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Second order nonholonomic connections from
second order nonholonomic ones

Abstract. We describe all FMm,n-natural operators A : J̃2  J̃2 trans-
forming second order nonholonomic connections Θ : Y → J̃2Y on fibred man-
ifolds Y →M into second order nonholonomic connections A(Θ) : Y → J̃2Y
on Y →M .

Manifolds and maps are assumed to be of class C∞. Manifolds are as-
sumed to be finite dimensional and without boundaries.
Let FM be the category of fibred manifolds and their fibred maps, let

FMm be the category of fibred manifolds with m-dimensional bases and
their fibred maps covering embeddings, and let FMm,n be the category
of fibred manifolds with m-dimensional bases and n-dimensional fibres and
their fibred embeddings.
Given a fibred manifold Y → M we have its jet prolongation J1Y (the
bundle of 1-jets j1

xσ of sections of Y → M) and given an FMm-map f :
Y1 → Y2 covering f : M1 → M2 we have a fibred map J1f : J1Y1 → J1Y2

covering f given by J1f(j1
xσ) = j1

f(x)(f ◦ σ ◦ f−1), j1
xσ ∈ J1Y1. The functor

J1 : FMm → FM is a (fiber product preserving) bundle functor in the
sense of [2]. Iterating J1 we obtain the second order nonholonomic jet
(fiber product preserving) bundle functor J̃2 := J1J1 : FMm → FM
(J̃2(Y → M) = J1(J1Y → M)).
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A first order connection on a fibred manifold Y → M is a section Γ :
Y → J1Y of J1Y → Y . A second order nonholonomic connection on a
fibred manifold Y → M is a section Θ : Y → J̃2Y of J̃2Y → Y .

Proposition 1 ([1]). Second order nonholonomic connections Θ on Y → M
are in bijection with couples (Γ1,Γ2, G) consisting of first order connections
Γ1,Γ2 on Y → M and tensor fields G : Y → ⊗2T ∗M ⊗ V Y .

Let Γ1, Γ2 be first order connections on Y → M . Let Q = Γ1−Γ2 : Y →
T ∗M ⊗ V Y be the “difference” tensor field, where the operation “−” is
the difference in the affine bundle J1Y → Y with the corresponding vector
bundle T ∗M ⊗ V Y over Y . Then Proposition 1 can be reformulated as
follows.

Proposition 1′. Second order nonholonomic connections Θ on Y → M are
in bijection with couples (Γ, Q,G) consisting of first order connections Γ on
Y → M and tensor fields Q : Y → T ∗M ⊗V Y and G : Y → ⊗2T ∗M ⊗V Y .

In the present paper we study the problem how a second order nonholo-
nomic connection Θ : Y → J̃2Y on an FMm,n-object Y → M can induce
canonically a second order nonholonomic connection A(Θ) : Y → J̃2Y on
Y → M . This problem is reflected in the concept of FMm,n-natural opera-
tors A : J̃2  J̃2. In the present note we find all FMm,n-natural operators
A in question.
We remark that a general concept of natural operators can be found in
[2]. In the present note we need (in particular) the following partial case of
natural operators.
A FMm,n-natural operator A : J̃2  J̃2 is a system of FMm,n-invariant
regular operators (functions)

A = AY→M : Γ(J̃2Y ) → Γ(J̃2Y )

for any FMm,n-object Y → M , where Γ(J̃2Y ) is the set of second order
nonholonomic connections on Y → M . The invariance means that if Θ1 ∈
Γ(J̃2Y1) and Θ2 ∈ Γ(J̃2Y2) are f -related by an FMm,n-map f : Y1 → Y2

(i.e. J̃2f ◦Θ1 = Θ2◦f) then A(Θ1) and A(Θ2) are f -related. The regularity
means that A transforms smoothly parametrized families of second order
nonholonomic connections into smoothly parametrized ones.
According to Proposition 1 it is sufficient to classify all FMm,n-natural
operators A1 : J̃2  J1 transforming second order nonholonomic connec-
tions Θ on Y → M into first order connections A1(Θ) on Y → M and
to classify all FMm,n-natural operators A2 : J̃2  T ∗B ⊗ V transforming
second order nonholonomic connections Θ on Y → M into tensor fields
A2(Θ) : Y → T ∗M ⊗ V Y and to classify all FMm,n-natural operators
A3 : J̃2  ⊗2T ∗B ⊗ V transforming second order nonholonomic connec-
tions Θ on Y → M into tensor fields A3(Θ) : Y → ⊗2T ∗M ⊗ V Y (the
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definitions of the above type natural operators are quite similar to the def-
inition of natural operators J̃2  J̃2).
At first we prove

Proposition 2. Any FMm,n-natural operator A2 : J̃2  T ∗B ⊗ V is of
the form

A2(Θ) = τQ

for some τ ∈ R, where Θ = (Γ, Q,G) is an arbitrary second order nonholo-
nomic connection on Y → M .

Proof. Since a FMm,n-map (x, y−σ(x)) sends j1
0(x, σ(x)) into j1

0(x, 0), so
J1

0 (Rm ×Rn) is the FMm,n-orbit of θo = j1
0(x, 0) ∈ J1

0 (Rm ×Rn). Then
(by the FMm,n-invariance of A2) A2 is determined by the values

(1) A2(Γ, Q,G)(0, 0) ∈ T ∗0 Rm ⊗ V(0,0)(R
m ×Rn)

for all first order connections Γ on Rm ×Rn → Rm with Γ(0, 0) = θo, all
tensor fields Q : Rm × Rn → T ∗Rm ⊗ V (Rm × Rn) and all tensor fields
G : Rm×Rn → ⊗2T ∗Rm⊗ V (Rm×Rn). Then using the invariance of A2

with respect to the homotheties 1
t idRm×Rn for t > 0 and putting t → 0 we

deduce that A2 is determined by the value

(2) A2(Γo, Qo, 0)(0) ∈ T ∗0 Rm ⊗ V(0,0)(R
m ×Rn)

where Γo is the trivial first order connection on Rm × Rn → Rm, and
Qo : Rm × Rn → T ∗Rm ⊗ V (Rm × Rn) is the ”constant” tensor field
such that Qo(0, 0) = Q(0, 0). Then using the invariance of A2(Γo, ·, 0) with
respect toGL(Rm)×GL(Rn) and the invariant tensor theorem [2] we deduce
that the value (2) is proportional to Q(0, 0). That is why, A2(Θ) = τQ for
some τ ∈ R. �

From Proposition 2 it follows (immediately) the following

Proposition 3. Any FMm,n-natural operator A1 : J̃2  J1 is of the form

A1(Θ) = Γ + τQ

for some τ ∈ R, where Θ = (Γ, Q,G) is an arbitrary second order nonholo-
nomic connection on Y → M .

Then it remains to classify all FMm,n-natural operators A3 : J̃2  
⊗2T ∗B ⊗ V transforming second order nonholonomic connections Θ =
(Γ, Q,G) on Y → M into tensor fields A3(Γ, Q,G) : Y → ⊗2T ∗M ⊗ V Y .

Example 1. Let Θ = (Γ, Q,G) be a second order nonholonomic connection
on Y → M . We can take the curvature CΓ = [Γ,Γ] : Y → ∧2T ∗M ⊗ V Y of
Γ, see Sect. 17.1 in [2]. The correspondence D1 : J̃2  ⊗2T ∗B ⊗ V given
by D1(Γ, Q,G) = CΓ is a FMm,n-natural operator.
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Example 2. The correspondence D2 : J̃2  ⊗2T ∗B ⊗ V given by

D2(Γ, Q,G) = C(Γ + Q)

is a FMm,n-natural operator.

Example 3. We can take the alternation Alt(G) : Y → ∧2T ∗M⊗V Y of G.
The correspondence D3 : J̃2  ⊗2T ∗B ⊗ V given by D3(Γ, Q,G) = Alt(G)
is a FMm,n-natural operator.

Example 4. We can take the symmetrization Sym(G) : Y → S2T ∗M⊗V Y .
The correspondence D4 : J̃2  ⊗2T ∗B⊗V given by D4(Γ, Q,G) = Sym(G)
is a FMm,n-natural operator.

Proposition 4. Any FMm,n-natural operator A3 : J̃2  ⊗2T ∗B⊗ V is of
the form

A3 = k1D1 + k2D2 + k3D3 + k4D4

for real numbers k1, k2, k3, k4.

Proof. Similarly as in the proof of Proposition 2, A3 is uniquely determined
by the values

(3) A3(Γ, Q,G)(0, 0) ∈ ⊗2T ∗0 Rm ⊗ V(0,0)(R
m ×Rn)

for all first order connections Γ on Rm ×Rn → Rm with Γ(0, 0) = θo, all
tensor fields Q : Rm × Rn → T ∗Rm ⊗ V (Rm × Rn) and all tensor fields
G : Rm × Rn → ⊗2T ∗Rm ⊗ V (Rm × Rn). Then using the non-linear
Petree theorem [2] and the invariance of A3 with respect to the homotheties
tidRm×Rn for t > 0 and the homogeneous function theorem [2] and next
the invariance of A3 with respect to the fiber homotheties idRm × tidRn for
t > 0 and the base homotheties tidRm × idRn for t > 0 we deduce that the
values (3) are of the form

(4)
A3(Γ, 0, 0)(0, 0) + A3(Γo, Q̃, 0)(0, 0)

+ A3(Γo, 0, Go)(0, 0) + A3(Γ1, Qo, 0)(0, 0),

where Γo is the trivial connection and Qo is the constant tensor field such
that Qo(0, 0) = Q(0, 0) and Go is the constant tensor field such that Go(0, 0)
= G(0, 0) and Q̃ = Q − Qo and Γ1 = Γo + Q1 and Q1 : Rm × Rn →
T ∗Rm ⊗ V (Rm ×Rn) is some tensor field of the form

Q1 =
n∑

k,l=1

m∑
i=1

ak
i,ly

ldxi ⊗ ∂

∂yk

with constant ak
i,l dependent on Γ. Moreover, the second summand of (4)

depends on the first derivatives of Q̃ only, and the forth summand of (4)
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depends linearly on the ak
i,l’s. In particular,

(5) A3

(
Γo, dxi ⊗ ∂

∂yk
, 0

)
(0, 0) = 0

for all i, k as above, and the forth summand of (4) is determined by the
values

(6) A3

(
Γo + yldxi ⊗ ∂

∂yk
, Qo, 0

)
(0, 0)

for all i, k, l and Qo as above. The third summand of (4) (more explicitly, the
map Go → A3(Γo, 0, Go)) can be treated as the GL(m) × GL(n)-invariant
map ⊗2(Rm)∗ ⊗ Rn → ⊗2(Rm)∗ ⊗ Rn. Then (it is well known), it is
a linear combination of the alternation and symmetrization. Similarly, the
second summand of (4) can be also treated as the GL(m)×GL(n)-invariant
map ⊗2(Rm)∗ ⊗Rn → ⊗2(Rm)∗ ⊗Rn. Then it is a linear combination of
the alternation and symmetrization, too. But, using the invariance of A3

with respect to (x1 + (x1)2, x2, . . . , xm, y1, . . . , yn), from (5) for i = 1 and
k = 1 we obtain A3(Γo, x1dx1, 0)(0, 0) = 0. Then the second summand of
(4) corresponds only to a constant multiple of the alternation. Then re-
placing A3 by A3 − k2D2 − k3D3 − k4D4 for some respective real numbers
k2, k3, k4 we may assume that the second and the third summands of (4)
are zero. Then using the invariance of A3 with respect to the FMm,n-map
(x1, . . . , xm, y1, . . . , yk + xiyl, . . . , yn) (where only m + k-position is excep-
tional) from (5) (and the additional assumption that the second summand
of (4) is zero) we deduce that the value (6) is zero for all i, k, l as above.
Then the forth summand of (4) is zero, too. Then A3(Γ, Q,G) does not
depend on G and Q. Then A3 is determined by a FMm,n-natural operator
D : J1  ⊗2T ∗B⊗V given by D(Γ) = A3(Γ, 0, 0). But by Proposition 4 in
[3], D = k1C for some k1 ∈ R. Then A3 = k1D1. The proof is complete. �

Thus we have proved

Theorem 1. Any FMm,n-natural operator A : J̃2  J̃2 is of the form

A(Θ) = (Γ + τ1Q, τ2Q, k1CΓ + k2C(Γ + Q) + k3Alt(G) + k4Sym(G))

for some (uniquely determined by A) real numbers τ1, τ2, k1, k2, k3, k4, where
Θ = (Γ, Q,G) is an arbitrary second order nonholonomic connection on
Y → M .
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