ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXI, 2007	SECTIO A	107-115

RAYMOND MORTINI and RUDOLF RUPP

Sums of holomorphic selfmaps of the unit disk

ABSTRACT. We derive for p > 0 the best constants c_p for which $\left|\frac{1+z}{2}\right| + c_p \left|\frac{1-z}{2}\right|^p \leq 1$ whenever $|z| \leq 1$. We also determine for $0 \leq p \leq 1$ all complex numbers c for which the functions $\frac{1+z}{2} + c \left(\frac{1-z}{2}\right)^p$ are selfmaps of the closed unit disk.

1. Introduction. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk and $\mathbf{D} = \{z \in \mathbb{C} : |z| \le 1\}$ its closure. It is very easy to see that whenever u(z) = (1+z)/2 and v(z) = (1-z)/2, then $|u|^2 + |v|^2 \le 1$ on \mathbf{D} . These functions and its companions $u \circ p$, where p is a general peak-function in a uniform algebra, play an important role in studying isometric interpolation problems (see [2], [5]). But also in operator theory, combinations of powers of u and v were chosen to study algebraic and functional analytic properties of composition operators on various spaces of analytic functions (see [4], [1] and [3]). In [4, p. 492], a paper that served as the impetus for our study of the class of functions $u + cv^p$, the authors assert that for every p > 0 the function $(1+z)/2 + c[(z-1)/2]^p$ is a selfmap for \mathbb{D} whenever c > 0 is small. We will show, among other things, that for $0 \le p < 1$, the maps $u + cv^p$ are selfmaps of the unit disk if and only if c belongs to a certain convex subset R_p of the disk $|z + 1/2| \le 1/2$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30A10; Secondary 30C99.

Key words and phrases. Inequalities in the complex domain, selfmaps of the unit disk, composition operators, peak functions.

2. The functions $|u| + c|v|^p$. Let u(z) = (1+z)/2 and v(z) = (1-z)/2. In this section we will study the sum $|u| + c|v|^p$ for c > 0 and p > 0, considered as a function on **D**.

Proposition 2.1. The following assertions are true:

- (i) $|u| + \frac{1}{2}|v|^p \le 1$ on **D** if $p \ge 2$.
- (ii) $\max_{\mathbf{D}} [|u| + c|v|^p] > 1$ for every p with 0 and every <math>c > 0.
- (iii) The best possible constant c > 0 for which $|u| + c|v|^p \le 1$ in **D** is

$$c_p := \frac{(p-1)^{p-1}}{p^{p/2} (p-2)^{(p-2)/2}}$$

whenever p > 2 and c = 1/2 whenever p = 2.

Proof. (i) Due to the maximum principle for subharmonic functions, and symmetry, it is sufficient to evaluate $\Delta(z) = |u(z)| + c|v(z)|^p$ at $z = e^{i\theta}$ where $0 \le \theta \le \pi$. Note that $\Delta(z) = \cos(\theta/2) + c \sin^p(\theta/2)$. Now for fixed $p \ge 2$ and $c \in [0, \frac{1}{2}]$ we have

$$\Delta(z) \le \cos\frac{\theta}{2} + \frac{1}{2}\sin^2\frac{\theta}{2} = -\frac{1}{2}\cos^2\frac{\theta}{2} + \cos\frac{\theta}{2} + \frac{1}{2}$$
$$= 1 - \frac{1}{2}\left(\cos\frac{\theta}{2} - 1\right)^2 \le 1$$

on the interval $[0, \pi]$.

(ii) Now let $0 . We put <math>y = \sin(\theta/2), 0 \le y \le 1$. Then

$$\Delta(e^{i\theta}) = \sqrt{1 - y^2} + cy^p \le 1$$
$$\iff 1 - y^2 \le 1 + c^2 y^{2p} - 2cy^p$$
$$\iff cy^{p-2}(2 - cy^p) \le 1.$$

Noticing that $1 \le 2 - cy^p \le 2$, we see that for all $c, 0 < c \le 1$, there exists y (close to 0), such that $cy^{p-2}(2 - cy^p) > 1$. This gives (ii).

(iii) We are looking for the largest $c := c_p$ such that $\cos \frac{\theta}{2} + c \left(\sin \frac{\theta}{2}\right)^p \leq 1$ on $[0, \pi]$; that is,

$$c \leq \frac{1 - \cos\frac{\theta}{2}}{\left(\sin\frac{\theta}{2}\right)^p} = 2^{1-p} \cdot \sqrt{\frac{\left(\sin^2\frac{\theta}{4}\right)^{2-p}}{\left(1 - \sin^2\frac{\theta}{4}\right)^p}}, \quad 0 < \theta \leq \pi.$$

Let $H(t) = \frac{t^{2-p}}{(1-t)^p}$. If p = 2, then $\min_{0 < t \le \frac{1}{2}} H(t) = 1$; hence $c_2 = \frac{1}{2}$. If p > 2, then $t_p := \frac{p-2}{2(p-1)} < \frac{1}{2}$, and

$$\min_{0 < t \le \frac{1}{2}} H(t) = \frac{1}{\max_{0 < t \le \frac{1}{2}} t^{p-2} (1-t)^p} = \frac{1}{t_p^{p-2} (1-t_p)^p}.$$

It follows that for p > 2

$$c_p = 2^{1-p} \cdot \sqrt{\frac{2^{2p-2}(p-1)^{2p-2}}{p^p(p-2)^{p-2}}} = \frac{(p-1)^{p-1}}{p^{p/2}(p-2)^{(p-2)/2}}.$$

Remark. We note that $\lim_{p\to 2} c_p = 1/2$, that c_p is increasing in p, and that $\lim_{p\to\infty} c_p = 1.$

3. The functions $u + cv^p$, p > 0, c > 0. For p > 0 and c > 0 let $f_{p,c} = u + cv^p$, where we choose the branch of the logarithm of w, Re w > 0, that satisfies $\log 1 = 0$ in order to define v^p (note that $\operatorname{Re} v > 0$ in $\mathbf{D} \setminus \{1\}$). We are interested in the problem of when $f_{p,c}$ is a selfmap of **D**. For example, if c > 1, then $f_{p,c}(-1) = c > 1$, so $f_{p,c}$ is not a selfmap of **D**. Thus we may assume throughout this section that $0 < c \leq 1$.

Proposition 3.1. The following assertions are true:

- (i) f_{p,c} is not a selfmap of **D** if 0
 (ii) f_{p,c} is a selfmap of **D** for every 1 ≤ p ≤ 3 and every 0 < c ≤ 1.

Proof. (i) Let 0 . Then for <math>0 < x < 1 we have

$$\frac{1+x}{2} + c\left(\frac{1-x}{2}\right)^p \le 1 \iff 2^{1-p}c \le (1-x)^{1-p},$$

which is not satisfied for x close to 1.

(ii) If p = 1, then for $0 < c \le 1$,

$$\left|\frac{1+z}{2} + c\frac{1-z}{2}\right| = \left|\frac{1}{2} + \frac{c}{2} + z\left(\frac{1}{2} - \frac{c}{2}\right)\right| \le \frac{1}{2} + \frac{c}{2} + \frac{1}{2} - \frac{c}{2} = 1.$$

Let 1 and <math>c = 1. As above, we need only consider the case where $z = e^{i\theta}$ with $0 < \theta < \pi$. Then

$$|f_{p,1}(e^{i\theta})| = \left|\cos\frac{\theta}{2} - i\sin^p\frac{\theta}{2}e^{i(p-1)(\theta-\pi)/2}\right|.$$

Hence

$$\left|f_{p,1}(e^{i\theta})\right|^2 = \cos^2\frac{\theta}{2} + \sin^{2p}\frac{\theta}{2} + 2\cos\frac{\theta}{2}\sin^p\frac{\theta}{2}\sin\varphi$$

where $\varphi = (p-1)(\theta - \pi)/2$. Since $1 , we have that <math>-\pi \le \varphi \le 0$. Hence $\sin \varphi \leq 0$. Thus

$$|f_{p,1}(e^{i\theta})|^2 \le \cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} = 1.$$

Now let 1 and <math>0 < c < 1. We fix two points u and w in \mathbb{D} (for instance u = u(z) and $w = v^p(z)$ for some $z \in \mathbb{D}$.) Note that the case c = 1above implies that $u + w \in \mathbb{D}$. Since \mathbb{D} is convex, the line segment joining $u \in \mathbb{D}$ and $u + w \in \mathbb{D}$, given by $\{u + cw : 0 \le c \le 1\}$, is contained in \mathbb{D} . Thus the function $f_{p,c}$ is a selfmap of \mathbb{D} . We remark that c = 1/2 is the best constant in

$$\left|\frac{1+z}{2}\right| + c \left|\frac{1-z}{2}\right|^2 \le 1.$$

but that c can be chosen to be 1 in

$$\left|\frac{1+z}{2} + c\left(\frac{1-z}{2}\right)^2\right| \le 1.$$

(Note that $\left|\frac{1+z}{2} + \left(\frac{1-z}{2}\right)^2\right| = \left|\frac{3}{4} + \frac{z^2}{4}\right| \le 1.$) We guess that for all $p \ge 1$ we have

$$\left|\frac{1+z}{2} + \left(\frac{1-z}{2}\right)^p\right| \le$$

In addition to the case $1 \le p \le 3$ we considered above, we can also confirm this inequality for p = 4 and p = 5.

1.

4. The functions $u + cv^p$, $0 \le p \le 1$, $c \in \mathbb{C}$. In this section we determine all complex numbers c for which $f_{p,c}$ is a selfmap of **D**, whenever $0 \le p \le 1$.

Lemma 4.1. Let $0 \le p < 1$. Then the regions

$$R_p := \left\{ \left(\frac{1-a}{2}\right)^{1-p} : a \in \mathbf{D} \right\}$$

are strictly decreasing. For p = 0, the set R_0 coincides with the closed disk centered at z = 1/2 and radius 1/2.

Proof. First we note that the function M_p defined by $M_p(a) = \left(\frac{1-a}{2}\right)^{1-p}$ is a conformal map of \mathbb{D} onto the interior of R_p . If p = 0, then R_p is the disk $\{z \in \mathbf{D} : |z - 1/2| \le 1/2\}$. The boundary of R_0 can be represented in polar coordinates by $z(t) = e^{it} \cos t$, $-\pi/2 \le t \le \pi/2$. Consider the principal branch of the logarithm. Then $L := \log M_0(\mathbb{D})$ is an unbounded convex domain in the left half-plane, contained in the strip $\{w \in \mathbb{C} : |\text{Im } w| < \frac{\pi}{2}\}$. The upper half of the boundary of L is given by the curve \mathfrak{C}^+ , parametrised as $\log \cos t + it$, $0 \le t \le \pi/2$. The lower half \mathfrak{C}^- of the boundary is the reflection of \mathfrak{C}^+ with respect to the real axis. The horizontal asymptotes are the lines Im $w = \pm \frac{\pi}{2}$. Due to convexity, and the fact that $0 \in L$, the image $\log M_p(\mathbf{D}) = (1-p) \log M_0(\mathbf{D})$ is contained in $\log M_0(\mathbf{D})$ (see figure). Hence $R_p \subseteq R_0$. The same reasoning works for the pairs (p, p'), $0 \le p < p' < 1$, instead of (0, p). Hence $R_{p'} \subseteq R_p$.

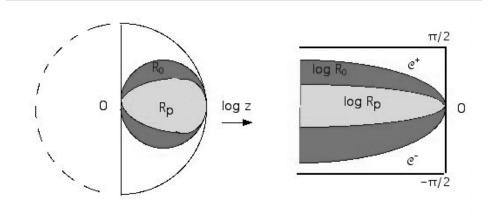


FIGURE 1. The regions $\log R_p$ and $\log R_0$.

Lemma 4.2. Let \mathfrak{C} be the boundary of the domain $-R_p$, $0 \leq p < 1$. Then $w_p(t) := e^{it} \sin^{1-p} \left(\frac{t - \frac{\pi}{2}(p+1)}{1-p} \right)$, $\frac{\pi}{2}(1+p) \leq t \leq \pi$, is the polar representation of the upper half of \mathfrak{C} .

Proof. We assume that $0 \le \theta \le \pi$. Then

$$M_p(e^{i\theta}) = \left(e^{i(rac{\theta-\pi}{2})}\sinrac{ heta}{2}
ight)^{1-p}.$$

Hence $|M_p(e^{i\theta})| = \sin^{1-p}(\theta/2)$ and $\arg(-M_p(e^{i\theta})) = \pi - \frac{\pi-\theta}{2}(1-p)$. Let $t = \arg(-M_p(e^{i\theta}))$. Then $t \in [\frac{\pi}{2}(1+p), \pi]$ and

$$\theta = \frac{2t - \pi(p+1)}{1 - p}.$$

Thus

$$w_p(t) := -M_p(e^{i\theta}) = e^{it} \sin^{1-p} \left(\frac{t - \frac{\pi}{2}(p+1)}{1-p}\right)$$

If p = 0, we get $w_0(t) = e^{it} \sin(t - \frac{\pi}{2}), \frac{\pi}{2} \le t \le \pi$. It is easy to see that $-R_0$ is the disk $|z + 1/2| \le 1/2$.

Theorem 4.3. i) Let $0 and <math>c \in \mathbb{C}$. Then the function

$$f_{p,c}(z) = \frac{1+z}{2} + c\left(\frac{1-z}{2}\right)^p$$

is a selfmap of **D** if and only if $c \in -R_p$; that is, if $c = -\left(\frac{1-a}{2}\right)^{1-p}$ for some $a \in \mathbf{D}$. In particular, if |c| = 1, then $f_{p,c}$ is a selfmap of **D** if and only if c = -1.

ii) For p = 0, (1+z)/2 + c is a selfmap of **D** if and only if $|c+1/2| \le 1/2$. iii) For p = 1, (1+z)/2 + c(1-z)/2 is a selfmap of **D** if and only if $-1 \le c \le 1$. **Proof.** First we show that whenever $f_{p,c}$ is a selfmap of **D** and $0 \le p < 1$, then $c = -\left(\frac{1-a}{2}\right)^{1-p}$ for some $a \in \mathbf{D}$. To this end we use the Denjoy–Wolff theorem: If $f_{p,c}$ is a selfmap of **D** that is not the identity $f_{1,-1}$, then either it has a unique fixed point in \mathbb{D} or it has a unique boundary fixed point b with the property that the angular derivative at b is strictly positive and less than or equal to 1. Now our $f_{p,c}$ always has 1 as a fixed point; however the angular derivative does not exist at that point. Thus we must look for other fixed points of $f_{p,c}$ in **D**.

So let $f_{p,c}(a) = a$. Then a = 1 or $1 - a + \frac{2c}{2^p}(1-a)^p = 0$. The latter is equivalent to

(4.1)
$$c = -\left(\frac{1-a}{2}\right)^{1-p}.$$

Thus, a necessary condition for $f_{p,c}$ being a selfmap of **D**, is that c belongs to the region

$$R_p^* := \left\{ -\left(\frac{1-a}{2}\right)^{1-p} : a \in \mathbf{D} \right\}.$$

Note that if |c| = 1, then (4.1) implies that a = c = -1. To deal with the case p = 1, we proceed in another way. To begin with, let p be arbitrary, 0 .

First we note that $\overline{\left(\frac{1-z}{2}\right)^p} = \left(\frac{1-\overline{z}}{2}\right)^p$. Hence it suffices to deal with those parameters c that belong to the closed upper half plane. Moreover, since $f_{p,c}(-1) = c$, we can restrict to parameters c that are in the closed unit disk. Let $c = re^{i\varphi}$, where $0 \le \varphi \le \pi$, $0 < r \le 1$.

If c = 0, there is nothing to show. So suppose $c \neq 0$. For $z = e^{i\theta}$, $0 \leq \theta \leq \pi$, we have:

$$f_{p,c}(e^{i\theta}) = e^{i\theta/2} \cos \frac{\theta}{2} + r e^{i\varphi} \sin^p \frac{\theta}{2} e^{ip(\theta-\pi)/2}.$$

Hence

$$|f_{p,c}(e^{i\theta})|^2 = \cos^2 \frac{\theta}{2} + r^2 \sin^{2p} \frac{\theta}{2}$$
$$+ 2r \cos \frac{\theta}{2} \sin^p \frac{\theta}{2} \cos \left[\frac{p-1}{2}(\theta-\pi) - \frac{\pi}{2} + \varphi\right]$$
$$= \cos^2 \frac{\theta}{2} + r^2 \sin^{2p} \frac{\theta}{2}$$
$$+ 2r \cos \frac{\theta}{2} \sin^p \frac{\theta}{2} \sin \left[\frac{p-1}{2}(\theta-\pi) + \varphi\right].$$

Now

$$|f_{p,c}(e^{i\theta})|^2 \le 1 \iff r^2 \sin^{2p} \frac{\theta}{2} + 2r \cos \frac{\theta}{2} \sin^p \frac{\theta}{2} \sin \left[\frac{p-1}{2}(\theta-\pi) + \varphi\right] \le \sin^2 \frac{\theta}{2}.$$

For $\theta \neq 0$ we divide by $\sin^p(\theta/2)$, which yields

$$r^{2}\sin^{p}\frac{\theta}{2} + 2r\cos\frac{\theta}{2}\sin\left[\frac{p-1}{2}(\theta-\pi) + \varphi\right] \leq \sin^{2-p}\frac{\theta}{2}.$$

Letting $\theta \to 0^+$, gives

(4.2)
$$2r\sin\left(\frac{1-p}{2}\pi+\varphi\right) \le 0.$$

Thus $\frac{p+1}{2}\pi \leq \varphi \leq \frac{p+3}{2}\pi$. Hence, if p = 1 we may use our hypothesis that $0 \leq \varphi \leq \pi$, to see that $\varphi = 0$ or $\varphi = \pi$. Thus $c \in [-1, 1]$.

Next we prove the sufficiency of these conditions.

• Let p = 0 and $|c + 1/2| \le 1/2$. Then $c = -1/2 + (1/2)r\xi$, where $0 \le r \le 1$ and $|\xi| = 1$. Hence

$$\left|\frac{1+z}{2}+c\right| = \left|\frac{z}{2}+\frac{r}{2}\xi\right| \le \frac{|z|+|\xi|}{2} \le 1.$$

• If p = 1, and $-1 \le c \le 1$, then trivially

$$\left|\frac{1+z}{2} + c\frac{1-z}{2}\right| = \left|\frac{1+c}{2} + z\frac{1-c}{2}\right| \le \frac{1+c}{2} + \frac{1-c}{2} \le 1.$$

• Now let 0 and suppose that <math>c is located in the closed region $R_p^* := \left\{-\left(\frac{1-a}{2}\right)^{1-p} : a \in \mathbf{D}\right\}$. Let $A = \frac{1-a}{2}$, $B = \frac{1-z}{2}$ for $a, z \in \mathbf{D}$. We show that $C := A^{1-p}B^p$ belongs to the disk $\Delta = \{|z - 1/2| \le 1/2\}$. First note that Re $C \ge 0$. If log denotes the principal branch of the logarithm on the right-half plane, we obtain that $\log(A^{1-p}B^p) = (1-p)\log A + p\log B$. Since the domain $L = \log \Delta$ in Lemma 4.1 above is convex, we get that $(1-p)\log A + p\log B \in L$. Hence $A^{1-p}B^p \in \Delta$. Thus, by the case p = 0, we conclude that

$$\frac{1+z}{2} - \left(\frac{1-a}{2}\right)^{1-p} \left(\frac{1-z}{2}\right)^p = \frac{1+z}{2} - C \in \mathbf{D}.$$

The previous result shows that a statement in MacCluer, Ohno and Zhao [4] is not correct:

The function $f_{1/2,ir} = \frac{1+z}{2} + ri\sqrt{\frac{1-z}{2}}$ (principal branch) is not a selfmap of **D**, however small r > 0 is. In particular, there exists $z \in \mathbf{D}$ such that $\overline{f_{1/2,i}(z)} = \frac{1+\overline{z}}{2} - i\sqrt{\frac{1-\overline{z}}{2}} \notin \mathbf{D}$. Thus the function $f_{1/2,-i}$ is not a selfmap, either.

More generally, let $p \in [0, 1[$. Then none of the maps $\frac{1+z}{2} + t (z-1)^p$ considered in [4] is a selfmap of \mathbb{D} whenever t > 0. In fact, for t > 0, write the function $\frac{1+z}{2} + t (z-1)^p$ as $\frac{1+z}{2} + re^{i\pi p} \left(\frac{1-z}{2}\right)^p$. Then the parameter $c = re^{i\pi p}$ does not lie in the domain R_p^* , since its argument is πp and $\pi p < \frac{\pi}{2}(1+p)$. Our statement now follows from Theorem 4.3.

5. Convex perturbations. In [4] functions of the type sz + 1 - s for 0 < s < 1 are considered, too. Here we have the following result. Recall that the disk algebra $A(\mathbb{D})$ is the space of all functions continuous on **D** and holomorphic in \mathbb{D} .

Proposition 5.1. Let $f \in A(\mathbb{D})$ be a function such that (1+z)/2 + f(z) is a selfmap of **D**. Then, for every $s \in]0,1[$ there exists a constant $c_s > 0$ such that (sz + 1 - s) + cf is a selfmap of **D** for every c with $0 \le c \le c_s$.

Proof. Let $(\alpha, \beta) \in]0, 1[^2$ satisfy $\alpha + \beta = 1$. Since **D** is convex, we have that for every $\sigma \in [0, 1]$ and $z \in \mathbf{D}$

$$h(z) = \alpha(\sigma z + 1 - \sigma) + \beta \left[\frac{1+z}{2} + f(z)\right] \in \mathbf{D}.$$

But

$$h(z) = \left(\alpha\sigma + \frac{\beta}{2}\right)z + \left(\alpha - \alpha\sigma + \frac{\beta}{2}\right) + \beta f(z).$$

Now we have to choose α , β and σ such that $s = \alpha\sigma + \beta/2$. Then, automatically, $1 - s = \alpha - \alpha\sigma + \beta/2$. To see that such a choice is possible, we use the assumption that $\beta = 1 - \alpha$ to obtain that $\alpha = (s - 1/2)/(\sigma - 1/2)$. If we now choose σ so that, either $1/2 < s < \sigma \leq 1$, or $0 \leq \sigma < s < 1/2$, then $0 < \alpha < 1$. Now we may define c_s by $c_s := \beta = 1 - \alpha$ to conclude that $(sz + 1 - s) + c_s f$ is a selfmap of **D**. For example, if s > 1/2 and $\sigma = 1$, then $c_s = 2(1 - s)$; if 0 < s < 1/2 and $\sigma = 0$, then $c_s = 2s$.

Once we have found a constant c_s for which $(sz + 1 - s) + c_s f$ is a selfmap of **D**, it is now easy to see that for every c with $0 \le c \le c_s$, the map (sz + 1 - s) + cf is a selfmap, too. In fact, since **D** is starlike with respect to any point $a \in \mathbf{D}$, it follows that $a + tb \in \mathbf{D}$ whenever $a + t_0b \in \mathbf{D}$ and $0 \le t \le t_0$. Hence we get Proposition 5.1.

We mention here that whenever $u + cv^p$ and $u + c'v^p$ are selfmaps of **D**, then for any convex combination c'' := sc + (1 - s)c' of the points $c, c' \in \mathbf{D}, 0 < s < 1$, we have that $u + c''v^p$ is a selfmap of **D**, too. In fact, $u + c''v^p = s(u + cv^p) + (1 - s)(u + c'v^p)$ is a convex combination of such functions. As an application we mention that by Propositions 2.1 and 3.1, $\frac{1+z}{2} + c(\frac{1-z}{2})^2$ is a selfmap of **D** if c belongs to the convex hull of the disk $\{|z| \le 1/2\}$ and the point 1. Is this also a necessary condition?

Acknowledgements We thank the referee for providing a simpler proof of Proposition 2.1. We also thank P. Gorkin for several helpful comments improving the exposition of the present paper.

References

[1] Bonet, J., Lindström, M. and Wolf, E., Differences of composition operators between weighted Banach spaces of holomorphic functions, to appear in J. Austral. Math. Soc.

- [2] Gorkin, P., Mortini, R., Asymptotic interpolating sequences in uniform algebras, J. London Math. Soc. 67 (2003), 481–498.
- [3] Lindström, M., Wolf, E., Essential norm of the difference of weighted composition operators, to appear in Monatsh. Math.
- [4] MacCluer, B., Ohno, S. and Zhao, R., Topological structure of the space of composition operators on H[∞], Integral Equations Operator Theory 40 (2001), 481–494.

[5] Mortini, R., Interpolation problems on the spectrum of H^{∞} , preprint.

Raymond Mortini	Rudolf Rupp
Département de Mathématiques	Fachbereich Allgemeinwissenschaften
Université Paul Verlaine	Georg-Simon-Ohm-Hochschule Nürnberg
Ile du Saulcy	Kesslerplatz 12, D-90489 Nürnberg
F-57045 Metz, France	Germany
e-mail: mortini@math.univ-metz.fr	e-mail: rudolf.rupp@ohm-hochschule.de

Received July 9, 2007