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Diffusion approximation for a G/G/1 EDF
queue with unbounded lead times

Abstract. We present a heavy traffic analysis for a G/G/1 queue in which
customers have unbounded random deadlines correlated with their service
times. The customers are processed according to the earliest-deadline-first
(EDF) queue discipline. At any time, the customers have a lead time, the
time until their deadline lapses. We model the evolution of these lead times
as a random measure on the real line. Under suitable scaling, it is proved that
the measure-valued lead-time process converges to a deterministic function of
the workload process. This work is a generalization of Doytchinov et al. [6],
which developed these results for the case of bounded deadlines independent
of the service times. Another generalization of the latter results, covering the
case of long range dependence, is also discussed.

1. Introduction. Real-time queueing theory is devoted to the study of
systems that service customers with individual timing requirements. Such
systems arise naturally in manufacturing in which orders have due dates,
or in real-time computer and communication networks. To study queueing
systems in which the customers have deadlines, we must attach a lead-time
variable to each customer in the system (the lead time is the time until
the deadline of the customer’s job). It is convenient to model the vector
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of customer lead times at any time t as a counting measure on R with a
unit atom at the current lead-time of each customer and total mass equal
to the number of customers in the system at that time. Doytchinov et
al. [6] investigated the single queue case under the Earliest-Deadline-First
(EDF) queue discipline. They proved that under heavy traffic conditions,
a suitably scaled random lead time measure converges to a non-random
function of the limit of the scaled workload process. Kruk et al. [11] gave the
corresponding results for the First-In-First-Out (FIFO) queue discipline and
generalized both the EDF and the FIFO results to the case of a single station
with K input streams, queued in separate buffers and served by the head-
of-the-line processor sharing (HOL-PS) policy across streams. Yeung and
Lehoczky [16] generalized the single server, single customer class analysis
for EDF and FIFO to multi-class feedforward networks. Kruk et al. [12]
extended these results to multi-class acyclic EDF networks. The accuracy
of the approximations of Doytchinov et al. [6] was investigated in Kruk et
al. [9, 10].
In all the above-mentioned papers, it was assumed that the (suitably
rescaled) customer lead times are bounded above by a constant y∗ < ∞
and the arguments depended heavily on this assumption. Moreover, inde-
pendence of the customer service times and initial lead times was always
assumed. Both these assumptions may be limiting in some applications, e.g.,
they do not allow for modelling a regularization of the Shortest-Remaining-
Processing-Time-First (SRPT) protocol suggested by Bender et al. [1], in
which we use (pseudo-) lead times equal to (suitable positive multiples of)
the service times. It is perhaps surprising that the deterministic upper
bound for the customer initial lead times seems to be the most important
assumption for the analysis of Doytchinov et al. [6] and their result may be
generalized considerably with little additional effort as long as we keep this
assumption. For a more detailed discussion of this issue, see Appendix, to
follow. On the other hand, the need for generalizing the existing theory to
more general deadline distributions was already recognized in Doytchinov
et al. [6], which provided simulation results suggesting that the main result
of that paper should hold also in the case of unbounded lead times.
The aim of this paper is to get a counterpart of the result of Doytchinov
et al. [6] for unbounded initial lead times whose positive parts have finite
second moments. Our analysis does not require the independence of the
customer service times and their initial lead times. It turns out that the
approach developed by Doytchinov et al. [6], based on arrival analysis and
the observation that the number of partially served customers and the work
associated with them are negligible under heavy-traffic scaling, can still be
applied. However, in our case, the analysis of the timing requirements of
the incoming customers is more difficult and requires different probabilistic
tools. Additional difficulties also arise when the workload in the system is
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small, because then customers with arbitrarily large lead times may receive
service. We consider the single queue, single customer class case, but it
should be possible to extend our result to HOL-PS stations, feedforward
and acyclic networks along the lines of Kruk et al. [11, 12], Yeung and
Lehoczky [16].
This paper is organized as follows. Section 2 presents the model, notation
and assumptions. It also introduces the measure-valued processes associated
with customer lead times and the frontier processes. Section 3 states the
main results of the paper. Section 4 is devoted to the analysis of the lead-
time profiles of the arriving customers and the work associated with them.
In Section 5 we show that the work in the system associated with partially
served customers is negligible under diffusion scaling and that the same
is true about the number of these customers, provided that the workload
is not too small. Section 6 provides proofs of the main results. Section
7 contains two examples illustrating our results. Appendix presents an
immediate generalization of the results of Doytchinov et al. [6] to the case
of dependent customer arrival times, service times and lead times under the
assumption that the customer lead times are bounded from above.

2. The model, assumptions and notation.

2.1. Notation. The following notation will be used throughout the paper.
Let N = {1, 2, . . .} and let R denote the set of real numbers. For a, b ∈ R,
we write a∨ b for the maximum of a and b, a∧ b for the minimum of a and
b, a+ for the positive part of a, bac for the largest integer less than or equal
to a and dae for the smallest integer greater than or equal to a. For a, b ∈ R
such that a ≥ b, by definition, (a, b] ∆= Ø. Let R ∆= R ∪ {−∞,∞} be the
two-point compactification of R with the obvious topology.
A rectangle (s1, s2]× (t1, t2], where s1, s2, t1, t2 ∈ R, s1 < s2, t1 < t2, will
be called a block. Two blocks B1, B2 are called neighbouring if they share
an edge, i.e., B1 = (s1, s2] × (t1, t2] and either B2 = (s2, s3] × (t1, t2], or
B2 = (s1, s2] × (t2, t3] for some si, ti ∈ R, i = 1, 2, 3. For a two-parameter
random fieldX(s, t) and a blockB = (s1, s2]×(t1, t2], letX(B) ∆= X(s2, t2)−
X(s1, t2)−X(s2, t1) +X(s1, t1).
Denote by M the set of all finite, nonnegative measures on B(R), the
Borel subsets of R. Under the weak topology,M is a Polish space.
Let A be an arbitrary set. The space `∞(A) is defined as the set of all
uniformly bounded real functions on A, i.e., all functions z : A → R such
that ||z||A

∆= supa∈A |z(a)| < ∞. (`∞(A), || · ||A) is a Banach space (not
necessarily separable).
We will use the symbol⇒ to denote weak convergence of measures, either
on R (in this case, the same symbol is used for convergence of the corre-
sponding cumulative distribution functions (c.d.f.s)) or R2, or on `∞(A)
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for a suitable set A, or, finally, on the space DS [0,∞) of right-continuous
functions with left-hand limits (RCLL functions) from [0,∞) to a Polish
space S, equipped with the Skorokhod J1 topology. See van der Vaart and
Wellner [14], Whitt [15] for details. When dealing with DS [0,∞), we take
S = R or Rd, with appropriate dimension d for vector-valued functions,
unless explicitly stated otherwise. We will also use the space D([0, T ]2) of
real, RCLL functions on a square [0, T ]2, see, e.g., Bickel and Wichura [2]
for its definition and more details.
For functions f, g : R → R, where g is RCLL, and for −∞ < a < b ≤ ∞,
we write

∫ b
a f(s)dg(s) (or

∫ b
a f(s)g(ds)) to denote

∫
(a,b] f(s)dg(s).

Denote by e the identity map on [0,∞), i.e., e(t) = t, t ≥ 0.

2.2. The basic model. We have a sequence of single-station queueing
systems, each serving one class of customers. The queueing systems are
indexed by superscript n.
The inter-arrival times for the customer arrival process are

{
un

j

}∞
j=1
, a se-

quence of strictly positive, independent, identically distributed (i.i.d.) ran-
dom variables (r.v.s) with mean 1/λn and standard deviation αn. The ser-
vice times are

{
vn
j

}∞
j=1
, another sequence of positive, i.i.d. r.v.s with mean

1/µn and standard deviation βn. We assume that each queue is empty at
time zero and

(2.1) lim
n→∞

λn = lim
n→∞

µn = λ > 0.

We define the customer arrival times

(2.2) Sn
0

∆= 0, Sn
k

∆=
k∑

i=1

un
i , k ≥ 1,

the customer arrival process

(2.3) An(t) ∆= max
{
k : Sn

k ≤ t
}
, t ≥ 0,

and the work arrival process

(2.4) V n(t) ∆=
btc∑
j=1

vn
j , t ≥ 0.

The work which has arrived to the queue by time t is then V n(An(t)).
Each customer arrives with an initial lead time Ln

j , the time between the
arrival time and the deadline for completion of service for that customer.
These initial lead times have common distribution given by

(2.5) P
{
Ln

j ≤
√
ny
}

= Gn(y),

where

(2.6) Gn ⇒ G.
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We assume that the random vectors
{(
vn
j , L

n
j

)}∞
j=1
are i.i.d. and that

Gn
v (y) ∆= E

[
vn
j I{Ln

j ≤
√

ny}

]
⇒ Gv(y),(2.7)

Gn
v2(y)

∆= E
[(
vn
j

)2I{Ln
j ≤

√
ny}

]
⇒ Gv2(y),(2.8)

where Gv and Gv2 are c.d.f.s of finite positive measures on R such that Gv

has total mass 1/λ and Gv(y) < 1/λ for every y ∈ R. We also assume
that for every n, the sequences

{
un

j

}∞
j=1
and

{(
vn
j , L

n
j

)}∞
j=1
are mutually

independent.
Customers are served using the EDF queue discipline, i.e., the server
always serves the customer with the shortest lead time. Preemption is
permitted (we assume preempt-resume). There is no set up, switch-over,
or other type of overhead. Late customers (customers with negative lead
times) stay in queue until served to completion.
The netput process

(2.9) Nn(t) ∆= V n
(
An(t)

)
− t

measures the amount of work in queue at time t provided that the server is
never idle up to time t. The cumulative idleness process

(2.10) In(t) ∆= − inf
0≤s≤t

Nn(s),

gives the amount of time the server is idle, and adding this to the netput
process, we obtain the workload process

(2.11) Wn(t) = Nn(t) + In(t),

which records the amount of work in the queue, taking server idleness into
account. All the above processes are independent of the queue service dis-
cipline, provided that the server is never idle when there are customers in
the queue. However, the queue length process Qn(t), which is the number
of customers in the queue at time t, depends on the queue discipline. All
these processes are RCLL.

2.3. Heavy traffic assumptions. We assume that

(2.12) lim
n→∞

αn = α > 0, lim
n→∞

βn = β > 0

and that

(2.13) E
(
(Ln

j )+
)2 ≤ C̃n

for some constant C̃ and all n. Define the traffic intensity ρn
∆= λn/µn. We

make the heavy traffic assumption

(2.14) lim
n→∞

√
n(1− ρn) = γ
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for some γ ∈ R. We impose the Lindeberg condition on the inter-arrival
times, service times and the positive parts of the rescaled lead times:

(2.15)

lim
n→∞

E
[(
un

j − (λn)−1
)2 I{|un

j −(λn)−1|>c
√

n}
]

= lim
n→∞

E
[(
vn
j − (µn)−1

)2 I{|vn
j −(µn)−1|>c

√
n}
]

= lim
n→∞

1
n

E
[(

(Ln
j )+ − E(Ln

j )+
)2 I{|(Ln

j )+−E(Ln
j )+|>cn}

]
= 0

for all c > 0. We extend Gn
v2 to R by Gv2(−∞) ∆= 0, Gv2(∞) ∆= E(vn

j )2. For
every x, y ∈ R, we define a semimetric ρ on R by the formula

(2.16) ρ(x, y) ∆= sup
n∈N

|Gn
v2(x)−Gn

v2(y)|.

We assume that
(
R, ρ

)
is a totally bounded semimetric space, i.e., for every

ε > 0, R may be decomposed into a finite number of sets (or, equivalently,
open balls) with radius less than ε. This is the case if, for example, Gv2

is continuous or Gn
v2 ≡ Gv2 (see the proof of Lemma 4.2, to follow, for the

argument), or, more generally, Gn
v2 = anGv2 , where an are real constants

converging to 1. The latter is the case if, e.g., Gn ≡ G and the lead times
are independent of the service times. However, the assumption (2.8) does
not always imply total boundedness of (R, ρ), a counterexample is Gn

v2(y) =
I{ 1

n
≤y}, n ∈ N. Finally, we assume that

(2.17)

lim
y→∞

sup
n∈N

∫ ∞

y
(1−Gn(η)) dη

= lim
y→∞

sup
n∈N

∫ ∞

y

(
1
µn

−Gn
v (η)

)
dη = 0.

(2.1), (2.7)–(2.8), (2.17) and Fatou’s lemma imply∫ ∞

0
(1−G(η))dη <∞,(2.18) ∫ ∞

0
(1− λ Gv(η))dη <∞.(2.19)

We introduce the heavy traffic scaling for the idleness, workload and queue
length processes

(2.20) În(t) =
1√
n
In(nt), Ŵn(t) =

1√
n
Wn(nt), Q̂n(t) =

1√
n
Qn(nt),

and the centered heavy traffic scaling for the arrival processes

(2.21) Ân(t) =
1√
n

[An(nt)− λnnt] , V̂ n(t) =
1√
n

bntc∑
j=1

(
vn
j −

1
µn

)
.
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We define also

(2.22) N̂n(t) =
1√
n

[
V n
(
An(nt)

)
− nt

]
.

Note that Ŵn(t) = N̂n(t) + În(t).
Theorem 3.1 in Prokhorov [13] and Theorem 14.6 in Billingsley [4] imply

(2.23) Ân ⇒ A∗, V̂ n ⇒ V ∗,

where A∗ (V ∗) is a Brownian motion with no drift and variance α2λ3 (β2)
per unit time. It is also a standard result (see Iglehart and Whitt [7]) that

(2.24)
(
N̂n, În, Ŵn

)
⇒ (N∗, I∗,W ∗),

where N∗ is a Brownian motion with variance (α2 + β2)λ per unit time
and drift −γ, I∗(t) ∆= −min0≤s≤tN

∗(s), and W ∗(t) = N∗(t) + I∗(t). In
other words, W ∗ is a reflected Brownian motion with drift, and I∗ causes
the reflection.

2.4. Measure-valued processes and frontiers. To study whether cus-
tomers meet their timing requirements, one must keep track of customer
lead times, where the lead time is the time remaining until the deadline
elapses, i.e.,

lead time = deadline − current time.
In this section, we define a collection of measure-valued processes which
will be useful in the analysis of the instantaneous lead-time profile of the
customers.
Queue length measure:

Qn(t)(B) ∆=
{
Number of customers in the queue at time t
having lead times at time t in B ⊂ R

}
.

Workload measure:

Wn(t)(B) ∆=
{
Work in the queue at time t associated with customers
in this queue having lead times at time t in B ⊂ R

}
.

Customer arrival measure:

An(t)(B) ∆=

 Number of all arrivals by time t,whether or not still in the system at time t,
having lead times at time t in B ⊂ R

 .

Workload arrival measure:

Vn(t)(B) ∆=

 Work associated with all arrivals by time t,whether or not still in the system at time t,
having lead times at time t in B ⊂ R

 .

The following relationships easily follow:

(2.25) Qn(t) = Qn(t)(R), Wn(t) = Wn(t)(R),
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An(t)(B) =
An(t)∑
j=1

I{Ln
j −(t−Sn

j )∈B} =
∞∑

j=1

I{Sn
j ∈B+t−Ln

j , Sn
j ≤t},(2.26)

Vn(t)(B) =
An(t)∑
j=1

vn
j I{Ln

j −(t−Sn
j )∈B} =

∞∑
j=1

vn
j I{Sn

j ∈B+t−Ln
j , Sn≤t}.(2.27)

To study the behavior of the EDF queue discipline, it is useful to keep
track of the lead time of the customer currently in service and the largest
lead time of all customers, whether present or departed, who have ever been
in service. We define the frontier

Fn(t) ∆=

 Largest lead time of all customers who have ever beenin service, whether still present or not, if t > Sn
1 ,

or +∞, if t ≤ Sn
1

 ,

the modified frontier

Fn
1 (t) ∆=

{
Fn(t), if t ≥ n

3
4 , or +∞, if t < n

3
4

}
,

and the current lead time

Cn(t) ∆=
{
Lead time of the customer in service,
or Fn(t) if the queue is empty

}
.

Under the EDF queue discipline, there is no customer with lead time smaller
than Cn(t), and there has never been a customer in service whose lead
time, if the customer were still present, would exceed Fn(t). Furthermore,
Cn(t) ≤ Fn(t) ≤ Fn

1 (t) for all t ≥ 0. Fn, Fn
1 and C

n are RCLL.
For the processes just defined, we use the following heavy traffic scalings:

F̂n(t) ∆=
1√
n
Fn(nt), F̂n

1 (t) ∆=
1√
n
Fn

1 (nt), Ĉn(t) ∆=
1√
n
Cn(nt),(2.28)

Q̂n(t)(B) ∆=
1√
n
Qn(nt)(

√
nB), Ŵn(t)(B) ∆=

1√
n
Wn(nt)(

√
nB).(2.29)

We define also

(2.30)

Ân(t)(B) ∆=
1√
n
An(nt)

(√
nB
)

=
1√
n

An(nt)∑
j=1

I{Ln
j −(nt−Sn

j )∈
√

nB}

=
1√
n

∞∑
j=1

I{Sn
j ∈

√
nB+nt−Ln

j , Sn
j ≤nt},
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(2.31)

V̂n(t)(B) ∆=
1√
n
Vn(nt)

(√
nB
)

=
1√
n

An(nt)∑
j=1

vn
j I{Ln

j −(nt−Sn
j )∈

√
nB}

=
1√
n

∞∑
j=1

vn
j I{Sn

j ∈
√

nB+nt−Ln
j , Sn

j ≤nt}.

For any y ∈ R, define

Hn
v (y) ∆= λn

∫ ∞

y

(
1
µn

−Gn
v (η)

)
dη,

Hn(y) ∆= λn

∫ ∞

y
(1−Gn(η)) dη,

Hv(y)
∆=
∫ ∞

y
(1− λGv(η)) dη,

H(y) ∆= λ

∫ ∞

y

(
1−G(η)

)
dη.

By (2.18) and (2.19), H and Hv are finite on R. By (2.1), (2.17) and
the bounded convergence theorem, Hn

v and H
n are also finite on R and,

moreover, Hn
v (y) → Hv(y) and Hn(y) → H(y) uniformly in y ∈ [c,∞) for

every c ∈ R. The function Hv maps R onto [0,∞] and is strictly decreasing
and continuous on R. Therefore, there exists a continuous inverse function
H−1

v : [0,∞] → R.
The motivation for introducing the modified frontier can be explained
as follows. For a queue operating under the EDF discipline, we expect a
relationship between the frontier and the workload. For example, if Fn(t)
is very negative, there are a lot of customers in the system with lead times
greater than Fn(t) and thus Wn(t) is large. Conversely, if Fn(t) is very
large, then a customer with a very large lead time must have been served
recently, so Wn(t) is likely to be small. In fact, Proposition 3.1, to follow,
which is a crucial step in the characterization of the limiting behavior of the
processes Q̂n(t) and Ŵn(t), asserts that for t not too close to zero,

(2.32) F̂n(t) ≈ H−1
v

(
Ŵn(t)

)
.

There is no hope, however, for extending (2.32) to all t ≥ 0. Indeed, for
t < un

1/n, F̂
n(t) = +∞ = H−1

v (0) = H−1
v

(
Ŵn(t)

)
, but the random variable

F̂n(un
1/n) = Ln

1/
√
n has distribution Gn, while Ŵn(un

1/n) = vn
1 /
√
n ≈ 0.

In fact, the above facts, together with (2.24), imply that the process F̂n

does not converge weakly in DR[0,∞) equipped with any of the Skorokhod
topologies. Therefore, we have introduced the modified frontier process
Fn

1 (t), which agrees with Fn(t) after an initial time period
[
0, n

3
4

)
, negligible

under heavy-traffic scaling, in which Fn
1 (t) = +∞ and Wn(t) is of the order

o
(√
n
)
, so

F̂n
1 (t) ≈ H−1

v

(
Ŵn(t)

)
for all t ≥ 0 (see Proposition 3.1 and its proof). Intuitively, the modification
of the frontier corresponds to giving the system enough time to “warm up”
until the relation (2.32) begins to hold. Let us also remark that the exponent
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3
4 in the definition of F

n
1 (t) may be replaced by any κ ∈ (1/2, 1) (the proof

of Proposition 3.1 requires that nκ− 1
2 → +∞ and we want the time interval

[0, nκ) to be negligible under heavy-traffic scaling).

3. Main results. We define the limiting scaled frontier process

(3.1) F ∗(t) ∆= H−1
v (W ∗(t)), t ≥ 0,

where W ∗ is as in (2.24).

Proposition 3.1. We have F̂n
1 ⇒ F ∗ in DR[0,∞) as n→∞.

Let W∗ and Q∗ be the measure-valued processes defined by

(3.2) W∗(t)(B) ∆=
∫

B∩[F ∗(t),∞)

(
1− λ Gv(η)

)
dη,

(3.3) Q∗(t)(B) ∆= λ

∫
B∩[F ∗(t),∞)

(
1−G(η)

)
dη,

for all Borel sets B ⊆ R.

Theorem 3.2. The processes Ŵn and Q̂n converge weakly in DM[0,∞) to
W∗ and Q∗, respectively.

Corollary 3.3. We have Q̂n ⇒ Q∗
∆= H(F ∗) in D[0,∞) as n→∞.

In particular, the equality Q∗ = λW ∗ does not hold in general, although
it does hold if the service times and the lead times are independent.

4. Arrival analysis. In this section, we analyze the limiting behavior of
the number of incoming customers with specific timing requirements and the
work associated with these customers, without taking departures and service
provided by the system into account. We start with Proposition 4.1, a law of
large numbers for the distribution function of V̂n, which, together with the
corresponding Proposition 4.6 for Ân, is the most important auxiliary result
of this paper. In its (long and somewhat technical) proof, we use techniques
from the theory of empirical processes. Next, in Proposition 4.7, we refine
Propositions 4.1 and 4.6 to Glivenko–Cantelli type results. Corollary 4.8,
showing that the atoms of V̂n and Ân are asymptotically negligible, follows.

Proposition 4.1. Let T > 0 and let y be a point of continuity of both Gv

and Gv2. Then

(4.1) sup
0≤t≤T

∣∣∣V̂n(t)(y,∞)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣∣ P−→ 0.
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To aid the reader, we first provide an outline of the proof. To ease
notation throughout this section, let Mn

j (y) ∆= vn
j I{Ln

j ≤
√

ny} − Gn
v (y) for

y ∈ R and j ∈ N. We also putMn
j (−∞) ∆= 0, Mn

j (∞) ∆= vn
j − 1

µn
. By (2.31),

we have

(4.2) V̂n(t)(y,∞) =
1√
n

∫ ∞

y

∞∑
j=1

I{nt−
√

n(l−y)<Sn
j ≤nt}d

(
vn
j I{Ln

j ≤
√

nl}

)
.

The main idea of the proof is to approximate V̂n(t)(y,∞) by

(4.3) In
1 (t) ∆=

1√
n

∫ ∞

y

∞∑
j=1

I{nt−
√

n(l−y)<Sn
j ≤nt}G

n
v (dl),

i.e., by the process obtained from the RHS of (4.2) by replacing the random
variables vn

j I{Ln
j ≤

√
nl} by their means. It is relatively easy to show that

(4.4)
∣∣In

1 (t)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣⇒ 0

in D[0, T ]. Thus, to prove (4.1), it suffices to show that the process

(4.5)

In
2 (t) ∆= V̂n(t)(y,∞)− In

1 (t)

=
1√
n

∫ ∞

y

∞∑
j=1

I{nt−
√

n(l−y)<Sn
j ≤nt}M

n
j (dl)

(i.e., the error in the approximation of V̂n(t)(y,∞) by In
1 (t)) converges

weakly to zero. Intuitively, this should follow from a suitable modifica-
tion of the law of large numbers. However, a rigorous justification of the
fact that In

2 ⇒ 0 is rather involved. We break In
2 (t) into two parts: In

2,1(t)
and In

2,2(t), corresponding to integration over
(
y, y+

√
nt
]
and

(
y+

√
nt,∞

)
in (4.5), respectively. For t > 0, y+

√
nt→∞ as n→∞, so the process In

2,2

may be expected to converge weakly to zero. We show that this is indeed
the case with the help of Lemma 4.2 and Corollary 4.3, to follow, using the
bracketing central limit theorem from the theory of empirical processes. To
deal with In

2,1(t), we write it in the form

(4.6) In
2,1(t) =

1√
n

∫ t

0

An(nt)∑
j=An(n(t−s))+1

Mn
j

(
y +

√
nds

)
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and approximate it by the process

(4.7)

Un(t) ∆=
1√
n

∫ t

0

bλnntc∑
j=bλnn(t−s)c+1

Mn
j

(
y +

√
nds

)

=
1√
n

bλnntc∑
j=1

[
Mn

j

(
y +

√
nt
)
−Mn

j

(
y +

√
nt− j

λn
√
n

)]
resulting from (4.6) by replacing An(nt) by its deterministic approximation
λnnt. We then show that both Un and In

2,1 − Un converge weakly to zero
in D[0, T ]. The latter task is accomplished, roughly speaking, by using
a criterion for tightness of random fields due to Bickel and Wichura [2]
and arguing that the finite-dimensional distributions of Un and In

2,1 − Un

converge to zero.

Proof of Proposition 4.1. For every t ∈ [0, T ],

(4.8) V̂n(t)(y,∞) = In
1 (t) + In

2 (t),

where In
1 (t) and In

2 (t) are given by (4.3) and (4.5), respectively. We have

(4.9)

In
1 (t) =

1√
n

∫ y+
√

nt

y

∞∑
j=1

I{nt−
√

n(l−y)<Sn
j ≤nt}

+
∫ ∞

y+
√

nt

∞∑
j=1

I{Sn
j ≤nt}

Gn
v (dl)

=
1√
n

∫ y+
√

nt

y

(
An(nt)−An

(
nt−

√
n(l − y)

))
Gn

v (dl)

+
1√
n
An(nt)

(
1
µn

−Gn
v

(
y +

√
nt
))

= In
1,1(t) + In

1,2(t) + In
1,3(t),

(4.10) In
1,1(t) =

∫ y+
√

nt

y

(
Ân(t)− Ân

(
t− l − y√

n

))
Gn

v (dl),

(4.11)
In
1,2(t) =

∫ y+
√

nt

y
λn(l − y)Gn

v (dl)

= Hn
v (y)−Hn

v

(
y +

√
nt
)
− λn

√
nt

(
1
µn

−Gn
v

(
y +

√
nt
))

,

(4.12) In
1,3(t) =

(
λn

√
nt+ Ân(t)

)( 1
µn

−Gn
v

(
y +

√
nt
))

,
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(4.13) In
2 (t) = In

2,1(t) + In
2,2(t),

(4.14)

In
2,1(t) =

1√
n

∫ y+
√

nt

y

∞∑
j=1

I{nt−
√

n(l−y)<Sn
j ≤nt}M

n
j (dl)

=
1√
n

∫ y+
√

nt

y

An(nt)∑
j=An(nt−

√
n(l−y))+1

Mn
j (dl)

=
1√
n

∫ t

0

An(nt)∑
j=An(n(t−s))+1

Mn
j

(
y +

√
nds

)
,

(4.15)

In
2,2(t) =

1√
n

∫ ∞

y+
√

nt

∞∑
j=1

I{Sn
j ≤nt}M

n
j (dl)

=
1√
n

An(nt)∑
j=1

(
Mn

j (∞)−Mn
j

(
y +

√
nt
))
.

We begin by showing (4.4). We claim that In
1,1 ⇒ 0. Indeed, let ε > 0.

By (2.23), there exists a constant C > 0 such that P(An) ≥ 1 − ε
2 for

every n, where An =
[
sup0≤t≤T

∣∣∣Ân(s)
∣∣∣ ≤ C

]
. Let y∗ > y be a point of

continuity of Gv such that 1
λ − Gv(y∗) < ε

4C . Thus, by (2.1) and (2.7),
there exists n0 such that 1

µn
− Gn

v (y∗) < ε
4C for n ≥ n0. For δ > 0, let

wn(δ) ∆= sup0≤s1<s2≤T

s2−s1≤δ

∣∣∣Ân(s2)− Ân(s1)
∣∣∣. By (2.23), there exists δ0 > 0

such that P(Bn) ≥ 1 − ε
2 for every n, where Bn =

[
wn(δ0) ≤ µnε

2

]
. Then

P(An ∩ Bn) ≥ 1 − ε. Moreover, for every t ∈ [0, T ] and n ≥ n0 ∨
(

y∗−y
δ0

)2
,

on the set An ∩Bn we have∣∣In
1,1(t)

∣∣ ≤ (∫ y∗∧(t+
√

nt)

y
+
∫ y+

√
nt

y∗∧(t+
√

nt)

)∣∣∣∣Ân(t)− Ân

(
t− l − y√

n

)∣∣∣∣Gn
v (dl)

≤ 1
µn

sup
0≤s≤y∗−y

∣∣∣∣∣Ân(t)− Ân

((
t− s√

n

)+
)∣∣∣∣∣+ 2C

(
1
µn

−Gn
v (y∗)

)
≤ wn(δ0)

µn
+ 2C

ε

4C
≤ ε,

so In
1,1 ⇒ 0 as claimed. Thus, by (4.9)–(4.12), to show (4.4), it suffices to

verify that

(4.16) Ân(t)
(

1
µn

−Gn
v

(
y +

√
nt
))

⇒ 0
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in D[0, T ]. Let ε > 0. By (2.23) and the fact that A∗(0) = 0, there exist
t0 > 0 and n1 ∈ N such that P(Cn) ≥ 1 − ε

2 for every n ≥ n1, where Cn =[
sup0≤t≤t0

∣∣∣Ân(s)
∣∣∣ ≤ εµn

]
. By (2.7), the sequence {Gn

v} is tight, so there
exists n2 ∈ N such that for every n ≥ n2, 1

µn
− Gn

v

(
y +

√
nt0
)
≤ ε

C , where
C is the constant appearing in the definition of An. For every n ≥ n1 ∨ n2,
P(An ∩ Cn) ≥ 1− ε and

sup
0≤t≤T

{∣∣∣Ân(t)
∣∣∣ ( 1

µn
−Gn

v

(
y +

√
nt
))}

=

(
sup

0≤t≤t0

∨ sup
t0<t≤T

){∣∣∣Ân(t)
∣∣∣ ( 1

µn
−Gn

v

(
y +

√
nt
))}

≤
(
εµn

1
µn

)
∨
(
C
ε

C

)
= ε

on An ∩ Cn, so (4.16) holds. We have proved (4.4).
The next step is to show

(4.17) In
2,2 ⇒ 0

in D[0, T ]. Let us define a random field

(4.18) Y n(s, y) ∆=
1√
n

bnsc∑
j=1

Mn
j (y)

with s ≥ 0, y ∈ R. We need

Lemma 4.2. There exists a random field Y such that for every T ′ > 0, Y
is tight in `∞([0, T ′]× R) and Y n ⇒ Y in `∞([0, T ′]× R).

Proof of Lemma 4.2. Fix T ′ > 0. Let F = [0, T ′] × R. For each n ∈ N,
let mn = bnT ′c. For n ∈ N and j = 1, . . . ,mn, let us consider random fields

Znj(s, y)
∆=

1√
n
vn
j I{Ln

j ≤
√

ny}I{j≤ns}, (s, y) ∈ F .

For each n, Zn1, . . . , Znmn are independent with finite second moments. We
have ||Znj ||F = 1√

n
vn
j , so, by (2.15), for every η > 0

(4.19)

mn∑
j=1

E
[
||Znj ||F I{||Znj ||F>η}

]
≤ 1
η

mn∑
j=1

E
[
||Znj ||2F I{||Znj ||F>η}

]
=
bnT ′c
nη

E
[
(vn

j )2I{vn
j >

√
nη}

]
→ 0.

For (s, x), (t, y) ∈ F , let ρ1((s, x), (t, y))
∆= |s− t|+ ρ(x, y). It is easy to see

that total boundedness of
(
R, ρ

)
implies that (F , ρ1) is a totally bounded
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semimetric space. Let C1 = supn∈N

(
(βn)2 + 1

µ2
n

)
, C2 = 2(T ′ + C1). Let

(s, x), (t, y) ∈ F . To fix ideas, assume x ≤ y. Then

(4.20)

mn∑
j=1

E (Znj(s, x)− Znj(t, y))
2

≤ 2
n

bnT ′c∑
j=1

E
[
(vn

j )2I{Ln
j ≤

√
ny}I{n(s∧t)<j≤n(s∨t)}

]
+

2bnT ′c
n

E
[
(vn

1 )2I{Ln
1∈
√

n(x,y]}

]
≤ 2|bntc − bnsc|

n
E(vn

j )2 + 2T ′
(
Gn

v2(y)−Gn
v2(x)

)
≤ C2ρ1((s, x), (t, y)) +

2C1

n
,

so for every sequence δn ↓ 0, we have

(4.21) sup
ρ1((s,x),(t,y))<δn

mn∑
j=1

E (Znj(s, x)− Znj(t, y))
2 → 0.

For every n ∈ N and ε > 0, define the bracketing number N[](ε,F , L2
n) 1 as

the minimal number of sets Nε in a partition F =
⋃Nε

i=1Fn
ε,i of the set F

such that for every partitioning set Fn
ε,i

mn∑
j=1

E sup
(s,x),(t,y)∈Fn

ε,i

(Znj(s, x)− Znj(t, y))
2 ≤ ε2.

We want to show that every sequence δn ↓ 0,

(4.22)
∫ δn

0

√
logN[](ε,F , L2

n)dε→ 0.

Fix ε ∈ (0, 1). Let xn
1 , . . . , x

n
kn
be all the atoms of Gn

v2 of size at least ε2

2C2
.

Observe that kn ≤ 2C1C2
ε2
, because the total mass of Gn

v2 is E(vn
j )2 = (βn)2 +

1
µ2

n
≤ C1. Let, for i = 1, . . . , kn, F̃n

ε,i = {xn
i } and let An = {xn

1 , . . . , x
n
kn
}.

For y ∈ R, let G̃n
v2(y) = Gn

v2(y)−
∑kn

k=1

(
Gn

v2(xn
k)−Gn

v2(xn
k−)

)
I{xn

k≤y}. Let

ln =
⌈

2C2G̃n
v2 (∞)

ε2

⌉
∨ 1. We have 1 ≤ ln ≤ 2C1C2

ε2
+ 1. If ln > 1, take

yn
i =

(
G̃n

v2

)−1
(

ε2

2C2

)
, i = 1, . . . , ln − 1, where

(
G̃n

v2

)−1(y) ∆= inf{θ ∈ R :

G̃n
v2(θ) ≥ y}. Observe that G̃n

v2(yn
1 ) ≤ ε2

C2
and G̃n

v2(yn
i+1) − G̃n

v2(yn
i ) ≤ ε2

C2

for i = 1, . . . , ln − 2, because G̃n
v2 has no atoms of size bigger than or

1This notation, although complicated, is used in the theory of empirical processes, see
van der Vaart and Wellner [14].



66 Ł. Kruk

equal to ε2

2C2
. Let zn

1 < · · · < zn
kn+ln−1 be such that {zn

1 , . . . , z
n
kn+ln−1} =

An∪{yn
1 , . . . , y

n
ln−1}, where {yn

1 , . . . , y
n
ln−1} = Ø by definition if ln = 1. Take

F̃n
ε,kn+1 = [−∞, zn

1 ] \An, F̃n
ε,kn+i+1 = (zn

i , z
n
i+1] \An, i = 1, . . . , kn + ln − 2,

F̃n
ε,2kn+ln

= (zn
kn+ln−1,∞]. By construction, R =

⋃2kn+ln
i=1 F̃n

ε,i and

(4.23) sup
x,y∈F̃n

ε,i

∣∣Gn
v2(x)−Gn

v2(y)
∣∣ ≤ ε2

C2
, i = 1, . . . , 2kn + ln.

If n < 2C2
ε2
, let pn = bnT ′c + 1. Then pn ≤ (T ′ + 1)n < 2C2(T ′+1)

ε2
. In this

case, let Bk = [k−1
n , k

n)∩ [0, T ′], k = 1, . . . , pn. If n ≥ 2C2
ε2
, then 1

n ≤
ε2

2C2
. In

this case, let pn = b2C2T ′

ε2
c + 1, Bk =

[
(k−1)ε2

2C2
, kε2

2C2

)
∩ [0, T ′], k = 1, . . . , pn.

Observe that, in any case, pn ≤ 2(C2∨1)(T ′+1)
ε2

, [0, T ′] =
⋃pn

k=1Bk and

(4.24) sup
t1,t2∈Bk

|bnt1c − bnt2c|
n

≤ ε2

C2
, k = 1, . . . , pn.

Indeed, if n < 2C2
ε2
, then the LHS of (4.24) is 0, otherwise for t1, t2 ∈ Bk,

|bnt1c−bnt2c|
n ≤ |nt1−nt2|+1

n = |t1 − t2| + 1
n ≤ ε2

2C2
+ ε2

2C2
= ε2

C2
. Now, for

k = 1, . . . , pn, i = 1, . . . , 2kn + ln, let Fε,k,i = Bk × F̃n
ε,i. We have F =⋃pn

k=1

⋃2kn+ln
i=1 Fε,k,i and pn(2kn + ln) ≤ C3

ε4
, where C3 = 2(C2 ∨ 1)(T ′ +

1)(6C1C2 + 1). Proceeding as in (4.20) and using (4.23)–(4.24), we can
check that for k = 1, . . . , pn, i = 1, . . . , 2kn + ln,

mn∑
j=1

E sup
(s,x),(t,y)∈Fn

ε,k,i

(Znj(s, x)− Znj(t, y))
2

≤ 2T ′ sup
x,y∈F̃n

ε,i

∣∣Gn
v2(x)−Gn

v2(y)
∣∣+ 2C1 sup

t1,t2∈Bk

|bnt1c − bnt2c|
n

≤ ε2.

Thus, for all n and ε ∈ (0, 1), N[](ε,F , L2
n) ≤ C3

ε4
, so for δn small enough,∫ δn

0

√
logN[](ε,F , L2

n) dε ≤
∫ δn

0

√
C3 − 4 log ε dε ≤

√
5
∫ δn

0

√
| log ε| dε,

so (4.22) holds.
It is easy to see that the finite-dimensional distributions of Y n converge.
Thus, by (4.19), (4.21), (4.22) and the bracketing central limit theorem
(Theorem 2.11.9 in van der Vaart and Wellner [14]), the sequence of random
fields

Y n(s, t) =
bnT ′c∑
j=1

1√
n

(
vn
j I{Ln

j ≤
√

ny} −Gn
v (y)

)
I{j≤ns} =

mn∑
j=1

(Znj(s, y)−EZnj)

converges weakly to a tight random field Y in `∞([0, T ′]× R). �
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Corollary 4.3. For every T ′ > 0, the sequence Y n is asymptotically uni-
formly ρ1-equicontinuous in probability on F , i.e., for every ε, η > 0 there
exists δ > 0 such that lim supn→∞ P[||Y n||Fδ

> ε] < η, where

||Y n||Fδ

∆= sup{|Y n(s, x)− Y n(t, y)| : (s, x), (t, y) ∈ F , ρ1((s, x), (t, y)) < δ}.

This follows immediately from the proof of the bracketing central limit
theorem (see van der Vaart and Wellner [14], pp. 217–220).

Returning to the proof of Proposition 4.1, let us observe that, by (4.15),

(4.25) In
2,2(t) = Y n

(
1
n
An(nt),∞

)
− Y n

(
1
n
An(nt), y +

√
nt

)
.

For every δ > 0, we have ||In
2,2||[0,T ] = ||In

2,2||[0,δ] ∨ ||In
2,2||[δ,T ]. By (2.23),

P(Dn) → 1, where Dn = [An(nt) ≤ n(λ+ 1)t for every t ∈ [0, T ]]. Let T ′ =
(λ+ 1)T . By definition, Y n(0, ·) ≡ 0, so, by (4.25), on Dn,

(4.26)

||In
2,2||[0,δ] ≤ sup

t∈[0,δ]

∣∣∣∣Y n(0,∞)− Y n

(
1
n
An(nt),∞

)∣∣∣∣
+ sup

t∈[0,δ]

∣∣∣∣Y n
(
0, y +

√
nt
)
− Y n

(
1
n
An(nt), y +

√
nt

)∣∣∣∣
≤ 2||Y n||F(λ+1)δ

,

(4.27)

||In
2,2||[δ,T ] = sup

t∈[δ,T ]

∣∣∣∣Y n

(
1
n
An(nt),∞

)
− Y n

(
1
n
An(nt), y +

√
nt

)∣∣∣∣
≤ sup

t∈[0,T ′],s≥δ

∣∣Y n (t,∞)− Y n
(
t, y +

√
ns
)∣∣

≤ ||Y n||Fρ(y+
√

nδ,∞)
.

By (2.8) and (2.16), limx↑∞ ρ(x,∞) = 0, so, by Corollary 4.3, (4.26), (4.27)
and the fact that P(Dn) → 1, we have (4.17). Therefore, by (4.8), (4.13),
(4.4) and (4.17), to prove (4.1), it suffices to show that

(4.28) In
2,1 ⇒ 0

in D[0, T ]. To this end, it suffices to prove the following two lemmas con-
cerning the process Un defined in (4.7).

Lemma 4.4. Un ⇒ 0 in D[0, T ].

Lemma 4.5. Rn ∆= In
2,1 − Un ⇒ 0 in D[0, T ].

Proof of Lemma 4.4. For s, t ∈ [0, T ], let us define a random field

Xn(s, t) ∆=
1√
n

bλnntc∑
j=1

Mn
j

(
y +

√
ns− j

λn
√
n

)
.
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By straightforward, but tedious, computations one may check that for every
pair of neighbouring blocks B1, B2 ⊆ [0, T ]2,

(4.29) E
[
(Xn(B1))

2 (Xn(B2))
2
]
≤ mn(B1)mn(B2),

where mn are finite, positive measures on [0, T ]2 defined by

mn(B) ∆=
C

n

bλnnt2c∑
j=bλnnt1c+1

[
Gn

v

(
y+

√
ns2−

j

λn
√
n

)
−Gn

v

(
y+

√
ns1 −

j

λn
√
n

)

+Gn
v2

(
y +

√
ns2 −

j

λn
√
n

)
−Gn

v2

(
y +

√
ns1 −

j

λn
√
n

)]
for any B = (s1, s2]× (t1, t2] ⊆ [0, T ]2 and

(4.30) C = 1 ∨ sup
n∈N

(1/µn).

Of course, (4.29) remains true if we replace Xn by X̃n, where, for s, t ∈
[0, T ], X̃n(s, t) = Xn(s, t) − Xn(0, t). We have X̃n(0, ·) ≡ X̃n(·, 0) ≡ 0.
Using (2.7)–(2.8), one can check that mn ⇒ m, where, for B as above,

m(B) = C

(
1 + λβ2 +

1
λ

)
((s2 ∧ t2)− (s1 ∨ t1))+ .

In particular, m has continuous marginals. By Theorem 3 in Bickel and
Wichura [2] (strictly speaking, by its extension described on pp. 1665–1666
of that paper), the sequence {X̃n} is tight in D([0, T ]2). However, the
stochastic processes Xn(0, t) converge weakly in D([0, T ])2 by Theorem 3.1
in Prokhorov [13], so the sequence {Xn} is also tight in D([0, T ]2). In
particular, the sequence {Xn(t, t)} is tight in D[0, T ]. For 0 ≤ t ≤ T ,
Un(t) = Y n

(
λnt, y+

√
nt
)
−Xn(t, t) (recall that Y n was defined by (4.18)).

As in (4.25)–(4.27), we show that

(4.31) ||Y n(λnt,∞)− Y n
(
λnt, y +

√
nt
)
||[0,T ] ⇒ 0.

By Theorem 3.1 in Prokhorov [13], Y n(λnt,∞) converges weakly in D[0, T ].
Thus, the sequence {Un} is tight in D[0, T ]. Also, by (4.7), for any t ≥ 0,

(4.32)

E(Un(t))2 ≤ 1
n

bλnntc∑
j=1

E

[
(vn

j )2I{
y+
√

nt− j
λn
√

n
<

Ln
j√
n
≤y+

√
nt
}]

≤ 1
n

bλnntc∑
j=1

(
Gn

v2(∞)−Gn
v2

(
y +

√
nt− j

λn
√
n

))

≈ λn

∫ t

0

(
Gn

v2(∞)−Gn
v2

(
y +

√
n(t− s)

))
ds.
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For a fixed s ∈ [0, t), Gn
v2(∞)−Gn

v2 (y +
√
n(t− s)) → 0 as n→∞ by (2.8).

Thus, by the bounded convergence theorem, (4.32) implies that Un(t) → 0
in L2 for any t, so, Un ⇒ 0 in D[0, T ] as claimed. �

Proof of Lemma 4.5. By (4.14), (4.7) and the definition of Rn, for t ≥ 0,

(4.33)
Rn(t) =

1√
n

∫ t

0

 An(nt)∑
j=An(n(t−s))+1

−
bλnntc∑

j=bλnn(t−s)c+1

Mn
j

(
y +

√
nds

)
= Rn

1 (t)−Rn
2 (t),

where

(4.34)

Rn
1 (t) ∆=

1√
n

∫ t

0

An(nt)∑
j=1

−
bλnntc∑

j=1

Mn
j

(
y +

√
nds

)

=
1√
n

An(nt)∑
j=1

−
bλnntc∑

j=1

(Mn
j

(
y +

√
nt
)
−Mn

j (y)
)
,

(4.35) Rn
2 (t) ∆=

1√
n

∫ t

0

An(n(t−s))∑
j=1

−
bλnn(t−s)c∑

j=1

Mn
j

(
y +

√
nds

)
.

By (4.15) and (4.34), we have

Rn
1 (t) = V̂ n

(
1
n
An(nt)

)
− In

2,2(t)− Y n
(
λnt, y +

√
nt
)

+ V̂ n
y

(
1
n
An(nt)

)
− V̂ n

y (λnt) ,

where

(4.36) V̂ n
y (t) ∆=

1√
n

bntc∑
j=1

Mn
j (y) ⇒ V ∗

y

for a Brownian motion V ∗
y by Theorem 3.1 in Prokhorov [13]. Thus, by

(2.23), (4.17), (4.31), the fact that Y n(λnt,∞) = V̂ n(λnt) and the Differ-
encing Theorem,

(4.37)
Rn

1 (t) = V̂ n

(
1
n
An(nt)

)
− V̂ n(λnt)

+ V̂ n
y

(
1
n
An(nt)

)
− V̂ n

y (λnt) + o(1) ⇒ 0.
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For 0 ≤ s ≤ t ≤ T , we have j ≤ An(n(t − s)) if and only if Sn
j ≤ n(t − s),

which, in turn, is equivalent to s ≤ t− Sn
j /n. Thus,

(4.38)

∫ t

0

An(n(t−s))∑
j=1

Mn
j

(
y +

√
nds

)
=

An(nt)∑
j=1

[
Mn

j

(
y +

√
nt− 1√

n
Sn

j

)
−Mn

j (y)
]

=
An(nt)∑

j=1

[
Mn

j

(
y +

√
nt− j

λn
√
n
−Hn

(
j

λn
√
n

))
−Mn

j (y)
]
,

where, for u ≥ 0, Hn(u) ∆= Sn
bλn

√
nuc/

√
n− u. Observe that

(4.39) Hn ⇒ 0

in D[0,∞) by the functional law of large numbers and Hn is σ(un
j , j =

1, . . . )-measurable. Also, for 0 ≤ s ≤ t, j ≤ bλnn(t− s)c iff s ≤ t− j/(λnn),
so

(4.40)

∫ t

0

bλnn(t−s)c∑
j=1

Mn
j

(
y +

√
nds

)
=

bλnntc∑
j=1

[
Mn

j

(
y +

√
nt− j

λn
√
n

)
−Mn

j (y)
]
.

By (4.35), (4.38) and (4.40),

(4.41)
Rn

2 (t) = (Zn −X
n)(t, t) +

(
Zn

(
t,

1
λnn

An(nt)
)
− Zn(t, t)

)
+
(
V̂ n

y

(
1
n
An(nt)

)
− V̂ n

y (λnt)
)
,

where, for s, t ≥ 0,

X
n(s, t) ∆=

1√
n

bλnntc∑
j=1

Mn
j

(
y +

(√
ns− j

λn
√
n

)+
)
,

Zn(s, t) ∆=
1√
n

bλnntc∑
j=1

Mn
j

(
y +

(√
ns− j

λn
√
n
−Hn

(
j

λn
√
n

))+
)
.

As in the proof of Lemma 4.4, one may check that for every pair of neigh-
bouring blocks B1, B2 ⊆ [0, T + 1]2,

(4.42) E
[(
X

n(B1)
)2 (

X
n(B2)

)2] ≤ mn
1 (B1)mn

1 (B2),
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where mn
1 are finite, positive measures on [0, T + 1]2 defined by

mn
1 (B) ∆=

C

n

bλnnt2c∑
j=bλnnt1c+1

[
Gn

v

(
y +

(√
ns2 −

j

λn
√
n

)+
)

−Gn
v

(
y +

(√
ns1 −

j

λn
√
n

)+
)

+Gn
v2

(
y +

(√
ns2 −

j

λn
√
n

)+
)

−Gn
v2

(
y +

(√
ns1 −

j

λn
√
n

)+
)]

for any B = (s1, s2] × (t1, t2] ⊆ [0, T + 1]2, with C given by (4.30). Also,
mn

1 ⇒ m1, where, for B as above,

(4.43)
m1(B) = λC (Gv2(∞)−Gv2(y)

+Gv(∞)−Gv(y)) ((s2 ∧ t2)− (s1 ∨ t1))+

(here we use the assumption that y is a point of continuity of Gv and Gv2).
This, as in the proof of Lemma 4.4, implies that the sequence {Xn} is tight
in D([0, T + 1]2). Using Theorem 3.1 in Prokhorov [13], together with the
Cramer–Wold device (see, e.g., Billingsley [3]) and the Kolmogorov–C̆entsov
theorem (see, e.g., Karatzas and Shreve [8]), we can easily check that the
finite-dimensional distributions of X

n
converge to the corresponding finite-

dimensional distributions of a Gaussian X with continuous sample paths.
Thus, X

n ⇒ X in D([0, T + 1]2). Therefore, by (2.23), (4.33), (4.36),
(4.37), (4.41) and continuity of the sample paths of X, to finish the proof
of Lemma 4.5, it suffices to show that

(4.44) Zn −X
n ⇒ 0

in D([0, T +1]2). (4.44) is a statement about weak convergence of stochastic
processes, so the underlying probability spaces are irrelevant. Thus, without
loss of generality we can assume that all the random variables (and thus all
the stochastic processes) under consideration are defined on the same proba-
bility space (Ω,A,P) and, moreover, all the arrival times

{
un

j

}∞
j,n=1

are inde-

pendent of all the random vectors
{(
vn
j , L

n
j

)}∞
j,n=1
. This is not a limiting as-

sumption, because if, for different n ≥ 1, the probability spaces (Ωn,An,Pn)
on which the sequences

{
un

j

}∞
j=1
,
{(
vn
j , L

n
j

)}∞
j=1
are defined, are different, we

can take (Ω,A,P) = Π∞
n=1(Ω

n,An,Pn). By (4.39), there exists a sequence
εn ↓ 0 such that P(An) → 1, where An =

[
sup0≤s≤T+1 |Hn(s)| ≤ εn

]
. To

prove (4.44), it suffices to show

(4.45)
(
Zn −X

n) IAn ⇒ 0
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in D([0, T + 1]2). By straightforward, but tedious, computations we may
check that for any neighbouring blocks B1, B2 ⊆ [0, T + 1]2,

(4.46)
E
[
(Zn(B1))

2 (Zn(B2))
2 IAn |Hn(·)

]
≤ mn

2 (B1)mn
2 (B2) IAn

≤ mn
2 (B1)mn

2 (B2) ,

where mn
2 and m

n
2 are finite, positive random measures on [0, T +1]2 defined

by

mn
2 (B) ∆=

C

n

bλnnt2c∑
j=bλnnt1c+1

[
Gn

v

(
y +

(√
ns2 −

j

λn
√
n
−Hn

(
j

λnn

))+
)

−Gn
v

(
y +

(√
ns1 −

j

λn
√
n
−Hn

(
j

λnn

))+
)

+Gn
v2

(
y +

(√
ns2 −

j

λn
√
n
−Hn

(
j

λnn

))+
)

−Gn
v2

(
y +

(√
ns1 −

j

λn
√
n
−Hn

(
j

λnn

))+
)]

for any B = (s1, s2] × (t1, t2] ⊆ [0, T + 1]2 and mn
2

∆= mn
2 IAn + m1IAc

n
,

where C and m1 are defined by (4.30) and (4.43). Using (2.7)–(2.8), we can
check that for every ω ∈ Ω, mn

2 (ω) ⇒ m1. As in the proof of Lemma 4.4,
this implies conditional tightness of {ZnIAn} with respect to Hn(·) (F) in
D([0, T + 1]2). The random fields Xn

are independent on F and Xn ⇒ X,
so {(Zn−Xn)IAn} are also conditionally tight with respect to Hn(·) (F) in
D([0, T+1]2). Moreover, for any s, t ≥ 0, by (2.8), the bounded convergence
theorem and the fact that y is not an atom of Gv2 , we have

E
[ (
Zn −X

n)2IAn |F
]

=
1
n

bλnntc∑
j=1

∣∣∣∣∣Gn
v2

(
y +

(√
ns− j

λn
√
n
−Hn

(
j

λnn

))+
)

− Gn
v2

(
y +

(√
ns− j

λn
√
n

)+
)∣∣∣∣∣

≈ λn

∫ t

0

∣∣∣Gn
v2

(
y +

(√
n(s− u−Hn (u) /

√
n
)+)

− Gn
v2

(
y +

(√
n(s− u

)+)∣∣∣ du
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≤ λn

∫ t

0

[
Gn

v2

(
y +

√
n(s− u)+ + εn

)
− Gn

v2

(
y +

√
n(s− u)+ − εn

)]
du→ 0.

Thus gives the conditional convergence (4.45) with respect to F , so (4.45)
holds unconditionally. �

The proof of Proposition 4.1 is now complete. �

Using a similar (but simpler) argument, we can prove

Proposition 4.6. Let T > 0 and let y be a point of continuity of G. Then

(4.47) sup
0≤t≤T

∣∣∣Ân(t)(y,∞)−Hn(y) +Hn
(
y +

√
nt
)∣∣∣ P−→ 0.

Propositions 4.1 and 4.6 can be refined to

Proposition 4.7. For every T > 0 and y0 ∈ R, we have

sup
y≥y0

sup
0≤t≤T

∣∣∣V̂n(t)(y,∞)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣∣ P−→ 0,(4.48)

sup
y≥y0

sup
0≤t≤T

∣∣∣Ân(t)(y,∞)−Hn(y) +Hn
(
y +

√
nt
)∣∣∣ P−→ 0.(4.49)

Proof. We will show (4.48), the proof of (4.49) is similar. Without loss
of generality we can assume that y0 is a point of continuity of both Gv

and Gv2 (if not, change it to y′0 < y0 with this property). Let ε > 0 be
arbitrary. By (2.17), we can choose y0 ∈ (y0,∞), a point of continuity
of both Gv and Gv2 , such that supn≥1H

n
v (y0) ≤ ε

4 . Choose a partition
y0 < y1 < · · · < yM = y0 such that ym is a point of continuity of both Gv

and Gv2 and |ym+1 − ym| ≤ ε
2 supn≥1 ρn

for m = 0, . . . ,M − 1. Observe that
for such m and all n,

(4.50) 0 ≤ Hn
v (ym)−Hn

v (ym+1) ≤ ρn|ym+1 − ym| ≤
ε

2
.

By Proposition 4.1, there exists n0 such that for m = 0, . . . ,M and all
n ≥ n0, P(Bn,m) ≤ ε

4(M+1) , where

Bn,m =

[
sup

0≤t≤T

∣∣∣V̂n(t)(ym,∞)−Hn
v (ym) +Hn

v

(
ym +

√
nt
)∣∣∣ ≥ ε

2

]
.

Using (4.50) and proceeding as in the proof of Proposition 3.4 in Doytchinov
et al. [6], we show that P(Bn) ≤ ε

2 , where

Bn =

[
sup

y0≤y≤y0

sup
0≤t≤T

∣∣∣V̂n(t)(y,∞)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣∣ ≥ ε

]
.



74 Ł. Kruk

For y ≥ y0 and t ∈ [0, T ], on Bc
n,M ,

0 ≤ V̂n(t)(y,∞) ≤ V̂n(t)(y0,∞)

=
(
V̂n(t)(y0,∞)−Hn

v (y0) +Hn
v

(
y0 +

√
nt
))

+Hn
v (y0)−Hn

v

(
y0 +

√
nt
)

<
ε

2
+
ε

4
=

3ε
4
,

so

− ε
4
≤ V̂n(t)(y,∞)−Hn

v (y) +Hn
v

(
y +

√
nt
)
<

3ε
4

+
ε

4
= ε.

Let B = Bc
n ∩Bc

n,M . Then, P (B) ≥ 1− ε and

B ⊆

[
sup
y≥y0

sup
0≤t≤T

∣∣∣V̂n(t)(y,∞)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣∣ < ε

]
. �

Corollary 4.8. For every T > 0 and y0 ∈ R, we have

(4.51) sup
y≥y0

sup
0≤t≤T

V̂n(t){y} P−→ 0, sup
y≥y0

sup
0≤t≤T

Ân(t){y} P−→ 0.

This follows from Proposition 4.7 in the same way as Corollary 3.5 in
Doytchinov et al. [6] follows from Proposition 3.4 there.

Remark 4.9. In this section, the assumption (2.13) and the Lindeberg
condition on (Ln

j )+/
√
n were not used.

5. Customers behind the frontiers. In this section, we prove that the
work in the n-th system at time nt associated with customers in this system
having lead times smaller than or equal to Fn(nt) becomes negligible (Corol-
lary 5.4) and that the number of these customers is also negligible provided
that the workload is not too small (Corollary 5.7). (Later we will show that
if the workload is small, then the number of customers in the system is also
small, see the proof of Theorem 3.2.) This is to be expected, because un-
der the EDF queue discipline these customers form a “high priority class”,
arriving at the system at a rate less than 1 and being served with rate 1,
thus experiencing low traffic conditions. We formalize this idea with the
help of Lemmas 5.3 and 5.6, estimating the last time in which a customer
with lead time equal to the frontier was served. Along the way, we establish
Lemmas 5.1 and 5.5, showing tightness of the rescaled frontiers (the upper
bound, given by Lemma 5.5, requires that the workload is bounded below).
The latter results follow from Proposition 4.7, together with the observation
that the customers with lead times greater than the current frontier have
not received any service. Indeed, if F̂n(t) is very large negative, then, by
Proposition 4.7, the workload Ŵn(t), bounded below by V̂n(t)(F̂n(t),∞), is
very large, contradicting tightness of the sequence

{
Ŵn(t)

}
following from

(2.24). If, on the other hand, F̂n(t) is very large, then, because the work
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associated with customers with lead times not greater than the frontier is
negligible, the workload Ŵn(t) ≈ V̂n(t)

(
F̂n(t),∞

)
is very small (again by

Proposition 4.7), contrary to the assumption that the workload is not too
small.

Lemma 5.1. For every T > 0 and ε > 0, there exists C ∈ R such that for
all n,

(5.1) P
[

inf
0≤t≤T

F̂n(t) ≥ C

]
≥ 1− ε.

Proof. None of the customers with lead times at time nt greater than
Fn(nt) has received service by time nt, so, by (2.24),

(5.2) sup
0≤t≤T

V̂n(t)
(
F̂n(t),∞

)
≤ sup

0≤t≤T
Ŵn(t) ⇒ sup

0≤t≤T
W ∗(t).

Recall that Hv(y) > 0 for all y, limy→−∞Hv(y) = ∞, the functions Hn
v

are decreasing and such that Hn
v → Hv. By these properties, together with

(5.2), we can choose C1 ∈ R such that for all n, Hn
v (C1) ≥ (24/ε)2 and

P(An) ≥ 1− ε/6, where

An =

[
sup

0≤t≤T
V̂n(t)

(
F̂n(t),∞

)
≤
√
Hn

v (C1)

]
.

By Proposition 4.7, for n ≥ n0, P(Bn) ≥ 1− ε/6, where

Bn =
[

inf
0≤t≤T

{
V̂n(t)(C1,∞) +Hn

v

(
C1 +

√
nt
)}

≥ Hn
v (C1)/2

]
.

Let c > 0 be such that Hn
v (C1 + c) ≤ Hn

v (C1)/4 for all n. In particular, on
Bn,

inf
c/
√

n≤t≤T
V̂n(t)(C1,∞) ≥ Hn

v (C1)/4.

Proceeding as in the proof of Lemma 3.7 in Doytchinov et al. [6], we get,
for n ≥ n0,

P
[{

inf
c/
√

n≤t≤T
F̂n(t) < C1

}
∩An ∩Bn

]
≤ 4/

√
Hn

v (C1),

so P
[
infc/√n≤t≤T F̂

n(t) < C1

]
≤ ε/2. We have

inf
0≤t≤c/

√
n
F̂n(t) ≥ Ln

1/
√
n− c,

so, by (2.5)–(2.6), there exists C2 ∈ R such that for all n,

P
[

inf
0≤t≤c/

√
n
F̂n(t) ≥ C2

]
≥ 1− ε/2.

Let C = C1 ∧C2. We have (5.1) for n ≥ n0. Decreasing C, if necessary, we
get (5.1) for all n. �
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Lemma 5.2. For every T > 0 and ε > 0, as n→∞,

(5.3) P
[

max
1≤j≤An(nT )

Ln
j ≥ εn

]
→ 0.

Proof. Assume that (5.3) is false, i.e., for some subsequence nk →∞,

(5.4) lim
k→∞

P
[

max
1≤j≤Ank (nkT )

Lnk
j ≥ εnk

]
= c > 0.

By (2.13), we can assume that E
[

(L
nk
j )+
√

nk

]2
→ c1 ∈ [0, C̃] as k → ∞. Thus,

by (2.15) and Theorem 3.1 in Prokhorov [13],

(5.5) Bnk(t) ∆=
1

√
nk

bλnk
nktc∑

j=1

(
(Lnk

j )+
√
nk

− E

[
(Lnk

j )+
√
nk

])
⇒ B(t)

in D[0,∞), where B is a Brownian motion. Let An = [An(nT ) ≤ λnn(T +
1)]. By (2.23), P (An) → 1. On Ank

, we have

(5.6)

1
nk

max
1≤j≤Ank (nkT )

Lnk
j ≤ 1

√
nk

max
1≤j≤λnn(T+1)

{
(Lnk

j )+
√
nk

− E

[
(Lnk

j )+
√
nk

]}

+
1

√
nk

E

[
(Lnk

j )+
√
nk

]
.

The first term on the RHS of (5.6) is bounded above by sup0≤t≤T+1[Bnk(t)−
Bnk(t−)], which converges weakly to zero by (5.5) and the continuous map-
ping theorem. The second term converges to zero by (2.13) and the Schwarz
inequality. Thus, the LHS of (5.6) is bounded above by a process converging
weakly to zero, which contradicts (5.4). �

Define, for t ≥ 0,

(5.7) τn(t) ∆= sup
{
s ∈ [0, t] : Ĉn(s) = F̂n(s)

}
.

Observe that Ĉn(0) = F̂n(0) = ∞, so the supremum in (5.7) is taken over
a nonempty set.

Lemma 5.3. τn ⇒ e in D[0,∞).

Proof. We fix T > 0 and prove convergence on [0, T ]. By the definition
(5.7) and the fact that the inter-arrival times are strictly positive, we have

(5.8)
Ŵn(τn(t))

[
Ĉn(τn(t)), F̂n(τn(t))

)
=

1√
n
vn
An(nτn(t))

≤ max
0≤s≤T

[
N̂n(s)− N̂n(s−)

]
.
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As long as there are customers with lead times in [Cn, Fn), Fn decreases
at rate 1 per unit time, so for s ∈ (nτn(t), nt], Fn(s) = Fn(nτn(t)) −
(s− nτn(t)). Let

Dn(t) =
∞∑

j=1

vn
j I{nτn(t)<Sn

j ≤nt}I{Ln
j −(nt−Sn

j )<F n(nτn(t))−n(t−τn(t))}

be the work associated with customers arriving within the time interval
(nτn(t), nt] whose lead times upon arrival are to the left of the frontier. On
the time interval (nτn(t), nt] the server is never idle, so

(5.9)
0 ≤ Ŵn(t)

[
Ĉn(t), F̂n(t)

)
= Ŵn(τn(t))

[
Ĉn(τn(t)), F̂n(τn(t))

)
+

1√
n
Dn(t)−

√
n(t− τn(t)).

Let ε > 0. For a given t ∈ [0, T ], either

(5.10) t− τn(t) < ε,

or

(5.11) τn(t) + ε ≤ t.

Assume (5.11). Let y be a point of continuity of Gv such that for each
n, Gn

v (y) < 1/(2µn) (such a choice is possible by (2.7)) and let An =[
sup0≤t≤T F

n(t) ≤ nε +
√
ny
]
. By Lemma 5.2, P(An) → 1 as n → ∞.

On An, we have

1√
n
Dn(t) ≤ 1√

n

∞∑
j=1

vn
j I{nτn(t)<Sn

j ≤n(τn(t)+ε)}

+
1√
n

∞∑
j=1

vn
j I{n(τn(t)+ε)<Sn

j ≤nt}I{Ln
j <F n(τn(t))−nε}

≤ 1√
n
V n(An(n(τn(t) + ε)))− 1√

n
V n(An(nτn(t)))

+
1√
n

∞∑
j=1

vn
j I{n(τn(t)+ε)<Sn

j ≤nt}I{Ln
j <

√
ny}

= N̂n(τn(t) + ε)− N̂n(τn(t)) +
√
nε+ Y n

(
1
n
An(nt), y

)
− Y n

(
1
n
An(n(τn(t) + ε)), y

)
+
Gn

v (y)√
n

(An(nt)−An(n(τn(t) + ε)))

= N̂n(τn(t) + ε)− N̂n(τn(t)) +
√
nε+ Y n (λnt+ o(1), y)

− Y n (λn(τn(t) + ε) + o(1), y) +Gn
v (y)

(
Ân(t)− Ân(τn(t) + ε)

)
+ λn

√
nGn

v (y)(t− τn(t)− ε).
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Thus, by (2.23), (2.24), Lemma 4.2 and the choice of y, on An we have

1√
n
Dn(t) ≤ O(1) +

√
nε+

ρn

2
√
n(t− τn(t)− ε).

Plugging this into (5.9) and using (5.8), we obtain, under the assumption
(5.11),

(5.12) 0 ≤ O(1) +
(ρn

2
− 1
)√

n(t− τn(t)− ε)

on An. If (5.10) holds, then (t − τn(t) − ε)+ = 0. Thus, by (2.14) and
(5.12), (t − τn(t) − ε)+ ⇒ 0 in D[0, T ]. Since ε > 0 is arbitrary, τn ⇒ e in
D[0, T ]. �

Corollary 5.4. Ŵn
[
Ĉn, F̂n

]
⇒ 0 in D[0,∞).

Proof. We have

Ŵn = Ŵn
[
Ĉn, F̂n

)
+ Ŵn

{
F̂n
}

+ Ŵn
(
F̂n,∞

)
= Ŵn

[
Ĉn, F̂n

)
+ V̂n

(
F̂n,∞

)
+ o(1),

because, by Corollary 4.8 and Lemma 5.1,

(5.13) 0 ≤ Ŵn
{
F̂n
}
≤ V̂n

{
F̂n
}

= o(1).

Thus,

(5.14)

Ŵn(t)− Ŵn(τn(t)) = Ŵn(t)
[
Ĉn(t), F̂n(t)

)
− Ŵn(τn(t))

[
Ĉn(τn(t)), F̂n(τn(t))

)
+ V̂(t)

(
F̂n(t),∞

)
− V̂(τn(t))

(
F̂n(τn(t)),∞

)
+ o(1).

By (2.24) and Lemma 5.3, the LHS of (5.14) is o(1). The second term
on the RHS of (5.14) is o(1) by (2.24) and (5.8). Finally, on the time
interval [τn(t), t], V̂(·)

(
F̂n(·),∞

)
is nondecreasing, so (5.14) implies that

Ŵn(t)
[
Ĉn(t), F̂n(t)

)
⇒ 0 in D[0,∞). This, together with (5.13), shows

that Ŵn
[
Ĉn, F̂n

]
⇒ 0 in D[0,∞). �

Lemma 5.5. Let ε > 0, η > 0 be arbitrary. There exists C > 0 such that
for all n,

(5.15) P

[
sup

0≤t≤T

{
F̂n(t)I{Ŵ n(t)≥ε}

}
≤ C

]
≥ 1− η.

Proof. By Corollary 5.4, there exists n1 such that for n ≥ n1, P(An) ≥
1− η/3, where An =

[
sup0≤t≤T Ŵn

[
Ĉn, F̂n

]
≤ ε/2

]
. We have

(5.16) Ŵn = Ŵn
[
Ĉn, F̂n

]
+ V̂n

(
F̂n,∞

)
,
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so on An, for any t ∈ [0, T ], V̂n
(
F̂n(t),∞

)
≥ Ŵn(t)−ε/2. Using Lemma 5.1,

choose C1 such that P(Bn) ≥ 1−η/3 for all n, whereBn =
[
inf0≤t≤T F̂

n(t) ≥

C1

]
. By Proposition 4.7, there exists n2 such that for n ≥ n2, P(Cn) ≥

1− η/3, where

Cn =

[
sup
y≥C1

sup
0≤t≤T

∣∣∣V̂n(t)(y,∞)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣∣ ≤ ε/4

]
.

On An ∩Bn ∩ Cn ∩
[
Ŵn(t) ≥ ε

]
, we have

ε/2 ≤ V̂n
(
F̂n(t),∞

)
≤ Hn

v

(
F̂n(t)

)
−Hn

v

(
F̂n(t) +

√
nt
)

+ ε/4.

In particular, on this set ε/4 ≤ Hn
v

(
F̂n(t)

)
, so F̂n(t) ≤ (Hn

v )−1(ε/4) ≤ C,

where C ∆= supn∈N(Hn
v )−1(ε/4) <∞, because, by (2.17),

lim
y→∞

sup
n∈N

Hn
v (y) = 0.

Thus, on An ∩Bn ∩ Cn,

sup
0≤t≤T

{
F̂n(t)I{Ŵ n(t)≥ε}

}
≤ C

and P(An ∩ Bn ∩ Cn) ≥ 1 − η for n ≥ n1 ∨ n2. Increasing C, if necessary,
we get (5.15) for all n. �

Lemma 5.6. For every ε > 0,

(5.17)
√
n(t− τn(t))I{Ŵ n(t)≥ε} ⇒ 0

in D[0,∞).

Proof. We fix T > 0 and prove convergence on [0, T ]. Choose η > 0. By
(2.24), there exist δ > 0 and n1 ∈ N such that for n ≥ n1, P(An) ≥ 1− η/3,
where An =

[
ω

Ŵ n(δ) ≤ ε/2
]
and for a function f ∈ D[0,∞),

ωf (δ) = sup
0≤s1<s2≤T

s2−s1≤δ

|f(s2)− f(s1)|.

By Lemma 5.3, there exists n2 such that for n ≥ n2, P(Bn) ≥ 1−η/3, where
Bn =

[
sup0≤t≤T (t− τn(t)) ≤ δ

]
. For t ∈ [0, T ], on An∩Bn∩

[
Ŵn(t) ≥ ε

]
we

have Ŵn(τn(t)) ≥ ε/2. By Lemma 5.5, we can choose C > 0 such that for
all n, P(Cn) ≥ 1− η/3, where Cn =

[
sup0≤s≤T

{
F̂n(s)I{Ŵ n(s)≥ε/2}

}
≤ C

]
.

Thus, for t ∈ [0, T ], on An ∩Bn ∩ Cn ∩
[
Ŵn(t) ≥ ε

]
,

(5.18) F̂n(τn(t)) ≤ C.

Let c > 0 be such that C − c is a point of continuity of Gv. Either

(5.19) t− τn(t) < c/
√
n,
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or

(5.20) nτn(t) + c
√
n ≤ nt.

Assume (5.20). Then, on An ∩Bn ∩ Cn ∩
[
Ŵn(t) ≥ ε

]
,

1√
n
Dn(t) ≤ 1√

n

∞∑
j=1

vn
j I{nτn(t)<Sn

j ≤nτn(t)+c
√

n}

+
1√
n

∞∑
j=1

vn
j I{nτn(t)+c

√
n<Sn

j ≤nt}I{Ln
j <F n(τn(t))−c

√
n}

≤ 1√
n
V n
(
An
(
nτn(t) + c

√
n
))
− 1√

n
V n(An(nτn(t)))

+
1√
n

∞∑
j=1

vn
j I{nτn(t)+c

√
n<Sn

j ≤nt}I{Ln
j <

√
n(C−c)}

= N̂n
(
τn(t) + c/

√
n
)
− N̂n(τn(t)) + c

+ Y n

(
1
n
An(nt), C − c

)
− Y n

(
1
n
An
(
nτn(t) + c

√
n
)
, C − c

)
+
Gn

v (C − c)√
n

(
An(nt)−An

(
nτn(t) + c

√
n
))

= N̂n
(
τn(t) + c/

√
n
)
− N̂n(τn(t)) + c+ Y n (λnt+ o(1), C − c)

− Y n (λnτ
n(t) + o(1), C − c)

+Gn
v (C − c)

(
Ân(t)− Ân(τn(t) + o(1)) + λn

√
n(t− τn(t))− λnc

)
,

where the second inequality follows from (5.18). By Theorem 3.1 in Pro-
khorov [13], Y n(·, C − c) converge weakly to a Brownian motion. Thus, by
(2.24) and Lemma 5.3, on An∩Bn∩Cn∩

[
Ŵn(t) ≥ ε

]
, under the assumption

(5.20),

(5.21)
1√
n
Dn(t) ≤ o(1)+λnG

n
v (C− c)

√
n(t− τn(t))+(1−λnG

n
v (C− c))c.

Plugging (5.21) into (5.9) and using (5.8), we get

(5.22) 0 ≤ o(1)− (1− λnG
n
v (C − c))

√
n(t− τn(t)) + (1− λnG

n
v (C − c))c.

Thus, on An ∩Bn ∩ Cn ∩
[
Ŵn(t) ≥ ε

]
, under the assumption (5.20),

(5.23) 0 ≤
√
n(t− τn(t)) ≤ c+

o(1)
1− λnGn

v (C − c)
.

Of course, if (5.19) holds, then (5.23) holds as well. However, Gn
v (C − c) →

Gv(C − c) < 1/λ and c > 0 may be arbitrarily small, so (5.23) and the fact
that P(An ∩Bn ∩ Cn) ≥ 1− η imply (5.17). �
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Corollary 5.7. For every ε > 0,

(5.24) Q̂n(t)
[
Ĉn(t), F̂n(t)

]
I{Ŵ n(t)≥ε} ⇒ 0

in D[0,∞).

Proof.

(5.25)

Q̂n(t)
[
Ĉn(t), F̂n(t)

)
I{Ŵ n(t)≥ε}

≤ 1√
n

[1 +An(nt)−An(nτn(t))] I{Ŵ n(t)≥ε}

≤ 1√
n

+
[
Ân(t)− Ân(τn(t)) + λn

√
n(t− τn(t))

]
I{Ŵ n(t)≥ε} ⇒ 0

by (2.23) and Lemma 5.6. Using the inequality 0 ≤ Q̂n
{
F̂n
}
≤ Ân

{
F̂n
}
,

Corollary 4.8 and Lemma 5.1, we upgrade (5.25) to (5.24). �

6. Proofs of the main results. In this section, we prove Proposition 3.1
and Theorem 3.2. Proposition 3.1, the fact that Ŵn ⇒W∗ and the limiting
behavior of Q̂n as long as Ŵn is bounded away from zero follow quickly from
the results of Sections 4 and 5. Therefore, to show that Q̂n ⇒ Q∗, it suffices
to show that for large n, Q̂n is small when Ŵn is small (the latter is not
obvious, because, in principle, there may be many partially served customers
present in the system). This is implied by Lemma 6.1, to follow.

Proof of Proposition 3.1. Fix T > 0. We will show that

(6.1) sup
0≤t≤T

∣∣∣Ŵn(t)−Hv

(
F̂n

1 (t)
)∣∣∣ P−→ 0.

By (2.24) and the definition of F̂n
1 ,

sup
0≤t≤n−

1
4

∣∣∣Ŵn(t)−Hv

(
F̂n

1 (t)
)∣∣∣ = sup

0≤t≤n−
1
4

∣∣∣Ŵn(t)
∣∣∣ P−→ 0,

so it suffices to prove

(6.2) sup
n−

1
4≤t≤T

∣∣∣Ŵn(t)−Hv

(
F̂n

1 (t)
)∣∣∣ P−→ 0.

Let ε > 0. Using Lemma 5.1, we choose C > 0 such that P(An) ≥ 1− ε/3,
where An =

[
inf0≤t≤T F̂

n(t) ≥ C
]
. By Proposition 4.7 and Corollary 5.4,

there exists n0 such that for n ≥ n0, P(Bn) ≥ 1− ε/3 and P(Cn) ≥ 1− ε/3,
where

Bn =

[
sup
y≥C

sup
0≤t≤T

∣∣∣V̂n(t)(y,∞)−Hn
v (y) +Hn

v

(
y +

√
nt
)∣∣∣ ≤ ε/4

]
,
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Cn =

[
sup

0≤t≤T
Ŵn(t)

[
Ĉn(t), F̂n(t)

]
≤ ε/4

]
.

On An ∩Bn ∩ Cn,

sup
0≤t≤T

∣∣∣V̂n(t)
(
F̂n(t),∞)−Hn

v (F̂n(t)
)

+Hn
v

(
F̂n(t) +

√
nt
)∣∣∣ ≤ ε/4,

so, by (5.16),

sup
0≤t≤T

∣∣∣Ŵn(t)−Hn
v

(
F̂n(t)) +Hn

v (F̂n(t) +
√
nt
)∣∣∣ ≤ ε/2.

On An ∩Bn ∩ Cn,

sup
n−

1
4≤t≤T

Hn
v

(
F̂n(t) +

√
nt
)
≤ Hn

v

(
C + n

1
4
)
→ 0

by (2.17), so there exists n1 ≥ n0 such that for n ≥ n1,

sup
n−

1
4≤t≤T

∣∣∣Ŵn(t)−Hn
v

(
F̂n

1 (t)
)∣∣∣ ≤ 3ε/4

(recall that, by definition, F̂n
1 (t) = F̂n(t) for t ≥ n−

1
4 ). The functions Hn

v

converge to Hv uniformly on [C,∞), so there exists n2 ≥ n1 such that for
n ≥ n2,

sup
n−

1
4≤t≤T

∣∣∣Ŵn(t)−Hv

(
F̂n

1 (t)
)∣∣∣ ≤ ε

on An ∩Bn ∩ Cn and P(An ∩Bn ∩ Cn) ≥ 1− ε. Thus, (6.2) holds, so (6.1)
holds also. In particular, by (2.24), Hv

(
F̂n

1

)
⇒ W ∗ in D[0, T ]. Applying a

continuous map H−1
v , we get F̂

n
1 ⇒ F ∗ in DR[0, T ]. �

Proof of Theorem 3.2. Fix T > 0. From Proposition 4.7, for any y0 ∈ R,

sup
y≥y0

sup
0≤t≤T

∣∣∣V̂n(t)
(
F̂n(t) ∨ y,∞

)
−Hn

v

(
F̂n(t) ∨ y

)
+ Hn

v

((
F̂n(t) ∨ y

)
+
√
nt
)∣∣∣ P−→ 0.

From this, using the inequality V̂n(t)
(
F̂n(t)∨y,∞

)
≤ Ŵn(t) and proceeding

as in the proof of (6.1), we get

(6.3) sup
y≥y0

sup
0≤t≤T

∣∣∣V̂n(t)
(
F̂n(t) ∨ y,∞

)
−Hv

(
F̂n

1 (t) ∨ y
)∣∣∣ P−→ 0.

By Lemma 5.1, (6.3) may be extended to

(6.4) sup
y∈R

sup
0≤t≤T

∣∣∣V̂n(t)
(
F̂n(t) ∨ y,∞

)
−Hv

(
F̂n

1 (t) ∨ y
)∣∣∣ P−→ 0.
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Similarly, we can show

(6.5) sup
y∈R

sup
n−

1
4≤t≤T

∣∣∣Ân(t)
(
F̂n

1 (t) ∨ y,∞
)
− λH

(
F̂n

1 (t) ∨ y
)∣∣∣ P−→ 0.

(6.4), together with Corollary 5.4, implies that

(6.6)

sup
y∈R

sup
0≤t≤T

∣∣∣Ŵn(t)(y,∞)−Hv

(
F̂n

1 (t) ∨ y
)∣∣∣

≤ sup
0≤t≤T

Ŵn(t)
[
Ĉn(t), F̂n(t)

]
+ sup

y∈R
sup

0≤t≤T

∣∣∣V̂n(t)
(
F̂n(t) ∨ y,∞

)
−Hv

(
F̂n

1 (t) ∨ y
)∣∣∣ P−→ 0.

Define ψ,ψ1 : R →M by

ψ(x)(B) =
∫

B∩[x,∞)
(1− λGv(η))dη, ψ1(x)(B) = λ

∫
B∩[x,∞)

(1−G(η))dη

for any B ∈ B(R). It is easy to check that ψ,ψ1 are continuous. In partic-
ular, by Proposition 3.1,

(6.7) ψ
(
F̂n

1

)
⇒ ψ(F ∗) = W∗, ψ1

(
F̂n

1

)
⇒ ψ1(F ∗) = Q∗

in DM[0,∞). Moreover, for any y ∈ R, ψ
(
F̂n

1 (t)
)
(y,∞) = Hv

(
F̂n

1 (t) ∨ y
)
,

so (6.6) and (6.7) imply that Ŵn ⇒W∗ in DM[0,∞).
We claim that for every ε > 0,

(6.8) sup
y∈R

sup
0≤t≤T

∣∣∣Q̂n(t)(y,∞)− λH
(
F̂n

1 (t) ∨ y
)∣∣∣ I{Ŵ n(t)≥ε}

P−→ 0.

Indeed, for n−
1
4 ≤ t ≤ T ,

sup
y∈R

∣∣∣Q̂n(t)(y,∞)− λH
(
F̂n

1 (t) ∨ y
)∣∣∣ I{Ŵ n(t)≥ε}

≤ Q̂n(t)
[
Ĉn(t), F̂n(t)

]
I{Ŵ n(t)≥ε}

+ sup
y∈R

∣∣∣Q̂n(t)
(
F̂n(t) ∨ y,∞

)
− λH

(
F̂n

1 (t) ∨ y
)∣∣∣

= Q̂n(t)
[
Ĉn(t), F̂n(t)

]
I{Ŵ n(t)≥ε}

+ sup
y∈R

∣∣∣Ân(t)
(
F̂n

1 (t) ∨ y,∞
)
− λH

(
F̂n

1 (t) ∨ y
)∣∣∣

because the customers with lead times greater than Fn(nt) have not received
service by time nt and F̂n(t) = F̂n

1 (t) for all t under consideration. This,
together with Corollary 5.7 and (6.5), shows

(6.9) sup
y∈R

sup
n−

1
4≤t≤T

∣∣∣Q̂n(t)(y,∞)− λH
(
F̂n

1 (t) ∨ y
)∣∣∣ I{Ŵ n(t)≥ε}

P−→ 0.
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However, by (2.24) and the equality W ∗(0) = 0,

P

 sup
0≤t≤n−

1
4

Ŵn(t) ≥ ε

→ 0,

which, together with (6.9), proves (6.8). We need

Lemma 6.1. For every ε > 0, as n→∞,

(6.10) P
[
Q̂n(t) < λH

(
F̂n

1 (t)
)

+ ε for every t ∈ [0, T ]
]
→ 1.

The main idea of the proof of Lemma 6.1 is, roughly speaking, the obser-
vation that if

(6.11) Q̂n(t) ≥ λH
(
F̂n

1 (t)
)

+ ε

for some t, then, by (4.49) and the fact that Q̂n ≤ Ân, there exists a constant
C such that customers with lead times at most C

√
n have been present at

the system for some period of time before nt. Therefore, the newcoming
customers with lead times greater than C

√
n have not received any service

during this time period and, consequently, Ŵn(t) is bounded away from
zero. This, however, is unlikely because of (6.8) and (6.11).

Proof of Lemma 6.1. Suppose that (6.10) is false. Then, there exist η >
0 and a subsequence (still denoted by n) such that along this subsequence,
P (An) ≥ η, where

An =
[
Q̂n(t) ≥ λH

(
F̂n

1 (t)
)

+ ε for some t ∈ [0, T ]
]
.

Let

σn =

{
inf
{
t ∈ [0, T ] : Q̂n(t) ≥ λH

(
F̂n

1 (t)
)

+ ε
}
on An,

+∞ on Ac
n.

On An, Q̂n(σn) ≥ λH
(
F̂n

1 (σn)
)

+ ε. By (6.8), we have, for every ε1 > 0,
P
[
σn <∞, Ŵn(σn) ≥ ε1

]
→ 0, so

(6.12) Ŵn(σn)I{σn<∞} ⇒ 0.

Let

νn =

{
sup

{
t ∈ [0, σn] : Q̂n(t) ≤ ε/2

}
on An,

+∞ on Ac
n.

The inter-arrival times are strictly positive, so on An

(6.13) ε/2 < Q̂n(νn) ≤ ε/2 + 1/
√
n.
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Thus, on An, Q̂n(t) > ε/2 for t ∈ [νn, σn]. In what follows, all random
quantities under consideration are evaluated at some ω ∈ An. Our next
step is to show

(6.14) sup
νn≤t≤σn

Ŵn(t) ⇒ 0

If τn(σn) < n−
1
4 , then, by Lemma 5.3, σn = o(1) and thus, by (2.24) and

W ∗(0) = 0, (6.14) holds. Assume τn(σn) ≥ n−
1
4 . By (2.24), Lemma 5.3

and (6.12), Ŵn(τn(σn)) ⇒ 0, so, by (6.1), F̂n
1 (τn(σn)) ⇒ ∞. Thus, by

Proposition 4.7 and the fact that limy→∞ supn∈NH
n(y) = 0,

Q̂n(τn(σn))
(
F̂n

1 (τn(σn)),∞
)
≤ Ân(τn(σn))

(
F̂n

1 (τn(σn)),∞
)
⇒ 0.

Also, F̂n
1 (τn(σn)) = F̂n(τn(σn)), so, by Corollary (4.8) and the definition

of τn,

Q̂n(τn(σn))
[
Ĉn(τn(σn)), F̂n

1 (τn(σn))
]

≤ Q̂n(τn(σn))
[
Ĉn(τn(σn)), F̂n(τn(σn))

)
+ Ân(τn(σn))

{
F̂n

1 (τn(σn))
}

=
1√
n

+ o(1) ⇒ 0.

Thus, Q̂n(τn(σn)) ⇒ 0, so P[τn(σn) ≥ νn] → 0. This implies that, with
probability arbitrarily close to 1,

sup
νn≤t≤σn

Ŵn(t) ≤ sup
τn(σn)≤t≤σn

Ŵn(t) ⇒ 0

by (2.24), Lemma 5.3 and (6.12). In any case, (6.14) holds.
Let C > 0 be such that supn∈NH

n(C) ≤ ε/6. We claim that there exists
n0 such that for every n ≥ n0, P(Bn) ≥ 3η/4, where Bn ⊆ An is the set
on which at any time t′ ∈ [nνn, nσn] customers with lead times at most
C
√
n are present in the system. Indeed, suppose that P(An \Bn) > η/4 for

infinitely many n. On the set An \Bn there exists t′ ∈ [nνn, nσn] such that
all customers in the system at time t′ have lead times greater than C

√
n,

so, for t = t′/n, by Proposition 4.6,
ε

2
≤ Q̂n(t) = Q̂n(t)(C,∞) ≤ Ân(t)(C,∞)

≤ Hn(C)−Hn
(
C +

√
nt
)

+
ε

6
≤ Hn(C) +

ε

6
≤ ε

3
with probability at least η/6 for n sufficiently large, contradiction. By
(2.23), we can choose δ > 0 and n1 ∈ N such that for n ≥ n1, P(Cn) ≥
1−η/4, where Cn = [ω

Ân(δ) ≤ ε/6] and ω
Ân is the modulus of continuity of

Ân on [0, T ]. Let c = ε/(6λ). On Bn ∩ Cn we have, for n sufficiently large,

(6.15)
√
n(σn − νn) ≥ c.
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Indeed, if (6.15) is false, then, by (2.1), (6.13), for arbitrarily large n, on
Bn ∩ Cn,

ε ≤ Q̂n(σn) ≤ Q̂n(νn) + Ân(σn)− Ân(νn) + λn

√
n(σn − νn)

≤ ε/2 + 1/
√
n+ λnε/(6λ) + ε/6 < ε,

contradiction. The customers who have entered the system in the time
interval

[
nνn, nνn + c

√
n
]
with initial lead times greater than

√
n(C + c)

have lead times greater than
√
nC at all times in

[
nνn, nνn + c

√
n
]
, so, by

(6.15) and the definition of Bn, on the event Bn ∩ Cn, none of them has
received any service by time nνn + c

√
n. Thus, on this event,

Ŵn
(
νn+ c/

√
n
)

≥ 1√
n

(
V n
(
An
(
nνn + c

√
n
))
− V n(An(nνn))

)
−
(
Y n

(
1
n
An
(
nνn + c

√
n
)
, C + c

)
− Y n

(
1
n
An(nνn), C + c

))
− 1√

n

(
An
(
nνn + c

√
n
)
−An(nνn)

)
Gn

v (C + c)

= N̂n
(
νn + c/

√
n
)
− N̂n(νn) + c

− Y n
(
λn

(
νn + c/

√
n
)

+ o(1), C + c
)

+ Y n (λnν
n + o(1), C + c)

−
(
Ân
(
νn + c/

√
n
)
− Ân(νn) + λnc

)
Gn

v (C + c)

= c(1− λnG
n
v (C + c)) + o(1),

because (2.23)–(2.24) hold and, as we have already explained, Y n(·, C + c)
converges weakly to a Brownian motion. This, however, contradicts (6.14)–
(6.15), because P(Bn∩Cn) ≥ η/2 for n ≥ n0∨n1 and lim supn→∞ λnG

n
v (C+

c) ≤ λGv(d) < 1 for any d ≥ C + c being a point of continuity of Gv. �

Returning to the proof of Theorem 3.2, we want to upgrade (6.8) to

(6.16) sup
y∈R

sup
0≤t≤T

∣∣∣Q̂n(t)(y,∞)− λH
(
F̂n

1 (t) ∨ y
)∣∣∣ P−→ 0.

Let ε > 0 be arbitrary and let ε1 > 0 be such that λH(H−1
v (2ε1))+ε1 ≤ ε/2.

Let

An =
[
Q̂n(t) < λH

(
F̂n

1 (t)
)

+ ε1 for every t ∈ [0, T ]
]
,

Bn =

[
sup

0≤t≤T

∣∣∣Ŵn(t)−Hv

(
F̂n

1 (t)
)∣∣∣ ≤ ε1

]
,

Cn =

[
sup
y∈R

sup
0≤t≤T

∣∣∣Q̂n(t)(y,∞)− λH
(
F̂n

1 (t) ∨ y
)∣∣∣ I{Ŵ n(t)≥ε1} ≤ ε1

]
.
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By (6.1), (6.8) and Lemma 6.1, P(An ∩ Bn ∩ Cn) → 1. On An ∩ Bn, if
Ŵn(t) < ε1, then Hv

(
F̂n

1 (t)
)
< 2ε1, so λH

(
F̂n

1 (t)
)
< λH(H−1

v (2ε1)). Thus,
on An ∩Bn ∩ Cn ∩

[
Ŵn(t) < ε1

]
,

0 ≤ Q̂n(t) < λH
(
F̂n

1 (t)
)

+ ε1 < λH(H−1
v (2ε1)) + ε1 ≤ ε/2,

so on An ∩Bn ∩ Cn,

sup
y∈R

sup
0≤t≤T

∣∣∣Q̂n(t)(y,∞)− λH
(
F̂n

1 (t) ∨ y
)∣∣∣ ≤ ε.

Thus, (6.16) holds. This, together with (6.7) and the equality

ψ1

(
F̂n

1 (t)
)
(y,∞) = λH

(
F̂n

1 (t) ∨ y
)

for all y ∈ R, shows that Q̂n ⇒ Q∗ in DM[0,∞). �

7. Examples. In this section, we provide two examples illustrating our
theory. In the first one, customer service times and initial lead times are
independent. Thus, we get a counterpart of the results of Doytchinov et al.
[6] for the case of unbounded lead times. In the second example, customer
initial lead times are equal to their (suitably rescaled) service times. This
case may be thought of as a regularization of the SRPT service discipline, in
which small jobs get preferential treatment, but the priorities of large jobs
increase as they wait in queue. For more information on the latter issue,
see Bender et al. [1], Crovella et al. [5].

7.1. Independence of initial lead times and service times. Suppose
that, in addition to the independence assumptions made in Section 2.2, vn

j

and Ln
j are independent for all j, n ∈ N andGn ≡ G is such thatG(y) < 1 for

all y ∈ R. Assume that (2.1) and (2.18) hold. Then Gn
v = 1

µn
G⇒ Gv = 1

λG

and Gn
v2 =

(
β2

n + 1
µ2

n

)
G⇒ Gv2 =

(
β2 + 1

λ2

)
G. Assume also (2.12), (2.14),

the Lindeberg condition on un
j , v

n
j , and E

(
(Ln

j )+/
√
n
)2 =

∫∞
0 η2dG(η) <∞.

Then (2.13) holds and (Ln
j )+/

√
n satisfy the Lindeberg condition. Moreover,

(2.18) implies (2.17) and, as we have observed in Section 2.3,
(
R, ρ

)
is totally

bounded. Here we have Hv = H so, by (3.1), F ∗ = H−1(W ∗). By (3.2)–
(3.3), for all Borel sets B ⊆ R,

W∗(t)(B) =
∫

B∩[F ∗(t),∞)

(
1−G(η)

)
dη

and Q∗ = λW∗. By Theorem 3.2, Ŵn ⇒ W∗ and Q̂n ⇒ Q∗ in DM[0,∞).
This generalizes the result of Doytchinov et al. [6] to the case of unbounded
lead times whose positive parts have finite second moments.
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7.2. Initial lead times equal to multiples of service times. Now
assume that Ln

j =
√
nvn

j for each j, n ∈ N and that (2.1), (2.12) hold. For
simplicity, we also assume that the distribution Gn ≡ G of vn

j does not
depend on n. In particular, µn ≡ λ, βn ≡ β and for y ≥ 0,

Gn
v (y) = E

[
vn
j I{vn

j ≤y}

]
≡ Gv(y) =

∫ y

0
ηdG(η),

Gn
v2(y) = E

[(
vn
j

)2I{vn
j ≤y}

]
≡ Gv2(y) =

∫ y

0
η2dG(η).

Also,
∫∞
0 (1−G(η))dη = Evn

j <∞ and∫ ∞

0
(1− λGv(η))dη = λ

∫ ∞

0

∫ ∞

y
ηdG(η)dy

=
λ

2

∫ ∞

0
η2dG(η) =

λ

2
E(vn

j )2 <∞,

so (2.17) holds. We assume (2.14) and the Lindeberg condition on un
j . Then,

(2.13) and (2.15) hold. Also, as we have observed in Section 2.3,
(
R, ρ

)
is

totally bounded. After simple computations, we get

Hv(y) =


λ
2

∫∞
y (z2 − y2)dG(z), y ≥ 0,(

λβ2

2 + 1
2λ

)
− y, y < 0.

The limiting distributions for Ŵn and Q̂n are given by

W∗(t)(B) = λ

∫
B∩[F ∗(t),∞)

∫ ∞

η+

zdG(z) dη

for all Borel sets B ⊆ R and (3.3) respectively, where F ∗ is defined by (3.1).

Appendix. In the Appendix, we observe that the original argument of
Doytchinov et al. [6] works, without any substantial modification, as long
as functional central limit theorems for the customer arrival and service
times hold (see (A.2) and (A.3), to follow), with the limiting processes
having continuous sample paths, and the customer lead times are bounded
from above. These assumptions hold in a much more general setting than
the one that was originally considered in Doytchinov et al. [6]. For example,
all the stochastic primitives may be correlated and may exhibit short- or
long-range dependence. In the latter case, we can consider heavy-tailed
interarrival and/or service time distributions. For more information, see
Whitt [15].
Consider a sequence of single-station queueing systems, indexed by su-
perscript n, each with one customer class. Assume that

{
un

j

}∞
j=1
, the cus-

tomer inter-arrival times, are strictly positive, i.i.d. r.v.s with mean 1/λn

and
{
vn
j

}∞
j=1
, the customer service times, are positive, i.i.d. r.v.s with mean
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1/µn. We assume that each queue is empty at time zero and (2.1) holds.
Let cn be a sequence of constants such that cn →∞, n/cn →∞. Let Ln

j de-
note the customer initial lead times. Assume that their distribution is given
by P

{
Ln

j ≤ cny
}

= Gn(y) and such that y∗ ∆= min{y ∈ R : Gn(y) = 1}
is finite and independent of n. Moreover, we assume Gn ⇒ G. We as-
sume that the random vectors

{(
vn
j , L

n
j

)}∞
j=1
are i.i.d. and that Gn

v (y) ∆=

E
[
vn
j I{Ln

j ≤cny}

]
⇒ Gv(y), where Gv is a c.d.f. of a finite, positive measure

on R with total mass 1/λ. We make the heavy traffic assumption

(A.1) lim
n→∞

n(1− ρn)/cn = γ

for some γ ∈ R, where ρn
∆= λn/µn. Let Sn, An, V n, Wn be defined by

(2.2)–(2.4), (2.9)–(2.11), and let, for t ≥ 0,

Ŝn(t) ∆= c−1
n

[
Sn(nt)− λ−1

n nt
]
, V̂ n(t) ∆= c−1

n

[
V n(nt)− µ−1

n nt
]
.

We assume that

(A.2)
(
Ŝn, V̂ n

)
⇒ (S∗, V ∗)

in DR2 [0,∞), where S∗ and V ∗ have continuous sample paths. Thus, by

Theorem 9.3.4 in Whitt [15], Ŵn(t) ∆= c−1
n Wn(nt) ⇒ W ∗(t) in D[0,∞),

where, for any t ≥ 0, W ∗(t) = N∗(t)− inf0≤s≤tN
∗(s) and N∗ = (V ∗−S∗)◦

λe− γe. Finally, we assume that, for every −∞ ≤ a < b ≤ y∗,

(A.3) Ṽ n
a,b(t)

∆=
1
cn

bntc∑
j=1

(
vn
j I{cna<Ln

j ≤cnb} − (Gn
v (b)−Gn

v (a))
)
⇒ V ∗

a,b(t)

inD[0,∞), where V ∗
a,b has continuous sample paths. For y ≤ y∗, letHv(y)

∆=∫ y∗

y (1− λGv(η))dη. Let

Fn(t) ∆=

 Largest lead time of all customers who have ever been inservice, whether still present or not, or cn y∗ − t, if this
quantity is larger than the former one

 ,

and let Wn and Qn be as in Section 2.4. Let F̂n(t) = c−1
n Fn(nt) and let,

for any Borel set B ⊆ R,

Q̂n(t)(B) ∆= c−1
n Qn(nt)(cnB), Ŵn(t)(B) ∆= c−1

n Wn(nt)(cnB).

Let F ∗, W∗, Q∗ be as in (3.1)–(3.3).

Proposition A.1. F̂n ⇒ F ∗ in DR[0,∞) as n→∞.

Theorem A.2. Ŵn ⇒W∗ and Q̂n ⇒ Q∗ in DM[0,∞) as n→∞.

Proposition A.1 and Theorem A.2 can be proved by a straightforward
generalization of the arguments of Doytchinov et al. [6].
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