (see [4], [1] and [3]). In [4, p. 492], a paper that served as the impetus for our study of the class of functions $u+c v^{p}$, the authors assert that for every $p>0$ the function $(1+z) / 2+c[(z-1) / 2]^{p}$ is a selfmap for \mathbb{D} whenever $c>0$ is small. We will show, among other things, that for $0 \leq p<1$, the maps $u+c v^{p}$ are selfmaps of the unit disk if and only if c belongs to a certain convex subset R_{p} of the disk $|z+1 / 2| \leq 1 / 2$.

[^0]2. The functions $|\boldsymbol{u}|+\boldsymbol{c}|\boldsymbol{v}|^{\boldsymbol{p}}$. Let $u(z)=(1+z) / 2$ and $v(z)=(1-z) / 2$. In this section we will study the sum $|u|+c|v|^{p}$ for $c>0$ and $p>0$, considered as a function on \mathbf{D}.

Proposition 2.1. The following assertions are true:
(i) $|u|+\frac{1}{2}|v|^{p} \leq 1$ on \mathbf{D} if $p \geq 2$.
(ii) $\max _{\mathbf{D}}\left[|u|+c|v|^{p}\right]>1$ for every p with $0<p<2$ and every $c>0$.
(iii) The best possible constant $c>0$ for which $|u|+c|v|^{p} \leq 1$ in \mathbf{D} is

$$
c_{p}:=\frac{(p-1)^{p-1}}{p^{p / 2}(p-2)^{(p-2) / 2}}
$$

whenever $p>2$ and $c=1 / 2$ whenever $p=2$.
Proof. (i) Due to the maximum principle for subharmonic functions, and symmetry, it is sufficient to evaluate $\Delta(z)=|u(z)|+c|v(z)|^{p}$ at $z=e^{i \theta}$ where $0 \leq \theta \leq \pi$. Note that $\Delta(z)=\cos (\theta / 2)+c \sin ^{p}(\theta / 2)$. Now for fixed $p \geq 2$ and $\left.c \in] 0, \frac{1}{2}\right]$ we have

$$
\begin{aligned}
\Delta(z) & \leq \cos \frac{\theta}{2}+\frac{1}{2} \sin ^{2} \frac{\theta}{2}=-\frac{1}{2} \cos ^{2} \frac{\theta}{2}+\cos \frac{\theta}{2}+\frac{1}{2} \\
& =1-\frac{1}{2}\left(\cos \frac{\theta}{2}-1\right)^{2} \leq 1
\end{aligned}
$$

on the interval $[0, \pi]$.
(ii) Now let $0<p<2$. We put $y=\sin (\theta / 2), 0 \leq y \leq 1$. Then

$$
\begin{aligned}
& \Delta\left(e^{i \theta}\right)=\sqrt{1-y^{2}}+c y^{p} \leq 1 \\
& \Longleftrightarrow 1-y^{2} \leq 1+c^{2} y^{2 p}-2 c y^{p} \\
& \Longleftrightarrow c y^{p-2}\left(2-c y^{p}\right) \leq 1
\end{aligned}
$$

Noticing that $1 \leq 2-c y^{p} \leq 2$, we see that for all $c, 0<c \leq 1$, there exists y (close to 0), such that $c y^{p-2}\left(2-c y^{p}\right)>1$. This gives (ii).
(iii) We are looking for the largest $c:=c_{p}$ such that $\cos \frac{\theta}{2}+c\left(\sin \frac{\theta}{2}\right)^{p} \leq 1$ on $[0, \pi]$; that is,

$$
c \leq \frac{1-\cos \frac{\theta}{2}}{\left(\sin \frac{\theta}{2}\right)^{p}}=2^{1-p} \cdot \sqrt{\frac{\left(\sin ^{2} \frac{\theta}{4}\right)^{2-p}}{\left(1-\sin ^{2} \frac{\theta}{4}\right)^{p}}}, \quad 0<\theta \leq \pi
$$

Let $H(t)=\frac{t^{2-p}}{(1-t)^{p}}$. If $p=2$, then $\min _{0<t \leq \frac{1}{2}} H(t)=1$; hence $c_{2}=\frac{1}{2}$. If $p>2$, then $t_{p}:=\frac{p-2}{2(p-1)}<\frac{1}{2}$, and

$$
\min _{0<t \leq \frac{1}{2}} H(t)=\frac{1}{\max _{0<t \leq \frac{1}{2}} t^{p-2}(1-t)^{p}}=\frac{1}{t_{p}^{p-2}\left(1-t_{p}\right)^{p}}
$$

It follows that for $p>2$

$$
c_{p}=2^{1-p} \cdot \sqrt{\frac{2^{2 p-2}(p-1)^{2 p-2}}{p^{p}(p-2)^{p-2}}}=\frac{(p-1)^{p-1}}{p^{p / 2}(p-2)^{(p-2) / 2}}
$$

Remark. We note that $\lim _{p \rightarrow 2} c_{p}=1 / 2$, that c_{p} is increasing in p, and that $\lim _{p \rightarrow \infty} c_{p}=1$.
3. The functions $\boldsymbol{u}+\boldsymbol{c v}^{\boldsymbol{p}}, \boldsymbol{p}>\mathbf{0}, \boldsymbol{c}>\mathbf{0}$. For $p>0$ and $c>0$ let $f_{p, c}=u+c v^{p}$, where we choose the branch of the logarithm of $w, \operatorname{Re} w>0$, that satisfies $\log 1=0$ in order to define v^{p} (note that $\operatorname{Re} v>0$ in $\mathbf{D} \backslash\{1\}$). We are interested in the problem of when $f_{p, c}$ is a selfmap of \mathbf{D}. For example, if $c>1$, then $f_{p, c}(-1)=c>1$, so $f_{p, c}$ is not a selfmap of \mathbf{D}. Thus we may assume throughout this section that $0<c \leq 1$.

Proposition 3.1. The following assertions are true:
(i) $f_{p, c}$ is not a selfmap of \mathbf{D} if $0<p<1$ and $0<c \leq 1$.
(ii) $f_{p, c}$ is a selfmap of \mathbf{D} for every $1 \leq p \leq 3$ and every $0<c \leq 1$.

Proof. (i) Let $0<p<1$. Then for $0<x<1$ we have

$$
\frac{1+x}{2}+c\left(\frac{1-x}{2}\right)^{p} \leq 1 \Longleftrightarrow 2^{1-p} c \leq(1-x)^{1-p}
$$

which is not satisfied for x close to 1 .
(ii) If $p=1$, then for $0<c \leq 1$,

$$
\left|\frac{1+z}{2}+c \frac{1-z}{2}\right|=\left|\frac{1}{2}+\frac{c}{2}+z\left(\frac{1}{2}-\frac{c}{2}\right)\right| \leq \frac{1}{2}+\frac{c}{2}+\frac{1}{2}-\frac{c}{2}=1
$$

Let $1<p \leq 3$ and $c=1$. As above, we need only consider the case where $z=e^{i \theta}$ with $\overline{0}<\theta<\pi$. Then

$$
\left|f_{p, 1}\left(e^{i \theta}\right)\right|=\left|\cos \frac{\theta}{2}-i \sin ^{p} \frac{\theta}{2} e^{i(p-1)(\theta-\pi) / 2}\right|
$$

Hence

$$
\left|f_{p, 1}\left(e^{i \theta}\right)\right|^{2}=\cos ^{2} \frac{\theta}{2}+\sin ^{2 p} \frac{\theta}{2}+2 \cos \frac{\theta}{2} \sin ^{p} \frac{\theta}{2} \sin \varphi
$$

where $\varphi=(p-1)(\theta-\pi) / 2$. Since $1<p \leq 3$, we have that $-\pi \leq \varphi \leq 0$. Hence $\sin \varphi \leq 0$. Thus

$$
\left|f_{p, 1}\left(e^{i \theta}\right)\right|^{2} \leq \cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}=1
$$

Now let $1<p \leq 3$ and $0<c<1$. We fix two points u and w in \mathbb{D} (for instance $u=u(z)$ and $w=v^{p}(z)$ for some $z \in \mathbb{D}$.) Note that the case $c=1$ above implies that $u+w \in \mathbb{D}$. Since \mathbb{D} is convex, the line segment joining $u \in \mathbb{D}$ and $u+w \in \mathbb{D}$, given by $\{u+c w: 0 \leq c \leq 1\}$, is contained in \mathbb{D}. Thus the function $f_{p, c}$ is a selfmap of \mathbb{D}.

We remark that $c=1 / 2$ is the best constant in

$$
\left|\frac{1+z}{2}\right|+c\left|\frac{1-z}{2}\right|^{2} \leq 1
$$

but that c can be chosen to be 1 in

$$
\left|\frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{2}\right| \leq 1
$$

(Note that $\left|\frac{1+z}{2}+\left(\frac{1-z}{2}\right)^{2}\right|=\left|\frac{3}{4}+\frac{z^{2}}{4}\right| \leq 1$.)
We guess that for all $p \geq 1$ we have

$$
\left|\frac{1+z}{2}+\left(\frac{1-z}{2}\right)^{p}\right| \leq 1
$$

In addition to the case $1 \leq p \leq 3$ we considered above, we can also confirm this inequality for $p=4$ and $p=5$.
4. The functions $u+c v^{p}, 0 \leq p \leq 1, c \in \mathbb{C}$. In this section we determine all complex numbers c for which $f_{p, c}$ is a selfmap of \mathbf{D}, whenever $0 \leq p \leq 1$.
Lemma 4.1. Let $0 \leq p<1$. Then the regions

$$
R_{p}:=\left\{\left(\frac{1-a}{2}\right)^{1-p}: a \in \mathbf{D}\right\}
$$

are strictly decreasing. For $p=0$, the set R_{0} coincides with the closed disk centered at $z=1 / 2$ and radius $1 / 2$.
Proof. First we note that the function M_{p} defined by $M_{p}(a)=\left(\frac{1-a}{2}\right)^{1-p}$ is a conformal map of \mathbb{D} onto the interior of R_{p}. If $p=0$, then R_{p} is the disk $\{z \in \mathbf{D}:|z-1 / 2| \leq 1 / 2\}$. The boundary of R_{0} can be represented in polar coordinates by $z(t)=e^{i t} \cos t,-\pi / 2 \leq t \leq \pi / 2$. Consider the principal branch of the logarithm. Then $L:=\log M_{0}(\mathbb{D})$ is an unbounded convex domain in the left half-plane, contained in the strip $\left\{w \in \mathbb{C}:|\operatorname{Im} w|<\frac{\pi}{2}\right\}$. The upper half of the boundary of L is given by the curve \mathfrak{C}^{+}, parametrised as $\log \cos t+i t, 0 \leq t \leq \pi / 2$. The lower half \mathfrak{C}^{-}of the boundary is the reflection of \mathfrak{C}^{+}with respect to the real axis. The horizontal asymptotes are the lines $\operatorname{Im} w= \pm \frac{\pi}{2}$. Due to convexity, and the fact that $0 \in L$, the image $\log M_{p}(\mathbf{D})=(1-p) \log M_{0}(\mathbf{D})$ is contained in $\log M_{0}(\mathbf{D})$ (see figure). Hence $R_{p} \subseteq R_{0}$. The same reasoning works for the pairs (p, p^{\prime}), $0 \leq p<p^{\prime}<1$, instead of $(0, p)$. Hence $R_{p^{\prime}} \subseteq R_{p}$.

Figure 1. The regions $\log R_{p}$ and $\log R_{0}$.
Lemma 4.2. Let \mathfrak{C} be the boundary of the domain $-R_{p}, 0 \leq p<1$. Then $w_{p}(t):=e^{i t} \sin ^{1-p}\left(\frac{t-\frac{\pi}{2}(p+1)}{1-p}\right), \frac{\pi}{2}(1+p) \leq t \leq \pi$, is the polar representation of the upper half of \mathfrak{C}.
Proof. We assume that $0 \leq \theta \leq \pi$. Then

$$
M_{p}\left(e^{i \theta}\right)=\left(e^{i\left(\frac{\theta-\pi}{2}\right)} \sin \frac{\theta}{2}\right)^{1-p} .
$$

Hence $\left|M_{p}\left(e^{i \theta}\right)\right|=\sin ^{1-p}(\theta / 2)$ and $\arg \left(-M_{p}\left(e^{i \theta}\right)\right)=\pi-\frac{\pi-\theta}{2}(1-p)$.
Let $t=\arg \left(-M_{p}\left(e^{i \theta}\right)\right)$. Then $t \in\left[\frac{\pi}{2}(1+p), \pi\right]$ and

$$
\theta=\frac{2 t-\pi(p+1)}{1-p}
$$

Thus

$$
w_{p}(t):=-M_{p}\left(e^{i \theta}\right)=e^{i t} \sin ^{1-p}\left(\frac{t-\frac{\pi}{2}(p+1)}{1-p}\right) .
$$

If $p=0$, we get $w_{0}(t)=e^{i t} \sin \left(t-\frac{\pi}{2}\right), \frac{\pi}{2} \leq t \leq \pi$. It is easy to see that $-R_{0}$ is the disk $|z+1 / 2| \leq 1 / 2$.
Theorem 4.3. i) Let $0<p<1$ and $c \in \mathbb{C}$. Then the function

$$
f_{p, c}(z)=\frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{p}
$$

is a selfmap of \mathbf{D} if and only if $c \in-R_{p}$; that is, if $c=-\left(\frac{1-a}{2}\right)^{1-p}$ for some $a \in \mathbf{D}$. In particular, if $|c|=1$, then $f_{p, c}$ is a selfmap of \mathbf{D} if and only if $c=-1$.
ii) For $p=0,(1+z) / 2+c$ is a selfmap of \mathbf{D} if and only if $|c+1 / 2| \leq 1 / 2$.
iii) For $p=1,(1+z) / 2+c(1-z) / 2$ is a selfmap of \mathbf{D} if and only if $-1 \leq c \leq 1$.

Proof. First we show that whenever $f_{p, c}$ is a selfmap of \mathbf{D} and $0 \leq p<1$, then $c=-\left(\frac{1-a}{2}\right)^{1-p}$ for some $a \in \mathbf{D}$. To this end we use the Denjoy-Wolff theorem: If $f_{p, c}$ is a selfmap of \mathbf{D} that is not the identity $f_{1,-1}$, then either it has a unique fixed point in \mathbb{D} or it has a unique boundary fixed point b with the property that the angular derivative at b is strictly positive and less than or equal to 1 . Now our $f_{p, c}$ always has 1 as a fixed point; however the angular derivative does not exist at that point. Thus we must look for other fixed points of $f_{p, c}$ in \mathbf{D}.

So let $f_{p, c}(a)=a$. Then $a=1$ or $1-a+\frac{2 c}{2^{p}}(1-a)^{p}=0$. The latter is equivalent to

$$
\begin{equation*}
c=-\left(\frac{1-a}{2}\right)^{1-p} \tag{4.1}
\end{equation*}
$$

Thus, a necessary condition for $f_{p, c}$ being a selfmap of \mathbf{D}, is that c belongs to the region

$$
R_{p}^{*}:=\left\{-\left(\frac{1-a}{2}\right)^{1-p}: a \in \mathbf{D}\right\}
$$

Note that if $|c|=1$, then (4.1) implies that $a=c=-1$. To deal with the case $p=1$, we proceed in another way. To begin with, let p be arbitrary, $0<p \leq 1$.

First we note that $\overline{\left(\frac{1-z}{2}\right)^{p}}=\left(\frac{1-\bar{z}}{2}\right)^{p}$. Hence it suffices to deal with those parameters c that belong to the closed upper half plane. Moreover, since $f_{p, c}(-1)=c$, we can restrict to parameters c that are in the closed unit disk. Let $c=r e^{i \varphi}$, where $0 \leq \varphi \leq \pi, 0<r \leq 1$.

If $c=0$, there is nothing to show. So suppose $c \neq 0$. For $z=e^{i \theta}$, $0 \leq \theta \leq \pi$, we have:

$$
f_{p, c}\left(e^{i \theta}\right)=e^{i \theta / 2} \cos \frac{\theta}{2}+r e^{i \varphi} \sin ^{p} \frac{\theta}{2} e^{i p(\theta-\pi) / 2}
$$

Hence

$$
\begin{aligned}
\left|f_{p, c}\left(e^{i \theta}\right)\right|^{2}= & \cos ^{2} \frac{\theta}{2}+r^{2} \sin ^{2 p} \frac{\theta}{2} \\
& +2 r \cos \frac{\theta}{2} \sin ^{p} \frac{\theta}{2} \cos \left[\frac{p-1}{2}(\theta-\pi)-\frac{\pi}{2}+\varphi\right] \\
= & \cos ^{2} \frac{\theta}{2}+r^{2} \sin ^{2 p} \frac{\theta}{2} \\
& +2 r \cos \frac{\theta}{2} \sin ^{p} \frac{\theta}{2} \sin \left[\frac{p-1}{2}(\theta-\pi)+\varphi\right]
\end{aligned}
$$

Now

$$
\left|f_{p, c}\left(e^{i \theta}\right)\right|^{2} \leq 1 \Longleftrightarrow r^{2} \sin ^{2 p} \frac{\theta}{2}+2 r \cos \frac{\theta}{2} \sin ^{p} \frac{\theta}{2} \sin \left[\frac{p-1}{2}(\theta-\pi)+\varphi\right] \leq \sin ^{2} \frac{\theta}{2}
$$

For $\theta \neq 0$ we divide by $\sin ^{p}(\theta / 2)$, which yields

$$
r^{2} \sin ^{p} \frac{\theta}{2}+2 r \cos \frac{\theta}{2} \sin \left[\frac{p-1}{2}(\theta-\pi)+\varphi\right] \leq \sin ^{2-p} \frac{\theta}{2} .
$$

Letting $\theta \rightarrow 0^{+}$, gives

$$
\begin{equation*}
2 r \sin \left(\frac{1-p}{2} \pi+\varphi\right) \leq 0 \tag{4.2}
\end{equation*}
$$

Thus $\frac{p+1}{2} \pi \leq \varphi \leq \frac{p+3}{2} \pi$. Hence, if $p=1$ we may use our hypothesis that $0 \leq \varphi \leq \pi$, to see that $\varphi=0$ or $\varphi=\pi$. Thus $c \in[-1,1]$.

Next we prove the sufficiency of these conditions.

- Let $p=0$ and $|c+1 / 2| \leq 1 / 2$. Then $c=-1 / 2+(1 / 2) r \xi$, where $0 \leq r \leq 1$ and $|\xi|=1$. Hence

$$
\left|\frac{1+z}{2}+c\right|=\left|\frac{z}{2}+\frac{r}{2} \xi\right| \leq \frac{|z|+|\xi|}{2} \leq 1
$$

- If $p=1$, and $-1 \leq c \leq 1$, then trivially

$$
\left|\frac{1+z}{2}+c \frac{1-z}{2}\right|=\left|\frac{1+c}{2}+z \frac{1-c}{2}\right| \leq \frac{1+c}{2}+\frac{1-c}{2} \leq 1 .
$$

- Now let $0<p<1$ and suppose that c is located in the closed region $R_{p}^{*}:=\left\{-\left(\frac{1-a}{2}\right)^{1-p}: a \in \mathbf{D}\right\}$. Let $A=\frac{1-a}{2}, B=\frac{1-z}{2}$ for $a, z \in \mathbf{D}$. We show that $C:=A^{1-p} B^{p}$ belongs to the disk $\Delta=\{|z-1 / 2| \leq 1 / 2\}$. First note that $\operatorname{Re} C \geq 0$. If \log denotes the principal branch of the logarithm on the right-half plane, we obtain that $\log \left(A^{1-p} B^{p}\right)=(1-p) \log A+p \log B$. Since the domain $L=\log \Delta$ in Lemma 4.1 above is convex, we get that $(1-p) \log A+p \log B \in L$. Hence $A^{1-p} B^{p} \in \Delta$. Thus, by the case $p=0$, we conclude that

$$
\frac{1+z}{2}-\left(\frac{1-a}{2}\right)^{1-p}\left(\frac{1-z}{2}\right)^{p}=\frac{1+z}{2}-C \in \mathbf{D}
$$

The previous result shows that a statement in MacCluer, Ohno and Zhao [4] is not correct:

The function $f_{1 / 2, \text { ir }}=\frac{1+z}{2}+r i \sqrt{\frac{1-z}{2}}$ (principal branch) is not a selfmap of \mathbf{D}, however small $r>0$ is. In particular, there exists $z \in \mathbf{D}$ such that $\overline{f_{1 / 2, i}(z)}=\frac{1+\bar{z}}{2}-i \sqrt{\frac{1-\bar{z}}{2}} \notin \mathbf{D}$. Thus the function $f_{1 / 2,-i}$ is not a selfmap, either.

More generally, let $p \in] 0,1\left[\right.$. Then none of the maps $\frac{1+z}{2}+t(z-1)^{p}$ considered in [4] is a selfmap of \mathbb{D} whenever $t>0$. In fact, for $t>0$, write the function $\frac{1+z}{2}+t(z-1)^{p}$ as $\frac{1+z}{2}+r e^{i \pi p}\left(\frac{1-z}{2}\right)^{p}$. Then the parameter $c=r e^{i \pi p}$ does not lie in the domain R_{p}^{*}, since its argument is πp and $\pi p<\frac{\pi}{2}(1+p)$. Our statement now follows from Theorem 4.3.
5. Convex perturbations. In [4] functions of the type $s z+1-s$ for $0<s<1$ are considered, too. Here we have the following result. Recall that the disk algebra $A(\mathbb{D})$ is the space of all functions continuous on \mathbf{D} and holomorphic in \mathbb{D}.

Proposition 5.1. Let $f \in A(\mathbb{D})$ be a function such that $(1+z) / 2+f(z)$ is a selfmap of \mathbf{D}. Then, for every $s \in] 0,1\left[\right.$ there exists a constant $c_{s}>0$ such that $(s z+1-s)+c f$ is a selfmap of \mathbf{D} for every c with $0 \leq c \leq c_{s}$.

Proof. Let $(\alpha, \beta) \in] 0,1\left[^{2}\right.$ satisfy $\alpha+\beta=1$. Since \mathbf{D} is convex, we have that for every $\sigma \in[0,1]$ and $z \in \mathbf{D}$

$$
h(z)=\alpha(\sigma z+1-\sigma)+\beta\left[\frac{1+z}{2}+f(z)\right] \in \mathbf{D} .
$$

But

$$
h(z)=\left(\alpha \sigma+\frac{\beta}{2}\right) z+\left(\alpha-\alpha \sigma+\frac{\beta}{2}\right)+\beta f(z) .
$$

Now we have to choose α, β and σ such that $s=\alpha \sigma+\beta / 2$. Then, automatically, $1-s=\alpha-\alpha \sigma+\beta / 2$. To see that such a choice is possible, we use the assumption that $\beta=1-\alpha$ to obtain that $\alpha=(s-1 / 2) /(\sigma-1 / 2)$. If we now choose σ so that, either $1 / 2<s<\sigma \leq 1$, or $0 \leq \sigma<s<1 / 2$, then $0<\alpha<1$. Now we may define c_{s} by $c_{s}:=\beta=1-\alpha$ to conclude that $(s z+1-s)+c_{s} f$ is a selfmap of \mathbf{D}. For example, if $s>1 / 2$ and $\sigma=1$, then $c_{s}=2(1-s)$; if $0<s<1 / 2$ and $\sigma=0$, then $c_{s}=2 s$.

Once we have found a constant c_{s} for which $(s z+1-s)+c_{s} f$ is a selfmap of \mathbf{D}, it is now easy to see that for every c with $0 \leq c \leq c_{s}$, the map $(s z+1-s)+c f$ is a selfmap, too. In fact, since \mathbf{D} is starlike with respect to any point $a \in \mathbf{D}$, it follows that $a+t b \in \mathbf{D}$ whenever $a+t_{0} b \in \mathbf{D}$ and $0 \leq t \leq t_{0}$. Hence we get Proposition 5.1.

We mention here that whenever $u+c v^{p}$ and $u+c^{\prime} v^{p}$ are selfmaps of \mathbf{D}, then for any convex combination $c^{\prime \prime}:=s c+(1-s) c^{\prime}$ of the points $c, c^{\prime} \in \mathbf{D}, 0<s<1$, we have that $u+c^{\prime \prime} v^{p}$ is a selfmap of \mathbf{D}, too. In fact, $u+c^{\prime \prime} v^{p}=s\left(u+c v^{p}\right)+(1-s)\left(u+c^{\prime} v^{p}\right)$ is a convex combination of such functions. As an application we mention that by Propositions 2.1 and 3.1, $\frac{1+z}{2}+c\left(\frac{1-z}{2}\right)^{2}$ is a selfmap of \mathbf{D} if c belongs to the convex hull of the disk $\{|z| \leq 1 / 2\}$ and the point 1 . Is this also a necessary condition?

Acknowledgements We thank the referee for providing a simpler proof of Proposition 2.1. We also thank P. Gorkin for several helpful comments improving the exposition of the present paper.

References

[1] Bonet, J., Lindström, M. and Wolf, E., Differences of composition operators between weighted Banach spaces of holomorphic functions, to appear in J. Austral. Math. Soc.
[2] Gorkin, P., Mortini, R., Asymptotic interpolating sequences in uniform algebras, J. London Math. Soc. 67 (2003), 481-498.
[3] Lindström, M., Wolf, E., Essential norm of the difference of weighted composition operators, to appear in Monatsh. Math.
[4] MacCluer, B., Ohno, S. and Zhao, R., Topological structure of the space of composition operators on H^{∞}, Integral Equations Operator Theory 40 (2001), 481-494.
[5] Mortini, R., Interpolation problems on the spectrum of H^{∞}, preprint.

Raymond Mortini
Département de Mathématiques
Université Paul Verlaine
Ile du Saulcy
F-57045 Metz, France
e-mail: mortini@math.univ-metz.fr

Rudolf Rupp
Fachbereich Allgemeinwissenschaften
Georg-Simon-Ohm-Hochschule Nürnberg
Kesslerplatz 12, D-90489 Nürnberg
Germany
e-mail: rudolf.rupp@ohm-hochschule.de

Received July 9, 2007

[^0]: 2000 Mathematics Subject Classification. Primary 30A10; Secondary 30C99.
 Key words and phrases. Inequalities in the complex domain, selfmaps of the unit disk, composition operators, peak functions.

