ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA LUBLIN - POLONIA

Second order nonholonomic connections from second order nonholonomic ones

Abstract

We describe all $\mathcal{F} \mathcal{M}_{m, n}$-natural operators $A: \tilde{J}^{2} \rightsquigarrow \tilde{J}^{2}$ transforming second order nonholonomic connections $\Theta: Y \rightarrow \tilde{J}^{2} Y$ on fibred manifolds $Y \rightarrow M$ into second order nonholonomic connections $A(\Theta): Y \rightarrow \tilde{J}^{2} Y$ on $Y \rightarrow M$.

Manifolds and maps are assumed to be of class C^{∞}. Manifolds are assumed to be finite dimensional and without boundaries.

Let $\mathcal{F M}$ be the category of fibred manifolds and their fibred maps, let $\mathcal{F} \mathcal{M}_{m}$ be the category of fibred manifolds with m-dimensional bases and their fibred maps covering embeddings, and let $\mathcal{F} \mathcal{M}_{m, n}$ be the category of fibred manifolds with m-dimensional bases and n-dimensional fibres and their fibred embeddings.

Given a fibred manifold $Y \rightarrow M$ we have its jet prolongation $J^{1} Y$ (the bundle of 1-jets $j_{x}^{1} \sigma$ of sections of $Y \rightarrow M$) and given an $\mathcal{F} \mathcal{M}_{m}$-map f : $Y_{1} \rightarrow Y_{2}$ covering $\underline{f}: M_{1} \rightarrow M_{2}$ we have a fibred map $J^{1} f: J^{1} Y_{1} \rightarrow J^{1} Y_{2}$ covering f given by $J^{1} f\left(j_{x}^{1} \sigma\right)=j_{\underline{f}(x)}^{1}\left(f \circ \sigma \circ \underline{f}^{-1}\right), j_{x}^{1} \sigma \in J^{1} Y_{1}$. The functor $J^{1}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F M}$ is a (fiber product preserving) bundle functor in the sense of [2]. Iterating J^{1} we obtain the second order nonholonomic jet (fiber product preserving) bundle functor $\tilde{J}^{2}:=J^{1} J^{1}: \mathcal{F} \mathcal{M}_{m} \rightarrow \mathcal{F} \mathcal{M}$ $\left(\tilde{J}^{2}(Y \rightarrow M)=J^{1}\left(J^{1} Y \rightarrow M\right)\right)$.

[^0]A first order connection on a fibred manifold $Y \rightarrow M$ is a section Γ : $Y \rightarrow J^{1} Y$ of $J^{1} Y \rightarrow Y$. A second order nonholonomic connection on a fibred manifold $Y \rightarrow M$ is a section $\Theta: Y \rightarrow \tilde{J}^{2} Y$ of $\tilde{J}^{2} Y \rightarrow Y$.

Proposition 1 ([1]). Second order nonholonomic connections Θ on $Y \rightarrow M$ are in bijection with couples $\left(\Gamma_{1}, \Gamma_{2}, G\right)$ consisting of first order connections Γ_{1}, Γ_{2} on $Y \rightarrow M$ and tensor fields $G: Y \rightarrow \otimes^{2} T^{*} M \otimes V Y$.

Let Γ_{1}, Γ_{2} be first order connections on $Y \rightarrow M$. Let $Q=\Gamma_{1}-\Gamma_{2}: Y \rightarrow$ $T^{*} M \otimes V Y$ be the "difference" tensor field, where the operation "-" is the difference in the affine bundle $J^{1} Y \rightarrow Y$ with the corresponding vector bundle $T^{*} M \otimes V Y$ over Y. Then Proposition 1 can be reformulated as follows.

Proposition 1'. Second order nonholonomic connections Θ on $Y \rightarrow M$ are in bijection with couples (Γ, Q, G) consisting of first order connections Γ on $Y \rightarrow M$ and tensor fields $Q: Y \rightarrow T^{*} M \otimes V Y$ and $G: Y \rightarrow \otimes^{2} T^{*} M \otimes V Y$.

In the present paper we study the problem how a second order nonholonomic connection $\Theta: Y \rightarrow \tilde{J}^{2} Y$ on an $\mathcal{F} \mathcal{M}_{m, n}$-object $Y \rightarrow M$ can induce canonically a second order nonholonomic connection $A(\Theta): Y \rightarrow \tilde{J}^{2} Y$ on $Y \rightarrow M$. This problem is reflected in the concept of $\mathcal{F} \mathcal{M}_{m, n}$-natural operators $A: \tilde{J}^{2} \rightsquigarrow \tilde{J}^{2}$. In the present note we find all $\mathcal{F} \mathcal{M}_{m, n}$-natural operators A in question.

We remark that a general concept of natural operators can be found in [2]. In the present note we need (in particular) the following partial case of natural operators.

A $\mathcal{F} \mathcal{M}_{m, n}$-natural operator $A: \tilde{J}^{2} \rightsquigarrow \tilde{J}^{2}$ is a system of $\mathcal{F} \mathcal{M}_{m, n}$-invariant regular operators (functions)

$$
A=A_{Y \rightarrow M}: \Gamma\left(\tilde{J}^{2} Y\right) \rightarrow \Gamma\left(\tilde{J}^{2} Y\right)
$$

for any $\mathcal{F} \mathcal{M}_{m, n}$-object $Y \rightarrow M$, where $\Gamma\left(\tilde{J}^{2} Y\right)$ is the set of second order nonholonomic connections on $Y \rightarrow M$. The invariance means that if $\Theta_{1} \in$ $\Gamma\left(\tilde{J}^{2} Y_{1}\right)$ and $\Theta_{2} \in \Gamma\left(\tilde{J}^{2} Y_{2}\right)$ are f-related by an $\mathcal{F} \mathcal{M}_{m, n}$-map $f: Y_{1} \rightarrow Y_{2}$ (i.e. $\tilde{J}^{2} f \circ \Theta_{1}=\Theta_{2} \circ f$) then $A\left(\Theta_{1}\right)$ and $A\left(\Theta_{2}\right)$ are f-related. The regularity means that A transforms smoothly parametrized families of second order nonholonomic connections into smoothly parametrized ones.

According to Proposition 1 it is sufficient to classify all $\mathcal{F} \mathcal{M}_{m, n}$-natural operators $A_{1}: \tilde{J}^{2} \rightsquigarrow J^{1}$ transforming second order nonholonomic connections Θ on $Y \rightarrow M$ into first order connections $A_{1}(\Theta)$ on $Y \rightarrow M$ and to classify all $\mathcal{F} \mathcal{M}_{m, n}$-natural operators $A_{2}: \tilde{J}^{2} \rightsquigarrow T^{*} B \otimes V$ transforming second order nonholonomic connections Θ on $Y \rightarrow M$ into tensor fields $A_{2}(\Theta): Y \rightarrow T^{*} M \otimes V Y$ and to classify all $\mathcal{F} \mathcal{M}_{m, n}$-natural operators $A_{3}: \tilde{J}^{2} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ transforming second order nonholonomic connections Θ on $Y \rightarrow M$ into tensor fields $A_{3}(\Theta): Y \rightarrow \otimes^{2} T^{*} M \otimes V Y$ (the
definitions of the above type natural operators are quite similar to the definition of natural operators $\tilde{J}^{2} \rightsquigarrow \tilde{J}^{2}$).

At first we prove
Proposition 2. Any $\mathcal{F} \mathcal{M}_{m, n}$-natural operator $A_{2}: \tilde{J}^{2} \rightsquigarrow T^{*} B \otimes V$ is of the form

$$
A_{2}(\Theta)=\tau Q
$$

for some $\tau \in \mathbf{R}$, where $\Theta=(\Gamma, Q, G)$ is an arbitrary second order nonholonomic connection on $Y \rightarrow M$.

Proof. Since a $\mathcal{F} \mathcal{M}_{m, n}-\operatorname{map}(x, y-\sigma(x))$ sends $j_{0}^{1}(x, \sigma(x))$ into $j_{0}^{1}(x, 0)$, so $J_{0}^{1}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$ is the $\mathcal{F} \mathcal{M}_{m, n}$-orbit of $\theta^{o}=j_{0}^{1}(x, 0) \in J_{0}^{1}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$. Then (by the $\mathcal{F} \mathcal{M}_{m, n}$-invariance of A_{2}) A_{2} is determined by the values

$$
\begin{equation*}
A_{2}(\Gamma, Q, G)(0,0) \in T_{0}^{*} \mathbf{R}^{m} \otimes V_{(0,0)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right) \tag{1}
\end{equation*}
$$

for all first order connections Γ on $\mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ with $\Gamma(0,0)=\theta^{o}$, all tensor fields $Q: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow T^{*} \mathbf{R}^{m} \otimes V\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$ and all tensor fields $G: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \otimes^{2} T^{*} \mathbf{R}^{m} \otimes V\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$. Then using the invariance of A_{2} with respect to the homotheties $\frac{1}{t} i d_{\mathbf{R}^{m} \times \mathbf{R}^{n}}$ for $t>0$ and putting $t \rightarrow 0$ we deduce that A_{2} is determined by the value

$$
\begin{equation*}
A_{2}\left(\Gamma^{o}, Q^{o}, 0\right)(0) \in T_{0}^{*} \mathbf{R}^{m} \otimes V_{(0,0)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right) \tag{2}
\end{equation*}
$$

where Γ^{o} is the trivial first order connection on $\mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, and $Q^{o}: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow T^{*} \mathbf{R}^{m} \otimes V\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$ is the "constant" tensor field such that $Q^{o}(0,0)=Q(0,0)$. Then using the invariance of $A_{2}\left(\Gamma^{o}, \cdot, 0\right)$ with respect to $G L\left(\mathbf{R}^{m}\right) \times G L\left(\mathbf{R}^{n}\right)$ and the invariant tensor theorem [2] we deduce that the value (2) is proportional to $Q(0,0)$. That is why, $A_{2}(\Theta)=\tau Q$ for some $\tau \in \mathbf{R}$.

From Proposition 2 it follows (immediately) the following
Proposition 3. Any $\mathcal{F} \mathcal{M}_{m, n}$-natural operator $A_{1}: \tilde{J}^{2} \rightsquigarrow J^{1}$ is of the form

$$
A_{1}(\Theta)=\Gamma+\tau Q
$$

for some $\tau \in \mathbf{R}$, where $\Theta=(\Gamma, Q, G)$ is an arbitrary second order nonholonomic connection on $Y \rightarrow M$.

Then it remains to classify all $\mathcal{F} \mathcal{M}_{m, n}$-natural operators $A_{3}: \tilde{J}^{2} \rightsquigarrow$ $\otimes^{2} T^{*} B \otimes V$ transforming second order nonholonomic connections $\Theta=$ (Γ, Q, G) on $Y \rightarrow M$ into tensor fields $A_{3}(\Gamma, Q, G): Y \rightarrow \otimes^{2} T^{*} M \otimes V Y$.

Example 1. Let $\Theta=(\Gamma, Q, G)$ be a second order nonholonomic connection on $Y \rightarrow M$. We can take the curvature $C \Gamma=[\Gamma, \Gamma]: Y \rightarrow \wedge^{2} T^{*} M \otimes V Y$ of Γ, see Sect. 17.1 in [2]. The correspondence $D_{1}: \tilde{J}^{2} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ given by $D_{1}(\Gamma, Q, G)=C \Gamma$ is a $\mathcal{F} \mathcal{M}_{m, n}$-natural operator.

Example 2. The correspondence $D_{2}: \tilde{J}^{2} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ given by

$$
D_{2}(\Gamma, Q, G)=C(\Gamma+Q)
$$

is a $\mathcal{F} \mathcal{M}_{m, n}$-natural operator.
Example 3. We can take the alternation $\operatorname{Alt}(G): Y \rightarrow \wedge^{2} T^{*} M \otimes V Y$ of G. The correspondence $D_{3}: \tilde{J}^{2} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ given by $D_{3}(\Gamma, Q, G)=\operatorname{Alt}(G)$ is a $\mathcal{F} \mathcal{M}_{m, n}$-natural operator.

Example 4. We can take the symmetrization $\operatorname{Sym}(G): Y \rightarrow S^{2} T^{*} M \otimes V Y$. The correspondence $D_{4}: \tilde{J}^{2} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ given by $D_{4}(\Gamma, Q, G)=\operatorname{Sym}(G)$ is a $\mathcal{F} \mathcal{M}_{m, n}$-natural operator.

Proposition 4. Any $\mathcal{F} \mathcal{M}_{m, n}$-natural operator $A_{3}: \tilde{J}^{2} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ is of the form

$$
A_{3}=k_{1} D_{1}+k_{2} D_{2}+k_{3} D_{3}+k_{4} D_{4}
$$

for real numbers $k_{1}, k_{2}, k_{3}, k_{4}$.
Proof. Similarly as in the proof of Proposition $2, A_{3}$ is uniquely determined by the values

$$
\begin{equation*}
A_{3}(\Gamma, Q, G)(0,0) \in \otimes^{2} T_{0}^{*} \mathbf{R}^{m} \otimes V_{(0,0)}\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right) \tag{3}
\end{equation*}
$$

for all first order connections Γ on $\mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ with $\Gamma(0,0)=\theta^{o}$, all tensor fields $Q: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow T^{*} \mathbf{R}^{m} \otimes V\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$ and all tensor fields $G: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \otimes^{2} T^{*} \mathbf{R}^{m} \otimes V\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$. Then using the non-linear Petree theorem [2] and the invariance of A_{3} with respect to the homotheties $\operatorname{tid}_{\mathbf{R}^{m} \times \mathbf{R}^{n}}$ for $t>0$ and the homogeneous function theorem [2] and next the invariance of A_{3} with respect to the fiber homotheties $i d_{\mathbf{R}^{m}} \times t i d_{\mathbf{R}^{n}}$ for $t>0$ and the base homotheties $t i d_{\mathbf{R}^{m}} \times i d_{\mathbf{R}^{n}}$ for $t>0$ we deduce that the values (3) are of the form

$$
\begin{align*}
& A_{3}(\Gamma, 0,0)(0,0)+A_{3}\left(\Gamma^{o}, \tilde{Q}, 0\right)(0,0) \\
& \quad+A_{3}\left(\Gamma^{o}, 0, G^{o}\right)(0,0)+A_{3}\left(\Gamma^{1}, Q^{o}, 0\right)(0,0) \tag{4}
\end{align*}
$$

where Γ^{o} is the trivial connection and Q^{o} is the constant tensor field such that $Q^{o}(0,0)=Q(0,0)$ and G^{o} is the constant tensor field such that $G^{o}(0,0)$ $=G(0,0)$ and $\tilde{Q}=Q-Q^{o}$ and $\Gamma^{1}=\Gamma^{o}+Q^{1}$ and $Q^{1}: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow$ $T^{*} \mathbf{R}^{m} \otimes V\left(\mathbf{R}^{m} \times \mathbf{R}^{n}\right)$ is some tensor field of the form

$$
Q^{1}=\sum_{k, l=1}^{n} \sum_{i=1}^{m} a_{i, l}^{k} y^{l} d x^{i} \otimes \frac{\partial}{\partial y^{k}}
$$

with constant $a_{i, l}^{k}$ dependent on Γ. Moreover, the second summand of (4) depends on the first derivatives of \tilde{Q} only, and the forth summand of (4)
depends linearly on the $a_{i, l}^{k}$'s. In particular,

$$
\begin{equation*}
A_{3}\left(\Gamma^{o}, d x^{i} \otimes \frac{\partial}{\partial y^{k}}, 0\right)(0,0)=0 \tag{5}
\end{equation*}
$$

for all i, k as above, and the forth summand of (4) is determined by the values

$$
\begin{equation*}
A_{3}\left(\Gamma^{o}+y^{l} d x^{i} \otimes \frac{\partial}{\partial y^{k}}, Q^{o}, 0\right)(0,0) \tag{6}
\end{equation*}
$$

for all i, k, l and Q^{o} as above. The third summand of (4) (more explicitly, the $\left.\operatorname{map} G^{o} \rightarrow A_{3}\left(\Gamma^{o}, 0, G^{o}\right)\right)$ can be treated as the $G L(m) \times G L(n)$-invariant map $\otimes^{2}\left(\mathbf{R}^{m}\right)^{*} \otimes \mathbf{R}^{n} \rightarrow \otimes^{2}\left(\mathbf{R}^{m}\right)^{*} \otimes \mathbf{R}^{n}$. Then (it is well known), it is a linear combination of the alternation and symmetrization. Similarly, the second summand of (4) can be also treated as the $G L(m) \times G L(n)$-invariant map $\otimes^{2}\left(\mathbf{R}^{m}\right)^{*} \otimes \mathbf{R}^{n} \rightarrow \otimes^{2}\left(\mathbf{R}^{m}\right)^{*} \otimes \mathbf{R}^{n}$. Then it is a linear combination of the alternation and symmetrization, too. But, using the invariance of A_{3} with respect to $\left(x^{1}+\left(x^{1}\right)^{2}, x^{2}, \ldots, x^{m}, y^{1}, \ldots, y^{n}\right)$, from (5) for $i=1$ and $k=1$ we obtain $A_{3}\left(\Gamma^{o}, x^{1} d x^{1}, 0\right)(0,0)=0$. Then the second summand of (4) corresponds only to a constant multiple of the alternation. Then replacing A_{3} by $A_{3}-k_{2} D_{2}-k_{3} D_{3}-k_{4} D_{4}$ for some respective real numbers k_{2}, k_{3}, k_{4} we may assume that the second and the third summands of (4) are zero. Then using the invariance of A_{3} with respect to the $\mathcal{F} \mathcal{M}_{m, n}$-map $\left(x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{k}+x^{i} y^{l}, \ldots, y^{n}\right)$ (where only $m+k$-position is exceptional) from (5) (and the additional assumption that the second summand of (4) is zero) we deduce that the value (6) is zero for all i, k, l as above. Then the forth summand of (4) is zero, too. Then $A_{3}(\Gamma, Q, G)$ does not depend on G and Q. Then A_{3} is determined by a $\mathcal{F} \mathcal{M}_{m, n}$-natural operator $D: J^{1} \rightsquigarrow \otimes^{2} T^{*} B \otimes V$ given by $D(\Gamma)=A_{3}(\Gamma, 0,0)$. But by Proposition 4 in [3], $D=k_{1} C$ for some $k_{1} \in \mathbf{R}$. Then $A_{3}=k_{1} D_{1}$. The proof is complete.

Thus we have proved
Theorem 1. Any $\mathcal{F} \mathcal{M}_{m, n}$-natural operator $A: \tilde{J}^{2} \rightsquigarrow \tilde{J}^{2}$ is of the form

$$
A(\Theta)=\left(\Gamma+\tau_{1} Q, \tau_{2} Q, k_{1} C \Gamma+k_{2} C(\Gamma+Q)+k_{3} \operatorname{Alt}(G)+k_{4} \operatorname{Sym}(G)\right)
$$

for some (uniquely determined by A) real numbers $\tau_{1}, \tau_{2}, k_{1}, k_{2}, k_{3}, k_{4}$, where $\Theta=(\Gamma, Q, G)$ is an arbitrary second order nonholonomic connection on $Y \rightarrow M$.

References

[1] Cabras, A., Kolář, I., Second order connections on some functional bundles, Arch. Math. (Brno) 35 (1999), 347-365.
[2] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[3] Vašik, P., Connections on higher order principal prolongations, Ph.D. Thesis, Brno, 2006.

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. Reymonta 4
30-059 Kraków, Poland e-mail: mikulski@im.uj.edu.pl

Received September 5, 2007

[^0]: 2000 Mathematics Subject Classification. 58A20, 58A32.
 Key words and phrases. Connections, natural operators.

