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Univalent anti-analytic perturbations
of convex analytic mappings in the unit disc

Abstract. Let SH be the class of normalized univalent harmonic mappings
in the unit disc. We introduce subclasses of SH , by choosing only these
functions whose analytic parts are convex functions. For such mappings we
establish coefficient, growth and distortion estimates. We also give solutions
to covering problems. Obtained results are different from those, which are
known or conjectured in the full class SH .

1. Introduction. A function f is said to be a complex-valued harmonic
function in a simply connected domain Ω in the complex plain C if both
Re{f} and Im{f} are real harmonic in Ω. Every such f can be uniquely
represented as

f = h+ g,(1.1)

where h and g are analytic in Ω with g(0) = 0.
A complex-valued harmonic function f , not identically constant, satisfy-
ing (1.1) is said to be sense-preserving in Ω if, and only if it satisfies the
equation

g′ = ωh′,
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where ω is analytic in Ω with |ω(z)| < 1, z ∈ Ω. The function ω is called
the second complex dilatation of f . It is closely related to the Jacobian of
f defined as follows

Jf (z) := |h′(z)|2 − |g′(z)|2, z ∈ Ω.

Recall that the necessary and sufficient condition for f to be locally univa-
lent and sense-preserving in Ω is Jf (z) > 0, z ∈ Ω. This is an immediate
consequence of Levy’s theorem (see [7]). Observe, that if Jf (z) > 0, then
|h′(z)| > 0 and hence g′(z)/h′(z) is well defined for every z ∈ Ω. Thus the
dilatation ω of locally univalent and sense-preserving function f in Ω can
be expressed as

ω(z) =
g′(z)
h′(z)

, z ∈ Ω.(1.2)

Let ∆(a, r) := {z ∈ C : |z − a| < r}, where a ∈ C and r > 0. Choose
Ω = ∆, where ∆ := ∆(0, 1) is the unit disc in C. Then every f satisfying
(1.1) in∆ is uniquely determined by coefficients of the following power series
expansions

h(z) =
∞∑
n=0

anz
n, g(z) =

∞∑
n=1

bnz
n, z ∈ ∆,(1.3)

where an ∈ C, n = 0, 1, 2, . . . and bn ∈ C, n = 1, 2, 3, . . .. More information
about harmonic mappings in the plane can be found in e.g. [3].
Clunie and Sheil-Small introduced in [1] the family SH of all univalent
and sense-preserving harmonic functions f satisfying (1.1) in ∆, such that
h(0) = 0 and h′(0) = 1. In [6] we were studying properties of a subset
of SH consisting of all univalent anti-analytic perturbations of the identity
in the unit disc. The main idea of this paper is to consider more general
classes than the one introduced in [6]. Let α ∈ [0, 1). We define the class
Ŝα of all f ∈ SH , such that |b1| = α and h ∈ C, where C denotes the well-
known family of normalized univalent analytic functions which are convex.
Additionally, we denote

Ŝ :=
⋃

α∈[0,1)

Ŝα.

Note, that the dilatation ω of f ∈ SH is an analytic function satisfying (1.2)
in ∆. Since b1 = ω(0) and |ω(z)| < 1, z ∈ ∆, then we have the estimate
|b1| < 1. This explains why we have taken α ∈ [0, 1). Throughout this
paper α will always mean a fixed number from [0, 1).
The main results of this paper are solutions to some extremal problems
in Ŝα and Ŝ. We establish coefficient, distortion and growth estimates. In
particular, we derive the solution to covering problem.
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2. Preliminary notes and examples. Let B be the set of all functions
φ analytic in ∆ such that φ(∆) ⊂ ∆, where ∆ := {z ∈ C : |z| ≤ 1}. As
it was mentioned earlier the dilatation ω of f ∈ SH belongs to B. Hence,
some results concerning B will be useful in the study of Ŝα and Ŝ.
Let φ ∈ B and φ(0) = 0. It is well known that, by the use of the maximum
modulus principle, we can obtain

|φ(z)| ≤ |z|, z ∈ ∆.(2.1)

From (2.1) we can easily deduce that

|φ′(0)| ≤ 1.(2.2)

The inequalities (2.2) and (2.1) together are called the Schwarz lemma. In
both of them the equality holds only for the function ∆ 3 z 7→ eiθz, where
θ ∈ R is constant (see [4]).
We will also need the following result due to Schur.

Theorem 2.1 ([5]). If φ ∈ B and

Sk(z) :=
k∑
j=0

λjz
j , φ(z) =

∞∑
n=0

λnz
n, z ∈ ∆(2.3)

for k = 0, 1, 2, . . . , then

n∑
k=0

|Sk(z)|2 ≤ n+ 1, z ∈ ∆.(2.4)

Next theorem due to Clunie and Sheil-Small gives us very important
description of the class Ŝ.

Theorem 2.2 ([1]). If f is a harmonic locally univalent and sense-pre-
serving function in ∆ satisfying (1.1) and for some ε (|ε| ≤ 1), h + εg is
convex, then the function f is univalent in ∆ and f(∆) is a close-to-convex
set.

Because every univalent function is locally univalent, we have the following
immediate corollary from Theorem 2.2.

Corollary 2.3. Assume f is a harmonic function satisfying (1.1), (1.2) in
∆ and h ∈ C. Then f is harmonic close-to-convex function if one of the
following equivalent conditions hold:

a) f ∈ Ŝ;
b) |ω(z)| < 1, z ∈ ∆;
c) Jf (z) > 0, z ∈ ∆.
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Let ω be the dilatation of f ∈ Ŝα given by (1.1). By the definition of ω
we have g′ = ωh′ and hence f has the following integral representation

f(z) = h(z) +
∫ z

0
ω(ζ)h′(ζ) dζ, z ∈ ∆,(2.5)

where h ∈ C and ω ∈ Bα := {φ ∈ B : |φ(0)| = α}.
Moreover, since h ∈ C, then Re{h(z)/z} > 1/2, z ∈ ∆ (see [8]). Ac-
cording to the Riesz–Herglotz representation (see [5]) for the function ∆ 3
z 7→ 2h(z)/z − 1, there exists a nondecreasing function µ in [0, 2π] with
µ(2π)− µ(0) = 1, such that

h(z) =
∫ 2π

0

z dµ(t)
1− e−itz

, z ∈ ∆(2.6)

and

h′(z) =
∫ 2π

0

dµ(t)
(1− e−itz)2

, z ∈ ∆.(2.7)

Putting (2.6) and (2.7) into (2.5) we obtain

f(z) =
∫ 2π

0

[
z

1− e−itz
+
∫ z

0

ω(ζ)
(1− e−itζ)2

dζ

]
dµ(t), z ∈ ∆.(2.8)

An important question is whether the families Ŝα and Ŝ, introduced in
this paper, are normal and compact or not. Before we answer, we first give
the following.

Example 2.4. For every n = 0, 1, 2, . . . the function

fn(z) := z +
n

n+ 1
z

is an univalent affine mapping in ∆. Thus fn belongs to Ŝα with α =
n/(n + 1). The sequence {fn} converges locally uniformly in ∆ to the
function f(z) := 2 Re{z}, which is not univalent, hence neither f ∈ Ŝ nor
f ∈ SH .

Theorem 2.5. The family Ŝα is normal and compact. The family Ŝ is
normal but not compact.

Proof. Both Ŝα and Ŝ are normal as subclasses of the normal family SH .
The class Ŝ is not compact, as it is shown in Example 2.4. The compactness
of Ŝα follows from the representation (2.5) and the compactness of the
classes C and Bα. �

Now we construct an example of a function, which seems to be extremal
in many problems concerning Ŝα.
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Example 2.6. Let ζ ∈ ∆. Consider a function fζ = hζ + gζ such that

hζ(z) =
z

1− z

and suppose that its dilatation ωζ satisfies

ωζ(z) =
z + ζ

1 + ζz
.

Now, from the identity (1.2) we have

g′ζ(z) =
z + ζ

(1 + ζz)(1− z)2

and since gζ(0) = 0, by integration, we uniquely determine

gζ(z) =
z

1− z
+
ζ − 1
ζ + 1

(
Log

1 + ζz

1− z

)
.

Obviously, |ωζ(z)| < 1, z ∈ ∆ so, in view of Corollary 2.3, the construction
method assures that fζ ∈ Ŝα for α = |ζ|.

3. Main results. Let f ∈ Ŝα. By definition, the analytic part h of f
belongs to C. Then from the theory of univalent analytic functions we have
the following coefficient estimate

|an| ≤ 1, n = 2, 3, 4, . . . .(3.1)

Our first aim is to give an estimate on the coefficients bn of g, where g is
the anti-analytic part of f .

Theorem 3.1. If f ∈ Ŝα and f is given by (1.1), (1.3), then

|bn| ≤
α+

√
(n− α2)(n− 1)

n
(3.2)

for n = 2, 3, 4, . . ..

Proof. Let ω be the dilatation of f = h+ g, where h, g are given by (1.3)
and let

ω(z) =
∞∑
n=0

cnz
n, z ∈ ∆,(3.3)

where cn ∈ C, n = 0, 1, 2, . . . and |c0| = α. From the formula (2.8) we derive

an =
∫ 2π

0
e−i(n−1)t dµ(t), n = 1, 2, 3, . . .(3.4)

and

nbn =
∫ 2π

0

(
n∑
k=1

ke−i(k−1)tcn−k

)
dµ(t), n = 1, 2, 3, . . . .(3.5)
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The formula (3.4) leads to the known estimate (3.1), whereas (3.5) yields

|nbn| ≤ max

{∣∣∣∣∣
n∑
k=1

ke−i(k−1)tcn−k

∣∣∣∣∣ : t ∈ [0, 2π]

}
.(3.6)

Observe, that

(3.7)

n∑
k=1

ke−i(k−1)tcn−k = e−i(n−1)t
n∑
k=1

kei(n−k)tcn−k

= e−i(n−1)t
n−1∑
k=0

Sk(eit),

where

[0, 2π] 3 t 7→ Sk(eit) :=
k∑
j=0

cje
ijt

for k = 0, 1, 2, . . .. By applying (3.7) to (3.6) we obtain

|nbn| ≤

∣∣∣∣∣
n−1∑
k=0

Sk(eit)

∣∣∣∣∣ ≤
n−1∑
k=0

∣∣Sk(eit)∣∣ .
Since |S0(eit)| = α, t ∈ [0, 2π], then by the Cauchy–Schwarz inequality we
have

|nbn| ≤ |α|+

√√√√(n− 1)
n−1∑
k=1

|Sk(eit)|2.

Finally, the estimate (2.4) of Theorem 2.1, which also remains true for
z = eit, t ∈ [0, 2π], yields

|nbn| ≤ |α|+
√

(n− 1)(n− α2).

Hence, the proof is completed. �

Corollary 3.2. If f ∈ Ŝ and f is given by (1.1), (1.3), then
|bn| < 1

for n = 2, 3, 4, . . ..

Proof. The corollary follows immediately from Theorem 3.1. �

Consider a function f = h+ g satisfying (1.2), (1.3) in ∆, such that

∆ 3 z 7→ ω(z) := α+ (1− α)z,

and

∆ 3 z 7→ h(z) :=
z

1− z
.
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The function f is well defined and so we can compute the coefficients of g
as follows

bn = 1− 1
n

+
α

n
for n = 2, 3, 4, . . .. Since bn → 1 as n→ +∞, then it is clear, that the bound
1 in Corollary 3.2 can not be improved to be valid for all n = 2, 3, 4, . . ..

Theorem 3.3. If f ∈ Ŝα, then

|b2| ≤
1 + 2α− α2

2
.(3.8)

The estimate can not be improved.

Proof. Let ω be the dilatation of f with the power series expansion (3.3).
Consider the function

F (z) :=
ω(z)− c0
1− c0ω(z)

, z ∈ ∆.

Recall, that |ω(z)| < 1, z ∈ ∆. Hence F satisfies the assumptions of the
Schwarz lemma and by the inequality (2.2) we have |F ′(0)| ≤ 1, which gives

|c1| = |ω′(0)| ≤ 1− |c0|2.(3.9)

On the other hand, the formula (3.6) from the proof of Theorem 3.1 gives

2|b2| ≤ |c1|+ 2|c0|.(3.10)

Now the estimate (3.8) follows immediately from (3.9) and the identity
|c0| = |b1| = α. The function fζ defined in Example 2.6 with ζ := α shows
that the inequality (3.8) can not be improved. �

Corollary 3.4. If f ∈ Ŝ, then the estimate |b2| < 1 can not be improved.

Proof. Let α tend to 1 in the estimate (3.8) and the corollary follows from
Theorem 3.3. �

Recall that the analytic part h of f ∈ Ŝα belongs to C. Hence, we have
the following distortion estimate of h

1
(1 + |z|)2

≤ |h′(z)| ≤ 1
(1− |z|)2

, z ∈ ∆.(3.11)

Our next aim is to obtain the distortion estimate of g.

Theorem 3.5. If f ∈ Ŝα, then

|g′(z)| ≥ |α− r|
(1− αr)(1 + r)2

, z ∈ ∆(3.12)

and

|g′(z)| ≤ α+ r

(1 + αr)(1− r)2
, z ∈ ∆,(3.13)

where r := |z|. The estimates can not be improved.
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Proof. Let ω of the form (3.3) be the dilatation of f ∈ Ŝα and b1 = c0 =
eiφα for some φ ∈ R. Consider the function

F (z) :=
e−iφω(z)− α

1− αe−iφω(z)
, z ∈ ∆.

It satisfies assumptions of the Schwarz lemma and using the estimate (2.1)
we have |F (z)| ≤ r, which gives∣∣∣e−iφω(z)− α

∣∣∣ ≤ r
∣∣∣αe−iφω(z)− 1

∣∣∣ .
This inequality is equivalent to∣∣∣∣e−iφω(z)− α(1− r2)

1− α2r2

∣∣∣∣ ≤ r(1− α2)
1− α2r2

(3.14)

and the equality holds only for the functions satisfying

ω(z) = eiφ
eiψz + α

1 + αeiψz
, z ∈ ∆,(3.15)

where ψ ∈ R. From the formula (3.14) we obtain

|ω(z)| = |e−iφω(z)| ≥
∣∣∣∣α(1− r2)
1− α2r2

− r(1− α2)
1− α2r2

∣∣∣∣ = |α− r|
1− αr

(3.16)

and

|ω(z)| = |e−iφω(z)| ≤ α(1− r2)
1− α2r2

+
r(1− α2)
1− α2r2

=
α+ r

1 + αr
.(3.17)

Applying the estimate (3.11) together with (3.16) and (3.17) to the identity
g′ = ωh′ we have (3.12) and (3.13), respectively. The function fζ defined in
Example 2.6 with ζ := α shows that the inequalities (3.12) and (3.13) can
not be improved. �

Corollary 3.6. If f ∈ Ŝ, then

|g′(z)| ≤ 1
(1− r)2

, z ∈ ∆,(3.18)

where r := |z|. The estimate can not be improved.

Proof. Observe that the right-hand side of (3.13) increases in [0, 1). Hence,
let α tend to 1 in the estimate (3.13) and the corollary follows from Theo-
rem 3.5. �

Let f ∈ Ŝα. It is well known that the following growth estimate of h ∈ C
holds

|z|
1 + |z|

≤ |h(z)| ≤ |z|
1− |z|

, z ∈ ∆.(3.19)

The growth estimate of g we derive, by integration, from the estimate on
|g′|.
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Theorem 3.7. If f ∈ Ŝα, then

|g(z)| ≤ r

1− r
+

1− α

1 + α
ln
(

1− r

1 + αr

)
, z ∈ ∆,(3.20)

where r := |z|. The estimate can not be improved.

Proof. Let γ := [0, z]. Applying the estimate (3.13) we have

|g(z)| =
∣∣∣∣∫
γ
g′(ζ) dζ

∣∣∣∣ ≤ ∫
γ
|g′(ζ)||dζ | ≤

∫ r

0

α+ ρ

(1 + αρ)(1− ρ)2
dρ .

Integrating, we obtain the estimate (3.20). The function fζ defined in Exam-
ple 2.6 with ζ := α shows that the inequality (3.20) can not be improved. �

Corollary 3.8. If f ∈ Ŝ, then

|g(z)| ≤ r

1− r
, z ∈ ∆,(3.21)

where r := |z|. The estimate can not be improved.

Proof. Let α tend to 1 in the estimate (3.20), then the corollary follows
from Theorem 3.7. �

Moreover, we give the growth estimate of f .

Theorem 3.9. If f ∈ Ŝα, then

|f(z)| ≥ 2r
1 + r

− 1 + α

1− α
ln
(

1 + r

1 + αr

)
, z ∈ ∆(3.22)

and

|f(z)| ≤ 2r
1− r

+
1− α

1 + α
ln
(

1− r

1 + αr

)
, z ∈ ∆,(3.23)

where r := |z|. The estimates can not be improved.

Proof. Let z ∈ ∆. We denote r := |z| and m(r) := inf{|f(ζ)| : |ζ| = r}.
Obviously |f(z)| ≥ m(r) and {w : |w| ≤ m(r)} ⊂ f({ζ : |ζ| ≤ r}) ⊂ f(∆).
Hence, there exists zr satisfying |zr| = r such that m(r) = |f(zr)|. Let
γ(t) := tf(zr), t ∈ [0, 1], then Γ(t) := f−1(γ(t)), t ∈ [0, 1] is a well-defined
Jordan arc and

|Γ(t)| ≤ s(t) :=
∫ t

0
|Γ′(t)|d t

for all t ∈ [0, 1]. Since f = h+ g, then we can write

m(r) = |f(zr)| =
∫
γ
|dw| =

∫
Γ
|d f | =

∫
Γ

∣∣∣∣h′(ζ) + g′(ζ)
dζ
dζ

∣∣∣∣ |dζ |
≥
∫

Γ

(
|h′(ζ)| − |g′(ζ)|

)
|dζ |.
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Observe, that for every ζ ∈ ∆ we have

|h′(ζ)| − |g′(ζ)| = |h′(ζ)|(1− |ω(ζ)|).

Applying the estimates (3.11) and (3.17) we obtain

|h′(ζ)| − |g′(ζ)| ≥ 1
(1 + |ζ|)2

(
1− α+ |ζ|

1 + α|ζ|

)
=

(1− α)(1− |ζ|)
(1 + α|ζ|)(1 + |ζ|)2

.

Hence, we can write

m(r) ≥
∫

Γ

(
(1− α)(1− |ζ|)

(1 + α|ζ|)(1 + |ζ|)2

)
|dζ |

≥
∫ 1

0

(
(1− α)(1− |Γ(t)|)

(1 + α|Γ(t)|)(1 + |Γ(t)|)2

)
d s(t)

≥
∫ 1

0

(
(1− α)(1− s(t))

(1 + αs(t))(1 + s(t))2

)
d s(t)

≥
∫ r

0

(1− α)(1− ρ)
(1 + αρ)(1 + ρ)2

dρ

=
2r

1 + r
− 1 + α

1− α
ln
(

1 + r

1 + αr

)
,

which completes the proof of (3.22). To prove (3.23) we simply use the
inequality

|f(z)| = |h(z) + g(z)| ≤ |h(z)|+ |g(z)|.

Then, by applying (3.19) and (3.20) we have

|f(z)| ≤ r

1− r
+

r

1− r
+

1− α

1 + α
ln
(

1− r

1 + αr

)
,

which completes the proof of (3.23). The function fζ defined in Example 2.6
with ζ := −α and ζ := α shows that the inequalities (3.22) and (3.23),
respectively, can not be improved. �

Corollary 3.10. If f ∈ Ŝ, then

|f(z)| ≤ 2r
1− r

, z ∈ ∆,(3.24)

where r := |z|. The estimate can not be improved.

Proof. Let α tend to 1 in the estimate (3.23), then the corollary follows
from Theorem 3.9. �

Finally, the growth estimate of f ∈ Ŝα yields a covering theorem.

Corollary 3.11. If f ∈ Ŝα, then
∆(0, R) ⊂ f(∆),
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where

R := 1− 1 + α

1− α
ln
(

2
1 + α

)
.

The constant R can not be improved.

Proof. If we let r tend to 1 in the estimate (3.22), then the corollary fol-
lows immediately from the argument principle for harmonic mappings (see
[3]). The function fζ defined in Example 2.6 with ζ := −α shows that the
constant R can not be improved. �
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