ANNALES
UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
LUBLIN-POLONIA
vOL. LXI, 2007

EKATERINA G. GANENKOVA

On the theorem of regularity of decrease for universal linearly invariant families of functions

Abstract

This article includes results connected with the theorem of regularity of decrease for linearly invariant families \mathcal{U}_{α} of analytic functions in the unit disk. In particular the question about a cardinality of the set of directions of intensive decrease for any function from \mathcal{U}_{α} is considered.

In this article we study linearly invariant families, which were defined by Ch. Pommerenke [10] in 1964.

Definition 1 ([10]). A family \mathfrak{M} of functions $f(z)=z+\sum_{n=2}^{\infty} a_{n}(f) z^{n}$ analytic in the unit disk $\Delta=\{z:|z|<1\}$ is called a linearly invariant family (LIF) if each function $f \in \mathfrak{M}$ satisfies the following conditions:

1) $f^{\prime}(z) \neq 0$ for all $z \in \Delta$ (local univalence);
2) functions of the form

$$
\Lambda[f(z)]=\frac{f\left(e^{i \theta} \frac{z+a}{1+\bar{a} z}\right)-f\left(e^{i \theta} a\right)}{f^{\prime}\left(e^{i \theta} a\right) \cdot\left(1-|a|^{2}\right) e^{i \theta}}=z+\ldots
$$

for all $a \in \Delta$ and $\varphi \in \mathbb{R}$ belong to \mathfrak{M} (invariance with respect to a conformal automorphism of the unit disk Δ).

[^0]Definition 2 ([2]). The quantity

$$
\operatorname{ord} \mathfrak{M}=\sup _{f \in \mathfrak{M}}\left|a_{2}(f)\right|
$$

is called the order of the LIF \mathfrak{M}.
Definition 3 ([10]). The union of all linearly invariant families of order not greater than α is called a universal linearly invariant family of order α and it is denoted by \mathcal{U}_{α}.

For every continuous function $g: \Delta \rightarrow \mathbb{C}$ and $r \in[0 ; 1)$ we put

$$
M(r, \phi)=\max _{|z|=r}|\phi(z)|, \quad m(r, \phi)=\min _{|z|=r}|\phi(z)| .
$$

For linearly invariant families there is a list of theorems concerning the regularity growth. Statements of this type characterize the order of growth of moduli of functions and their derivatives.

Such results, for example, for the well-known class S of univalent functions in Δ were obtained in [1], [7], [8].

Theorem A (regularity of growth in S). Let $f \in S$. Then

1) there exists the limit

$$
\lim _{r \rightarrow 1-}\left[M(r, f) \frac{(1-r)^{2}}{r}\right]=\lim _{r \rightarrow 1-}\left[M\left(r, f^{\prime}\right) \frac{(1-r)^{3}}{1+r}\right]=\delta \in[0,1]
$$

and $\delta=1$ for the Koebe function $f_{\theta}(z)=z\left(1-z e^{-i \theta}\right)^{-2}$ only. Functions under the sign of the limit are decreasing with respect to $r, 0<r<1$, if $\delta \neq 1$.
2) If $\delta \neq 0$, then there exists $\varphi^{0} \in[0,2 \pi)$ such that

$$
\lim _{r \rightarrow 1-}\left[\left|f\left(r e^{i \varphi}\right)\right| \frac{(1-r)^{2}}{r}\right]=\lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \varphi}\right)\right| \frac{(1-r)^{3}}{1+r}\right]=\left\{\begin{array}{lc}
\delta, & \varphi=\varphi^{0}, \\
0, & \varphi \neq \varphi^{0} ;
\end{array}\right.
$$

functions under the sign of the limit are decreasing with respect to $r \in(0,1)$ too.

Theorems of regularity of growth for universal LIF were proved in [2], [11], [12] (see also the review [5]).
Theorem B (regularity of growth in \mathcal{U}_{α}). Let $f \in \mathcal{U}_{\alpha}$. Then

1) for all $\varphi \in[0 ; 2 \pi)$ functions

$$
\left|f^{\prime}\left(r e^{i \varphi}\right)\right| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}} \quad \text { and } \quad M\left(r, f^{\prime}\right) \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}
$$

are non-increasing with respect to $r \in(0 ; 1)$;
2) there exist numbers $\delta^{0} \in[0,1]$ and $\varphi^{0} \in \mathbb{R}$ such that

$$
\delta^{0}=\lim _{r \rightarrow 1-}\left[M(r, f) 2 \alpha\left(\frac{1-r}{1+r}\right)^{\alpha}\right]=\lim _{r \rightarrow 1-}\left[M\left(r, f^{\prime}\right) \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}\right]
$$

$$
=\lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \varphi^{0}}\right)\right| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}\right]=\lim _{r \rightarrow-1}\left[\left|f\left(e^{i \varphi^{0}}\right)\right| 2 \alpha\left(\frac{1-r}{1+r}\right)^{\alpha}\right]
$$

3) $\delta^{0}=1 \Longleftrightarrow f(z)=k_{\theta}(z)=\frac{e^{i \theta}}{2 \alpha}\left[\left(\frac{1+z e^{-i \theta}}{1-z e^{-i \theta}}\right)^{\alpha}-1\right], \theta \in \mathbb{R}$ is fixed.

Taking into consideration the above-stated class of theorems it is natural to consider the question about the order of decrease of the analogous values.

In the paper [3] (see also [4]) the following theorem of regularity of decrease was proved.

Theorem 1 (regularity of decrease in \mathcal{U}_{α}). Let $f \in \mathcal{U}_{\alpha}$. Then

1) there exist numbers $\delta_{0} \in[1, \infty]$ and $\varphi_{0} \in \mathbb{R}$ such that

$$
\delta_{0}=\lim _{r \rightarrow 1-}\left[m\left(r, f^{\prime}\right) \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right]=\lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \varphi_{0}}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right]
$$

Functions under the sign of the limit are non-decreasing with respect to $r \in(0 ; 1)$ for all $\phi_{0} \in \mathbb{R}$.
2) $\delta_{0}=1 \Longleftrightarrow f(z)=k_{\theta}(z)=-\frac{e^{i \theta}}{2 \alpha}\left[\left(\frac{1-z e^{-i \theta}}{1+z e^{-i \theta}}\right)^{\alpha}-1\right]$, where $\theta \in \mathbb{R}$ is fixed.

Definition 4. The number φ_{0} from Theorem 1 we shall call a direction of maximal decrease (shortly written d.m.d.) of $f(z)$.

Definition 5. Every number $\theta \in[0 ; 2 \pi)$ such that

$$
\lim _{r \rightarrow 1-}\left|f^{\prime}\left(r e^{i \theta}\right)\right| \frac{(1+r)^{(\alpha+1)}}{(1-r)^{(\alpha-1)}}=\delta_{\theta} \in[1 ; \infty)
$$

we shall call a direction of intensive decrease (shortly written d.i.d.) of $f(z)$.
It is natural to define the partition of family \mathcal{U}_{α} into disjoint classes $\mathcal{U}_{\alpha}\left(\delta_{0}\right), \delta_{0} \in[1 ; \infty]$, where the same number δ_{0} (this is the number from Theorem 1) corresponds to all functions from the class $\mathcal{U}_{\alpha}\left(\delta_{0}\right)$.

Since the class $\mathcal{K}=\mathcal{U}_{1}$ has been well investigated, therefore, we will study the case $\alpha>1$ only.

Theorem 2. Let $\alpha>1, f \in \mathcal{U}_{\alpha}\left(\delta_{0}\right), \delta_{0}<\infty ; \theta$ is one of d.i.d. of the function f and $\delta \in\left[\delta_{0}, \infty\right)$ is a number which corresponds to this d.i.d.

Denote by $\Delta(\eta)$ the Stoltz angle with measure $2 \eta, \eta \in\left(0, \frac{\pi}{2}\right)$ with vertex at the point $e^{i \theta}, \Phi(\zeta)=\arg f^{\prime}\left(\rho(\zeta) e^{i \theta}\right), \zeta \in \Delta(\eta)$ where

$$
\begin{gathered}
\rho(\zeta)=\sqrt{\frac{\left(1-r_{0}^{2}\right)^{2}}{4 r_{0}^{4} c^{2}(\zeta)}+\frac{1}{r_{0}^{2}}}+\frac{1}{2 c(\zeta)}\left(1-\frac{1}{r_{0}^{2}}\right), \quad r_{0}=\sin \eta, \\
c(\zeta)=\Re\left\{\zeta e^{-i \theta}\right\}-\tan \eta\left|\Im\left\{\zeta e^{-i \theta}\right\}\right| .
\end{gathered}
$$

Then for all $n \in \mathbb{N}$ if $\alpha \notin \mathbb{N}$ and for all $n \in \mathbb{N}$ such that $n<\alpha+1$ if $\alpha \in \mathbb{N}$:

$$
\frac{f^{(n)}(\zeta)}{k_{\theta}^{(n)}(\zeta)} e^{-i \Phi(\zeta)} \xrightarrow[|\zeta| \rightarrow 1-]{ } \delta
$$

in $\Delta(\eta)$.
Thus, if a function $f \in \mathcal{U}_{\alpha}$ has d.i.d. θ, then for above-stated n a behavior of functions $\left|f^{(n)}\right|$ and $\left|k_{\theta}^{(n)}\right| \delta$ differs a little in the angle domain

$$
\Delta(R, \eta)=\left\{\zeta \in \Delta:\left|\arg \left(1-\zeta e^{-i \theta}\right)\right|<\eta, R<|\zeta|<1\right\}
$$

as $R \rightarrow 1$.
Proof. For any $\phi \in[0 ; 2 \pi)$ there exists the limit

$$
\lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \phi}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right]=\delta(\phi)
$$

Let us fix $a \in \Delta$ and ϕ and denote $z=\frac{r e^{i \phi}-a}{1-\bar{a} r e^{i \phi}},|z|=R(r)$. It is known [3, Th. 2] that $\lim _{r \rightarrow 1-} R^{\prime}(r)=\frac{1-|a|^{2}}{\left|1-\bar{a} e^{i \phi}\right|}$. For such z we have

$$
\begin{aligned}
\lim _{r \rightarrow 1-} & {\left[\left|f^{\prime}(z, a)\right| \frac{(1+|z|)^{\alpha+1}}{(1-|z|)^{\alpha-1}}\right] } \\
& =\lim _{r \rightarrow 1-} \frac{\left|f^{\prime}\left(r e^{i \phi}\right)\right|(1+r)^{\alpha+1}}{\left|f^{\prime}(a)\right||1+\bar{a} z|^{2}(1-r)^{\alpha-1}} \lim _{r \rightarrow 1-}\left(\frac{1-r}{1-R(r)}\right)^{\alpha-1} \\
& =\lim _{r \rightarrow 1-} \frac{\delta(\phi)}{\left|f^{\prime}(a)\right|\left|1+\bar{a} \frac{e^{i \phi-a}}{1-\bar{a} e^{i \phi}}\right|^{2}}\left(\lim _{r \rightarrow 1-} \frac{1}{R^{\prime}(r)}\right)^{\alpha-1} \\
& =\frac{\delta(\phi)\left|1-\bar{a} e^{i \phi}\right|^{2 \alpha}}{\left|f^{\prime}(a)\right|\left(1-|a|^{2}\right)^{\alpha+1}} \\
& \geq \lim _{R(r) \rightarrow 1-}\left[m\left(R(r), f^{\prime}(z, a)\right) \frac{(1+R(r))^{\alpha+1}}{(1-R(r))^{\alpha-1}}\right]=\delta_{a}
\end{aligned}
$$

Let us assume now ϕ to be equal θ - d.i.d. of $f(z)$. Put $a=\rho e^{i \theta}$, then

$$
\frac{\delta(\theta)(1-\rho)^{2 \alpha}}{\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|\left(1-\rho^{2}\right)^{\alpha+1}}=\frac{\delta(\theta)(1-\rho)^{\alpha-1}}{\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|(1+\rho)^{\alpha+1}} \geq \delta_{a}
$$

Therefore, $\delta_{a} \xrightarrow[\rho \rightarrow 1-]{ } 1$ and in view of the Theorem 3 from [3] any locally convergent in Δ sequence $f_{n}(z)=f\left(z, \rho_{n} e^{i \theta}\right)$ converges to $k_{\theta_{1}}(z)$ as $\rho_{n} \xrightarrow[n \rightarrow \infty]{ } 1$ - for some $\theta_{1} \in[0 ; 2 \pi)$.

We shall prove $\theta_{1}=\theta$. Denote $R_{n}=\frac{r+\rho_{n}}{1+\rho_{n} r}$.

$$
\left|k_{\theta_{1}}^{\prime}\left(r e^{i \theta}\right)\right|=\lim _{n \rightarrow \infty}\left|f_{n}^{\prime}\left(r e^{i \theta}\right)\right|=\lim _{n \rightarrow \infty} \frac{\left|f^{\prime}\left(R_{n} e^{i \theta}\right)\right|}{\left|f^{\prime}\left(\rho_{n} e^{i \theta}\right)\right|\left(1+\rho_{n} r\right)^{2}}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{\left|f^{\prime}\left(R_{n} e^{i \theta}\right)\right| \frac{\left(1+R_{n}\right)^{\alpha+1}}{\left(1-R_{n}\right)^{\alpha-1}}}{\left|f^{\prime}\left(\rho_{n} e^{i \theta}\right)\right| \frac{\left(1+\rho_{n}\right)^{\alpha+1}\left(1+\rho_{n} r\right)^{2}}{\left(1-\rho_{n}\right)^{\alpha-1}}}\left(\lim _{n \rightarrow \infty} \frac{1-R_{n}}{1-\rho_{n}}\right)^{\alpha-1} \\
& =\frac{\delta(\theta)}{\delta(\theta)(1+r)^{2}}\left(\frac{1-r}{1+r}\right)^{\alpha-1} \xrightarrow[r \rightarrow 1-]{\longrightarrow} 0,
\end{aligned}
$$

and this is possible in the case $\theta_{1}=\theta$ only.
Taking into account the inequality (see [10])

$$
\begin{equation*}
\frac{(1-r)^{\alpha-1}}{(1+r)^{\alpha+1}} \leq\left|f^{\prime}(z)\right| \leq \frac{(1+r)^{\alpha-1}}{(1-r)^{\alpha+1}}, \quad r=|z| \tag{1}
\end{equation*}
$$

one can use Vitali theorem for the functions $f^{\prime}\left(z, \rho e^{i \theta}\right)$. Thus

$$
f^{\prime}\left(z, \rho e^{i \theta}\right) \underset{\rho \rightarrow 1-}{\longrightarrow} k_{\theta}^{\prime}(z)
$$

locally uniformly in Δ. In particular, for every fixed $r_{0} \in(0,1)$

$$
\frac{f^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)}{f^{\prime}\left(\rho e^{i \theta}\right)\left(1+\rho e^{-i \theta} z\right)^{2}} \xrightarrow[\rho \rightarrow 1-]{\longrightarrow} \frac{\left(1-z e^{-i \theta}\right)^{\alpha-1}}{\left(1+z e^{-i \theta}\right)^{\alpha+1}}
$$

uniformly in the disk $\left\{|z| \leq r_{0}\right\}$. Thus functions

$$
\frac{f^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)}{f^{\prime}\left(\rho e^{i \theta}\right)} \text { and }\left(1+\rho e^{-i \theta} z\right)^{2} \frac{\left(1-z e^{-i \theta}\right)^{\alpha-1}}{\left(1+z e^{-i \theta}\right)^{\alpha+1}}=\frac{k_{\theta}^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{i \theta} z}\right)}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}
$$

converge uniformly in $\left\{|z| \leq r_{0}\right\}$ to the same analytic function on $\left\{|z| \leq r_{0}\right\}$ as $\rho \rightarrow 1-$, i.e.

$$
\begin{equation*}
\frac{f^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta_{z}}}\right)}{f^{\prime}\left(\rho e^{i \theta}\right)}-\frac{k_{\theta}^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e e^{i \theta} z}\right)}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)} \underset{\rho \rightarrow 1-}{ } 0 \tag{2}
\end{equation*}
$$

uniformly in $\left\{|z| \leq r_{0}\right\}$. Further proof of the case $n=1$ follows the line proved for a similar theorem in [12].

The function $\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta_{z}}}$ maps univalently the disk $\left\{|z| \leq r_{0}\right\}$ onto the disk with the center $c\left(r_{0}\right)=e^{i \theta} \frac{1-r_{0}^{2}}{1-\rho^{2} r_{0}^{2}}$ and the radius $r_{*}\left(r_{0}\right)=\frac{r_{0}\left(1-\rho^{2}\right)}{1-\rho^{2} r_{0}^{2}}$. It follows that

$$
\frac{f^{\prime}(\zeta)}{k_{\theta}^{\prime}(\zeta)} \frac{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}{f^{\prime}\left(\rho e^{i \theta}\right)} \xrightarrow[\rho \rightarrow 1-]{ } 1
$$

uniformly in the disk $K_{\rho}\left(r_{0}\right)=\left\{\left|\zeta-c\left(r_{0}\right)\right| \leq r_{*}\left(r_{0}\right)\right\}$. If we denote $\Phi(\rho)=$ $\arg f^{\prime}\left(\rho e^{i \theta}\right)$, we have $\frac{f^{\prime}(\zeta)}{k_{\theta}^{\prime}(\zeta)} e^{-i \Phi(\rho)} \longrightarrow{ }_{\rho \rightarrow 1-}^{\longrightarrow} \delta$ uniformly in $K_{\rho}\left(r_{0}\right)$, thus for each $\varepsilon>0$ there exists $R_{1} \in(0,1)$ such that for all $\rho \in\left(R_{1}, 1\right)$

$$
\begin{equation*}
\left|\frac{f^{\prime}(\zeta)}{k_{\theta}^{\prime}(\zeta)} e^{-i \Phi(\rho)}-\delta\right|<\varepsilon, \tag{3}
\end{equation*}
$$

for all $\zeta \in K_{\rho}\left(r_{0}\right)$. Let 2β be the measure of an angle with the vertex at $e^{i \theta}$ and with the arms tangential to the circle $K_{\rho}\left(r_{0}\right)$. Then

$$
\sin \beta=\frac{r_{*}\left(r_{0}\right)}{1-\left|c\left(r_{0}\right)\right|}=\frac{r_{0}\left(1-\rho^{2}\right)}{1-\rho^{2} r_{0}^{2}-\rho+\rho r_{0}^{2}}=\frac{r_{0}(1+\rho)}{1+\rho r_{0}^{2}}=\psi(\rho),
$$

The function $\psi(\rho)$ is increasing. Consequently, for $\rho \in\left(R^{\prime}, 1\right)$ the family of disks $K_{\rho}\left(r_{0}\right)$ covers a subset of Δ, which contains $\Delta(R, \eta)$ for some R and η. We can take $\arcsin r_{0}$, instead of η because $\psi(\rho)$ is an increasing function. Thus we can choose η arbitrarily close to $\pi / 2$ for r_{0} close to 1 . Therefore, (3) holds in $\Delta(R, \eta)$, where $\eta \in(0, \pi / 2)$ is fixed and R depends on ε. Then for every $\zeta \in \Delta(R, \eta)$ there is a $\Phi=\Phi(\rho)$ (not necessary one, because ζ belongs to many circles $K_{\rho}\left(r_{0}\right)$), where ρ is such that $\zeta \in K_{\rho}\left(r_{0}\right)$. Consequently, we can choose such disk $K_{\rho}\left(r_{0}\right)$ that ζ lies on a radius which is orthogonal to one of the sides of the sector $\Delta(R, \eta)$. Then $\sin \left(\frac{\pi}{2}-\eta\right)=\frac{\Im\left[\left(\zeta-c\left(r_{0}\right)\right) e^{-i \theta]}\right.}{\left[\left(\zeta-c\left(r_{0}\right)\right) e^{-i \theta]}\right.}$. Let us suppose that $\Im\left(\zeta e^{-i \theta}\right) \neq 0$, otherwise we can take ζ equal to center $c\left(r_{0}\right)$ of $K_{\rho}\left(r_{\theta}\right)$. Therefore

$$
\frac{1}{\cos ^{2} \eta}=\left(\frac{\Re\left(\zeta e^{-i \theta}\right)-\left|c\left(r_{0}\right)\right|}{\Im\left(\zeta e^{-i \theta}\right)}\right)^{2}+1
$$

That is

$$
\tan \eta=\frac{\Re\left(\zeta e^{-i \theta}\right)-\left|c\left(r_{0}\right)\right|}{\left|\Im\left(\zeta e^{-i \theta}\right)\right|} \Longleftrightarrow\left|c\left(r_{0}\right)\right|=\Re\left(\zeta e^{-i \theta}\right)-\tan \eta\left|\Im\left(\eta e^{-i \theta}\right)\right| .
$$

Since $\left|c\left(r_{0}\right)\right|=\rho \frac{1-r_{0}^{2}}{1-\rho^{2} r_{0}^{2}}$, we get $\rho^{2} r_{0}^{2}\left|c\left(r_{0}\right)\right|+\rho\left(1-r_{0}^{2}\right)-\left|c\left(r_{0}\right)\right|=0$ and

$$
\rho=\rho(\zeta)=\sqrt{\frac{\left(1-r_{0}^{2}\right)^{2}}{4 r_{0}^{4}\left|c\left(r_{0}\right)\right|^{2}}+\frac{1}{r_{0}^{2}}}+\frac{1}{2\left|c\left(r_{0}\right)\right|}\left(1-\frac{1}{r_{0}^{2}}\right),
$$

where $r_{0}=\sin \eta$. This proves the Theorem 2 in the case $n=1$.
Let now $n \geq 2$. After differentiating (2) with respect to $z n-1$ times, then multiplication by $\left(1+\rho e^{-i \theta} z\right)^{2}$, we get the expression

$$
\frac{f^{(n)}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)\left(1-\rho^{2}\right)^{n-1}}{f^{\prime}\left(\rho e^{i \theta}\right)}-\frac{k_{\theta}^{(n)}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)\left(1-\rho^{2}\right)^{n-1}}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}
$$

and passing to the limit as $\rho \rightarrow 1$ - we conclude that it tends to zero uniformly in $\left\{|z| \leq r_{0}\right\}$.

Since

$$
\frac{k_{\theta}^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}=\left(1+\rho e^{-i \theta} z\right)^{2} \frac{\left(1-z e^{-i \theta}\right)^{(\alpha-1)}}{\left(1+z e^{-i \theta}\right)^{(\alpha+1)}},
$$

then the function $\frac{k_{\theta}^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i i_{z}}}\right)}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}$ is bounded away from zero as $\rho \rightarrow 1-$ in the disk $\left\{|z| \leq r_{0}\right\}$. Since

$$
\frac{k_{\theta}^{\prime}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)} \xrightarrow[\rho \rightarrow 1-]{ }\left(\frac{1-z e^{-i \theta}}{1+z e^{-i \theta}}\right)^{\alpha-1}
$$

locally uniformly in Δ, then

$$
\begin{aligned}
& \frac{k_{\theta}^{(n)}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta} z}\right)\left(1-\rho^{2}\right)^{n-1}}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)} \\
& \quad \underset{\rho \rightarrow 1-}{\longrightarrow}(-2)^{n-1} e^{-i(n-1) \theta}(\alpha-1) \ldots(\alpha-(n-1))\left(\frac{1-z e^{-i \theta}}{1+z e^{-i \theta}}\right)^{\alpha-n}
\end{aligned}
$$

locally uniformly in Δ, and thus locally uniformly in the disk $\left\{|z| \leq r_{0}\right\}$. Consequently, the function $\frac{k_{\theta}^{(n)}\left(\frac{z+\rho e^{i \theta}}{1+\rho e^{-i \theta_{z}}}\right)\left(1-\rho^{2}\right)^{n-1}}{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}$ is bounded away from zero in the disk $\left\{|z| \leq r_{0}\right\}$ firstly for any natural number n, if α is not natural, and, secondly, for every n such that $n<\alpha+1$, if α is natural.

Thus for above-stated n

$$
\frac{f^{(n)}(\zeta)}{k_{\theta}^{(n)}(\zeta)} \frac{k_{\theta}^{\prime}\left(\rho e^{i \theta}\right)}{f^{\prime}\left(\rho e^{i \theta}\right)} \xrightarrow[\rho \rightarrow 1-]{ } 1
$$

uniformly in $K_{\rho}\left(r_{0}\right)$. Next, similarly as in the case $n=1$, from (4) we get $\frac{f^{(n)}(\zeta)}{k_{\theta}^{(n)}(\zeta)} e^{-i \Phi(\zeta)} \xrightarrow[\rho \rightarrow 1-]{ } \delta$ uniformly in $\Delta(R, \eta)$ as $R \rightarrow 1-$.

Theorem 2 has been proved.
We have now all necessary facts to give the answer to the following question: what is a cardinality of the set of d.i.d. for the function $f \in \mathcal{U}_{\alpha}$, $\alpha>1$?

It was proved in [3] that if $f \in \mathcal{U}_{\alpha}$ then for all $\varphi \in[0 ; 2 \pi)$ there exists $\delta(\varphi)$ such that for any circle (or straight line) Γ orthogonal to $\partial \Delta$ at the point $e^{i \varphi}$ there holds

$$
\left|f^{\prime}(\xi)\right| \frac{(1+|\xi|)^{\alpha+1}}{(1-|\xi|)^{\alpha-1}} \longrightarrow \delta(\varphi)
$$

as $\xi \longrightarrow e^{i \varphi}$ along Γ and $\delta(\varphi)$ does not depend on Γ. This property is not true for $k_{0}(z)$, if Γ is not orthogonal to $\partial \Delta$. It follows from Theorem 2 that under assumptions concerning the curve Γ this property is false not only for the function k_{0} but for arbitrary function $f \in \mathcal{U}_{\alpha}$ (which have any d.i.d.) either. Thus, if θ is the d.i.d of the function $f(z)$ then there exist two curves Γ_{1} and Γ_{2} in Δ such that $\left|f^{\prime}\left(z^{\prime}\right)\right| \frac{\left(1+\left|z^{\prime}\right|\right)^{\alpha+1}}{\left(1-\left|z^{\prime}\right|\right)^{\alpha-1}} \rightarrow a^{\prime}$ as $z^{\prime} \rightarrow e^{i \theta}$ along Γ_{1} and $\left|f^{\prime}\left(z^{\prime \prime}\right)\right| \frac{\left(1+\left|z^{\prime \prime}\right|\right)^{\alpha+1}}{\left(1-\left|z^{\prime \prime}\right|\right)^{\alpha-1}} \rightarrow a^{\prime \prime}$ as $z^{\prime \prime} \rightarrow e^{i \theta}$ along Γ_{2}. And $a^{\prime} \neq a^{\prime \prime}$. Thus $e^{i \theta}$ is
the point of indeterminacy of the function $\left|f^{\prime}(z)\right| \frac{(1+|z|)^{\alpha+1}}{(1-|z|)^{\alpha-1}}$. By Bagemihl theorem (see [9]) the set of such points is at most countable. Therefore, the set of d.i.d. of a function $f \in \mathcal{U}_{\alpha}$ is at most countable.

It is natural to ask whether it is possible to give an example of a function, which has a given number of d.i.d. The following theorem gives the answer to this question.

Theorem 3. 1) Let n be a fixed integer number, $n \geq 2$ and $1<\alpha<\infty$. Then a function

$$
g_{n, \alpha}(z)=\int_{0}^{z}\left(1-s^{n}\right)^{\alpha-1} d s \in \mathcal{U}_{\alpha}
$$

and possesses exactly n d.i.d.
2) The function

$$
g_{\alpha}(z)=\int_{0}^{z}\left[\frac{1-\exp \left(-\pi \frac{1-s}{1+s}\right)}{1-e^{-\pi}}\right]^{\alpha-1} \frac{1}{(1+s)^{2}} d s \in \mathcal{U}_{\alpha}
$$

and the set of its d.i.d. is countable.
Remark 1. In the case $n=1 k_{\theta} \in \mathcal{U}_{\alpha}$ is a trivial example.
Remark 2. The similar result for directions of intensive growth is known (see [13]), it has been established however not for all $1<\alpha<\infty$.

Proof. 1) Denote by $e^{i \theta}$ one of the values of $\sqrt[n]{1}$. Then

$$
\begin{aligned}
\lim _{r \rightarrow 1-}\left[\left|g_{n, \alpha}^{\prime}\left(r e^{i \theta}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right] & =\lim _{r \rightarrow 1-} \frac{\left(1-r^{n}\right)^{\alpha-1}(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}} \\
& =n^{\alpha-1} 2^{\alpha+1} \in(1 ; \infty)
\end{aligned}
$$

Thus, if ord $g_{n, \alpha}=\alpha$, then all $\theta \in[0,2 \pi)$ will be d.i.d. of $g_{n, \alpha}$ and their quantity is equal to n exactly (because $e^{i \theta}$ is a value of $\sqrt[n]{1}$).

Thus our aim is to prove that ord $g_{n, \alpha}=\alpha$.
We prove firstly that

$$
\begin{equation*}
\text { ord } g_{n, \alpha} \leq \alpha \tag{5}
\end{equation*}
$$

Since the order of the family \mathfrak{M} is given by

$$
\operatorname{ord} \mathfrak{M}=\sup _{f \in \mathfrak{M}} \sup _{z \in \Delta}\left|-\bar{z}+\frac{1-|z|^{2}}{2} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|
$$

it follows that in order to (5) it is sufficient to show that the inequality

$$
\left|-\bar{z}+\frac{1-|z|^{2}}{2} \frac{g_{\alpha}^{\prime \prime}(z)}{g_{\alpha}^{\prime}(z)}\right| \leq \alpha
$$

is valid on each circle $\{z:|z|=r\}, 0 \leq r<1$, or equivalently

The function $w=\frac{z^{n}}{1-z^{n}}$ maps the circle $\{z:|z|=r\}$ onto a circle symmetric with respect to real axis. Hence, the function

$$
-|z|^{2}+\frac{1-|z|^{2}}{2} \frac{(1-\alpha) n z^{n}}{1-z^{n}}
$$

also maps $\{z:|z|=r\}$ onto a circle symmetric with respect to real axis and intersects it in the points

$$
A_{n}=-r^{2}-\frac{(1-\alpha) n}{2} \frac{r^{n}}{1+r^{n}}\left(1-r^{2}\right)
$$

and

$$
B_{n}=-r^{2}+\frac{(1-\alpha) n}{2} \frac{r^{n}}{1-r^{n}}\left(1-r^{2}\right) .
$$

Let us find M_{r}, the maximum of left-hand side of the inequality (6) on any circle $\{z:|z|=r\}$. Since $0 \leq r<1$ and $1<\alpha<\infty$, then B_{n} is non-positive for all r. Let us consider all possibilities of location of points A_{n} and B_{n} :
a) If $A_{n} \geq-B_{n}$, then $M_{r}=A_{n}$. In this case we have

$$
\begin{equation*}
-r^{2}+\frac{(\alpha-1) n}{2} \frac{r^{n}}{1+r^{n}}\left(1-r^{2}\right) \geq r^{2}+\frac{(\alpha-1) n}{2} \frac{r^{n}}{1-r^{n}}\left(1-r^{2}\right) . \tag{7}
\end{equation*}
$$

But

$$
\frac{(\alpha-1) n}{2} \frac{r^{n}}{1+r^{n}}\left(1-r^{2}\right) \leq \frac{(\alpha-1) n}{2} \frac{r^{n}}{1-r^{n}}\left(1-r^{2}\right),
$$

hence the condition (7) is not fulfilled. Thus the case a) does not hold.
b) If $A_{n} \leq-B_{n}$, then $M_{r}=-B_{n}$. This is true always.

So, $M_{r}=-B_{n}=r^{2}+\frac{(\alpha-1) n}{2}\left(1-r^{2}\right) \frac{r^{n}}{1-r^{n}}$. We will obtain first our inequality (6) in the case $n=2$.

$$
M_{r}=-B_{2}=r^{2}+(\alpha-1) \frac{r^{2}}{1-r^{2}}\left(1-r^{2}\right)=\alpha r^{2} .
$$

That is $\alpha r^{2} \leq \alpha r$. It is true for all $r \in[0 ; 1)$. Thus the inequality (6) has been proved for $n=2$.

Now let $n>2$. It is required to establish the inequality

$$
\begin{equation*}
M_{r}=-B_{n}=r^{2}+\frac{(\alpha-1) n}{2} \frac{r^{n}}{1-r^{n}}\left(1-r^{2}\right) \leq \alpha r . \tag{8}
\end{equation*}
$$

To prove (8) it is sufficient to show that the sequence $\left\{-B_{n}\right\}$ decreases. We can write B_{n} in the form

$$
-B_{n}=r^{2}+\frac{(\alpha-1)}{2}\left(1-r^{2}\right) F(n),
$$

where $F(x)=\frac{x r^{x}}{1-r^{x}}$. Since

$$
F^{\prime}(x)=\frac{\left(r^{x}+x r^{x} \ln r\right)\left(1-r^{x}\right)+x r^{2 x} \ln r}{\left(1-r^{x}\right)^{2}}=\frac{r^{x}\left(1-r^{x}+\ln r^{x}\right)}{\left(1-r^{x}\right)^{2}}
$$

then the sequence $\left\{-B_{n}\right\}$ decreases for any $r \in[0 ; 1)$. Hence (5) is proved.
Here the strict inequality is impossible. For, if ord $g_{n, \alpha}=\alpha-\varepsilon<\alpha$, $\varepsilon>0$, then by Theorem 1 there should be

$$
\lim _{r \rightarrow 1-}\left[\left|g^{\prime}\left(r e^{i \theta}\right)\right| \frac{(1+r)^{\alpha-\varepsilon+1}}{(1-r)^{\alpha-\varepsilon-1}}\right] \in[1, \infty]
$$

the last limit actually is equal to

$$
\lim _{r \rightarrow 1-} \frac{\left(1-r^{n}\right)^{\alpha-1}(1+r)^{\alpha+1-\varepsilon}}{(1-r)^{\alpha-1-\varepsilon}}=0 .
$$

This is a contradiction. We have proved that ord $g_{n, \alpha}=\alpha$. The case 1) has been established.
2) We are going to prove that the function $g_{\alpha}(z)$ is the limit of $g_{n, \alpha}^{\prime}\left(z, a_{n}\right)$ for odd n tending to infinity, where

$$
a_{2 n+1}=\frac{1-\sin \frac{\pi}{2 n+1}}{\cos \frac{\pi}{2 n+1}}
$$

Notice that $a_{n} \in \Delta$, because

$$
a_{2 n+1}=\frac{1-\sin \frac{\pi}{2 n+1}}{\sqrt{1-\sin ^{2} \frac{\pi}{2 n+1}}}=\sqrt{\frac{1-\sin \frac{\pi}{2 n+1}}{1+\sin \frac{\pi}{2 n+1}}}<1
$$

By Theorem 2 from [9] all d.i.d. of the function $g_{2 n+1, \alpha}(z)$ will be transformed into any d.i.d. of the function $g_{2 n+1, \alpha}\left(z, a_{2 n+1}\right)$ by the conformal automorphism $\frac{z+a_{2 n+1}}{1+a_{2 n+1} z}$ of the unit disk.

$$
\begin{aligned}
g_{2 n+1, \alpha}^{\prime}\left(z, a_{2 n+1}\right) & =\frac{g_{2 n+1, \alpha}^{\prime}\left(\frac{z+a_{2 n+1}}{1+a_{2 n+1} z}\right)}{g_{2 n+1, \alpha}^{\prime}\left(a_{2 n+1}\right)\left(1+a_{2 n+1} z\right)^{2}} \\
& =\left[\frac{1-\left(\frac{z+a_{2 n+1}}{1+a_{2 n+1} z}\right)^{2 n+1}}{1-a_{2 n+1}^{2 n+1}}\right]^{\alpha-1} \cdot \frac{1}{\left(1+a_{2 n+1} z\right)^{2}}
\end{aligned}
$$

We obtain now the function $g_{\alpha}(z)$. We calculate the limit

$$
\lim _{n \rightarrow \infty} g_{2 n+1, \alpha}^{\prime}\left(z, a_{2 n+1}\right)=\left(\frac{1-\exp \left(-\pi \frac{1-z}{1+z}\right)}{1-e^{-\pi}}\right)^{\alpha-1} \frac{1}{(1+z)^{2}}=g_{\alpha}^{\prime}(z)
$$

It gives

$$
g_{\alpha}(z)=\int_{0}^{z}\left[\frac{1-\exp \left(-\pi \frac{1-s}{1+s}\right)}{1-e^{-\pi}}\right]^{\alpha-1} \frac{1}{(1+s)^{2}} d s
$$

Let us prove that $g_{\alpha}(z) \in \mathcal{U}_{\alpha}$. By the formula (1) the sequence of functions $g_{2 n+1, \alpha}^{\prime}\left(z, a_{2 n+1}\right)$ is uniformly bounded and it converges for all $z \in \Delta$. Then by Vitali theorem $g_{\alpha}(z)$ is a uniform limit. And $g_{\alpha}(z) \in \mathcal{U}_{\alpha}$ since \mathcal{U}_{α} is compact in the topology of uniform convergence.

We prove that the set of d.i.d. of the function $g_{\alpha}(z)$ is countable. The numerator in the brackets (in the expression of the function $g_{\alpha}(z)$) vanishes in the points $\frac{1+2 k i}{1-2 k i}, k \in \mathbb{Z}$. We shall prove that each $\theta_{k}=\arg \frac{1+2 k i}{1-2 k i}, k \in \mathbb{Z}$ is d.i.d. of the function $g_{\alpha}(z)$. For this purpose we shall calculate the limit

$$
\lim _{r \rightarrow 1-}\left[\left|g_{\alpha}^{\prime}\left(r e^{i \theta_{k}}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right]=\frac{4 \pi^{\alpha-1}\left(1+4 k^{2}\right)^{\alpha-1}}{\left|1+e^{i \theta_{k}}\right|^{2}} \cdot\left|\frac{e^{\pi}}{e^{\pi}-1}\right|^{\alpha-1} \in(1 ; \infty),
$$

because of

$$
\begin{aligned}
\lim _{r \rightarrow 1-} \frac{\left|1-\exp \left(-\pi \frac{1-r e^{i \theta_{k}}}{1+r e^{i \theta_{k}}}\right)\right|}{1-r} & =\lim _{r \rightarrow 1-} \frac{\left|1-\exp \left(-\pi \frac{1-2 k i-r(1+2 k i)}{1-2 k i+r(1+2 k i)}+2 k \pi i\right)\right|}{1-r} \\
& =\lim _{r \rightarrow 1-} \frac{\left|\pi \frac{\left(1+4 k^{2}\right)(1-r)}{1-2 k i+r(1+2 k i)}+o(1-r)\right|}{1-r} \\
& =\frac{\pi\left(1+4 k^{2}\right)}{2} .
\end{aligned}
$$

Thus all θ_{k} are d.i.d. of $g_{\alpha}(z)$. The theorem has been proved.
Our further purpose is to find a relationship between $\mathcal{U}_{\alpha}(\delta)$ for various δ. Next two theorems assert that it is possible to construct a function $f(z) \in \mathcal{U}_{\alpha}\left(\delta_{1}\right)$ (for given δ_{1}) using the given function $f(z) \in \mathcal{U}_{\alpha}\left(\delta_{2}\right)$ if certain conditions are satisfied.

Theorem 4. If $f \in \mathcal{U}_{\alpha}\left(\delta_{0}\right)$ and $\delta_{0} \in(1, \infty)$, then for all $\delta \in\left(1, \delta_{0}\right]$ there exists $a \in \Delta$ such that the function

$$
f(z, a)=\frac{f\left(\frac{z+a}{1+\bar{a} z}\right)-f(a)}{f^{\prime}(a)\left(1-|a|^{2}\right)}
$$

belongs to $\mathcal{U}_{\alpha}(\delta)$.
Proof. For all $\varphi \in[0 ; 2 \pi)$ there exists the limit

$$
\lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \varphi}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right]=\delta(\varphi)
$$

Let us fix φ. Denote $z=\frac{r e^{i \varphi}-a}{1-\bar{a} r e^{i \varphi}},|z|=R(r)$. For such z we will consider the limit

$$
\begin{aligned}
\lim _{r \rightarrow 1-}\left[\left|f^{\prime}(z, a)\right|\right. & \left.\frac{(1+R(r))^{\alpha+1}}{(1-R(r))^{\alpha-1}}\right]=\lim _{r \rightarrow 1-}\left[\frac{\left|f^{\prime}\left(\frac{z+a}{1+\bar{a} z}\right)\right|}{\left|f^{\prime}(a)\right||1+\bar{a} z|^{2}} \frac{(1+R(r))^{\alpha+1}}{(1-R(r))^{\alpha-1}}\right] \\
& =\delta(\varphi) \lim _{r \rightarrow 1-}\left[\frac{\left|f^{\prime}\left(r e^{i \varphi}\right)\right|}{\left|f^{\prime}(a)\right||1+\bar{a} z|^{2}}\right] \cdot\left[\lim _{r \rightarrow 1-} \frac{1}{R^{\prime}(r)}\right]^{\alpha-1} \\
& =\frac{\delta(\varphi)}{\left|f^{\prime}(a)\right|} \frac{\left|1-\bar{a} e^{i \varphi}\right|^{2 \alpha}}{\left(1-|a|^{2}\right)^{\alpha+1}} \\
& \geq \lim _{R(r) \rightarrow 1-}\left[m\left(R(r), f^{\prime}(z, a)\right) \frac{(1+R(r))^{\alpha+1}}{(1-R(r))^{\alpha-1}}\right]=\delta_{a} .
\end{aligned}
$$

Put φ equal to φ_{0} - d.m.d. of the function $f(z)$ and $a=\rho e^{i \varphi_{0}}$. Then $\delta(\varphi)=\delta_{0}$ and

$$
\begin{equation*}
\frac{\delta_{0}(1-\rho)^{2 \alpha}}{\left|f^{\prime}(a)\right|\left(1-\rho^{2}\right)^{\alpha+1}}=\frac{\delta_{0}(1-\rho)^{\alpha-1}}{\left|f^{\prime}\left(\rho e^{i \varphi_{0}}\right)\right|(1+\rho)^{\alpha+1}} \geq \delta_{a} \tag{9}
\end{equation*}
$$

For the fixed $a=\rho e^{i \varphi_{0}}$ there exists $\varphi_{1} \in[0 ; 2 \pi)-$ d.m.d. of the function $f(z, a)$ such that

$$
\begin{aligned}
\delta_{a} & =\lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \varphi_{1}}, a\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right] \\
& =\lim _{r \rightarrow 1-}\left[\frac{f^{\prime}\left(\frac{r e^{i \varphi_{1}+a}}{1+\bar{a} r e^{i \varphi_{1}}}\right)}{\left|f^{\prime}(a)\right|\left|1+\bar{a} r e^{i \varphi_{1}}\right|^{2}} \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right] .
\end{aligned}
$$

If we denote $R_{1}(r) e^{i \gamma_{1}(r)}=\frac{r e^{i \varphi_{1}}+a}{1+\bar{a} r e^{i \varphi_{1}}}$, where $\gamma_{1}(r)$ is a real function, then we obtain

$$
\begin{aligned}
\delta_{a} & \geq \lim _{r \rightarrow 1-}\left[\frac{m\left(R_{1}(r), f^{\prime}(z)\right)}{\left|f^{\prime}(a)\right|\left|1+\bar{a} r e^{i \varphi_{1}}\right|^{2}} \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}\right] \\
& =\frac{\delta_{0}}{\left|f^{\prime}(a)\right|\left|1+\bar{a} e^{i \varphi_{1}}\right|^{2 \alpha}}\left(\frac{1-|a|^{2}}{\left|1+\bar{a} e^{i \varphi_{1}}\right|^{2}}\right)^{\alpha-1} \\
& =\frac{\delta_{0}\left(1-|a|^{2}\right)^{\alpha-1}}{\left|f^{\prime}(a)\right|\left|1+\bar{a} e^{i \varphi_{1}}\right|^{2 \alpha}} \\
& \geq \frac{\delta_{0}\left(1-\rho^{2}\right)^{\alpha-1}}{\left|f^{\prime}(a)\right|(1+\rho)^{2 \alpha}}=\frac{\delta_{0}(1-\rho)^{\alpha-1}}{\left|f^{\prime}(a)\right|(1+\rho)^{\alpha+1}}
\end{aligned}
$$

Therefore, putting $a=\rho e^{i \varphi_{0}}$, from (9) we get

$$
\delta_{a}=\frac{\delta_{0}(1-\rho)^{\alpha-1}}{\left|f^{\prime}\left(\rho e^{i \varphi_{0}}\right)\right|(1+\rho)^{\alpha+1}}
$$

Since $\left|f^{\prime}\left(\rho e^{i \varphi_{0}}\right)\right| \frac{(1+\rho)^{\alpha+1}}{(1-\rho)^{\alpha-1}}$ is a non-decreasing function of $\rho \in(0 ; 1)$, there exists ρ at which it takes the value $\delta_{a} \in\left(1 ; \delta_{0}\right]$. The theorem has been proved.

Theorem 5. If $f \in \mathcal{U}_{\alpha}\left(\delta_{0}\right), \delta_{0} \in(1, \infty), \alpha>1$ and there exists an interval $\left(x^{\prime}, x^{\prime \prime}\right) \subset[0 ; 2 \pi)$ which does not contain d.m.d. of the function $f(z)$, then for any $\delta \in(1 ; \infty)$ there exists a number $a \in \Delta$ such that $f(z, a) \in \mathcal{U}_{\alpha}(\delta)$.

Proof. Let $\eta>0$ be such that $x^{\prime}+\eta=x_{1}<x_{2}=x^{\prime \prime}-\eta$. By Privalov theorem of uniqueness (see [6]) there does not exist such $K>0$ that $\left|f^{\prime}(z)\right|$ -$(1-|z|)^{\alpha+1}>K$ in the sector $\left\{z: z \in \Delta, x_{1}<\arg z<x_{2}\right\}$. Therefore there exists a sequence $a_{n}=\rho_{n} e^{i \theta_{n}}, \theta_{n} \in\left(x_{1}, x_{2}\right), \theta_{n} \rightarrow \theta_{0} \in\left[x_{1}, x_{2}\right], \rho_{n} \xrightarrow[n \rightarrow \infty]{ } 1$ such that $\left|f^{\prime}\left(a_{n}\right)\right|=\frac{K_{n}}{\left(1-\rho_{n}\right)^{\alpha+1}}$, where $K_{n} \xrightarrow[n \rightarrow \infty]{ } 0$.

Let us denote by $\varphi_{n}-$ d.i.d. $f\left(z, a_{n}\right)$;

$$
\frac{r e^{i \varphi_{n}}+a_{n}}{1+\bar{a} r e^{i \varphi_{n}}}=R_{n}(r) \cdot e^{i \gamma_{n}(r)}
$$

$\gamma_{n}(r)$ is a real function;

$$
\begin{gathered}
e^{i \gamma_{n}} \stackrel{\text { def }}{=} \frac{e^{i \varphi_{n}}+a_{n}}{1+\overline{a_{n}} e^{i \varphi_{n}}} ; \quad \delta_{n}^{*} \stackrel{\text { def }}{=} \lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \varphi_{n}}, a_{n}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right] ; \\
\delta_{n} \stackrel{\text { def }}{=} \lim _{r \rightarrow 1-}\left[\left|f^{\prime}\left(r e^{i \gamma_{n}}\right)\right| \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right] .
\end{gathered}
$$

We will find a connection between δ_{n}^{*} and δ_{n} :

$$
\begin{aligned}
\delta_{n}^{*} & =\left[\lim _{r \rightarrow 1-} \frac{\left|f^{\prime}\left(R_{n}(r) e^{i \gamma_{n}(r)}\right)\right|}{\left|f^{\prime}\left(a_{n}\right)\right|\left|1+\overline{a_{n}} r e^{i \varphi_{n}}\right|^{2}} \frac{\left(1+R_{n}(r)\right)^{\alpha+1}}{\left(1-R_{n}(r)\right)^{\alpha-1}}\right] \cdot\left(\lim _{r \rightarrow 1-} \frac{1-R_{n}(r)}{1-r}\right)^{\alpha-1} \\
& =\lim _{r \rightarrow 1-}\left[\frac{\left|f^{\prime}\left(r e^{i \gamma_{n}}\right)\right|}{\left|f^{\prime}\left(a_{n}\right)\right|\left|1+\overline{a_{n}} r e^{i \varphi_{n}}\right|^{2}} \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}\right] \cdot\left(\lim _{r \rightarrow 1-} R_{n}^{\prime}(r)\right)^{\alpha-1} \\
& =\frac{\delta_{n}}{\left|f^{\prime}\left(a_{n}\right)\right|\left|1+\overline{a_{n}} e^{i \varphi_{n}}\right|^{2}} \cdot\left(\frac{1-\left|a_{n}\right|^{2}}{\left|1+\overline{a_{n}} e^{i \varphi_{n}}\right|^{2}}\right)^{\alpha-1} \\
& =\frac{\delta_{n}\left(1-\rho_{n}^{2}\right)^{\alpha-1}}{\left|f^{\prime}\left(a_{n}\right)\right|\left|1+\overline{a_{n}} e^{i \varphi_{n}}\right|^{2 \alpha}} \\
& =\frac{\delta_{n}\left|1-\rho_{n} e^{i\left(\gamma_{n}-\theta_{n}\right)}\right|^{2 \alpha}}{\left|f^{\prime}\left(a_{n}\right)\right|\left(1-\rho_{n}^{2}\right)^{\alpha+1}}=\frac{\delta_{n}\left|1-\rho_{n} e^{i\left(\gamma_{n}-\theta_{n}\right)}\right|^{2 \alpha}}{K_{n}\left(1+\rho_{n}\right)^{\alpha+1}}<\infty
\end{aligned}
$$

because of

$$
1+\overline{a_{n}} e^{i \varphi_{n}}=1+\overline{a_{n}} \cdot \frac{e^{i \gamma_{n}}-a_{n}}{1-\overline{a_{n}} e^{i \gamma_{n}}}=\frac{1-\rho_{n}^{2}}{1-\rho_{n} e^{i\left(\gamma_{n}-\theta_{n}\right)}} .
$$

From the sequence $\left\{a_{n}\right\}$ it is possible to choose the subsequence such that corresponding subsequences $\left\{\delta_{n}\right\}$ and $\left\{\delta_{n}^{*}\right\}$ will be convergent. Let us
denote them as the initial sequences. Then
$\lim _{n \rightarrow \infty} \delta_{n}^{*}=\lim _{n \rightarrow \infty} \delta_{n} \cdot \lim _{n \rightarrow \infty} \frac{\left|1-\rho_{n} e^{i\left(\gamma_{n}-\theta_{n}\right)}\right|^{2 \alpha}}{K_{n}\left(1+\rho_{n}\right)^{\alpha+1}} \geq \lim _{n \rightarrow \infty} \delta_{n} \cdot \lim _{n \rightarrow \infty} \frac{\left|1-\rho_{n} e^{i \eta}\right|^{2 \alpha}}{K_{n}\left(1+\rho_{n}\right)^{\alpha+1}}$,
because γ_{n} is d.i.d. of the function $f(z)$ by Theorem 2 in [3] (see also [4]) and, therefore, $\gamma_{n} \notin\left(x^{\prime}, x^{\prime \prime}\right)$. Since $K_{n} \xrightarrow[n \rightarrow \infty]{ } 0$, then $\delta_{n}^{*} \xrightarrow[n \rightarrow \infty]{ } \infty$.

Thus for any number $\delta \in(1 ; \infty)$ we can find n such that $\delta_{n}^{*}>\delta$. Then (by Theorem 4) for the function $f_{n}=f\left(z, a_{n}\right) \in \mathcal{U}_{\alpha}\left(\delta_{n}^{*}\right)$ there exists a number $a \in \Delta$ such that $f_{n}(z, a) \in \mathcal{U}_{\alpha}(\delta)$. The theorem has been proved.

To establish the relationship between classes $\mathcal{U}_{\alpha}(\delta)$ we will need the following theorem.

Theorem 6. For any function $f \in \mathcal{U}_{\alpha}\left(\delta_{0}\right), \delta_{0} \in[1 ; \infty]$ and for any function $\delta^{*}(\lambda), \lambda \in(0 ; 1)$ with values in $\left[\delta_{0} ; \infty\right]$ there exists a family of functions $\psi_{\lambda} \in \mathcal{U}_{\alpha}\left(\delta^{*}(\lambda)\right)$ such that $\psi_{\lambda}(z) \rightarrow f(z)$ locally uniformly in Δ as $\lambda \rightarrow 0$.

Proof. It was shown in [10] that if $f_{\lambda}(z) \in \mathcal{U}_{\alpha}, f \in \mathcal{U}_{\alpha}$ and $\psi_{\lambda}^{\prime}(z)=\left(f^{\prime}(z)\right)^{1-\lambda}\left(f_{\lambda}^{\prime}(z)\right)^{\lambda}$, then for any $\lambda \in(0 ; 1)$ functions $\psi_{\lambda}(z) \in \mathcal{U}_{\alpha}$.

For all $\lambda \in(0 ; 1)$ we select a function f_{λ}, satisfying the following conditions:

1) d.m.d. of the function $f_{\lambda}(z)$ is equal to d.m.d. of the function $f(z)$. We can achieve it by rotation $e^{-i \theta} f\left(z e^{i \theta}\right)$;
2) $f_{\lambda} \in \mathcal{U}_{\alpha}(\delta(\lambda))$, where

$$
\delta(\lambda)=\delta_{0}\left(\frac{\delta^{*}(\lambda)}{\delta_{0}}\right)^{\frac{1}{\lambda}} \in\left[\delta_{0} ; \infty\right]
$$

for $\lambda \in(0 ; 1)$. Such a function exists, because $\mathcal{U}_{\alpha}(\delta(\lambda)) \neq \emptyset$. It follows from Theorem 5 and example of the function k_{θ}. In the case of $\delta(\lambda)=\infty$ we can take the function $f_{\lambda}(z)=z$.

With such choices of functions $f_{\lambda}(z), \lambda \in(0 ; 1)$ we have that

$$
\psi_{\lambda} \in \mathcal{U}\left(\delta_{0}^{1-\lambda} \cdot \delta^{\lambda}(\lambda)\right)=\mathcal{U}\left(\delta^{*}(\lambda)\right)
$$

We prove that $\psi_{\lambda}(z) \xrightarrow[\lambda \rightarrow 0]{\longrightarrow} f(z)$ locally uniformly in Δ. Indeed, taking into account (1) we get that $f^{\prime}(z)$ and $f_{\lambda}^{\prime}(z)$ are bounded away from zero in Δ. Therefore

$$
\left(\frac{f_{\lambda}^{\prime}(z)}{f^{\prime}(z)}\right)^{\lambda} \xrightarrow[\lambda \rightarrow 0]{ } 1
$$

locally uniformly in Δ. Hence

$$
\psi_{\lambda}^{\prime}=f^{\prime} \cdot\left(\frac{f_{\lambda}^{\prime}}{f^{\prime}}\right)^{\lambda} \xrightarrow[\lambda \rightarrow 0]{ } f^{\prime}
$$

locally uniformly in Δ. It means that for any $\varepsilon>0$ there exists a number $N \in(0 ; 1)$ such that as $\lambda<N,\left|\psi_{\lambda}^{\prime}(z)-f^{\prime}(z)\right|<\varepsilon$ for any $z \in K$, where K is a compact subset of Δ. Then for any $\varepsilon_{1}>0$ as $\lambda<N$ for any $z \in K$

$$
\left|\psi_{\lambda}(z)-f(z)\right|=\left|\int_{0}^{z}\left(f^{\prime}(s)-\psi_{\lambda}^{\prime}(s)\right) d s\right| \leq \varepsilon \cdot C_{K}=\varepsilon_{1}
$$

because of $|z|<C_{K}$ for $z \in K$. Therefore, $\psi_{\lambda}(z) \underset{\lambda \rightarrow 0}{\longrightarrow} f(z)$ uniformly in $K \subset \Delta$, that is locally uniformly in Δ. The theorem has been proved in all cases.

If we put $\delta^{*}(\lambda) \equiv \delta \in\left[\delta_{0}, \infty\right]$ in Theorem 6 , we get
Corollary. For any function $f \in \mathcal{U}_{\alpha}\left(\delta_{0}\right), \delta_{0} \in[1, \infty]$ and $\delta \in\left[\delta_{0}, \infty\right]$ there is a family of functions $\psi_{\lambda} \in \mathcal{U}_{\alpha}(\delta), \lambda \in(0 ; 1)$ such that $\psi_{\lambda}(z) \rightarrow f(z)$ locally uniformly in Δ as $\lambda \rightarrow 0$.

Let us notice that the requirement of $\delta \in\left[\delta_{0}, \infty\right]$ is essential. Namely for $\delta \in\left(1 ; \delta_{0}\right)$ and any function $f(z) \in \mathcal{U}_{\alpha}\left(\delta_{0}\right)$ there is no sequence of functions $f_{n} \in \mathcal{U}_{\alpha}(\delta)$ such that $f_{n} \xrightarrow[n \rightarrow \infty]{ } f(z)$ locally uniformly in Δ.

Indeed, assume that there is this such a sequence f_{n}. The function $m\left(r, f^{\prime}\right) \frac{(1+r)^{\alpha+1}}{(1-r)^{\alpha-1}}$ is non-decreasing with respect to $r \in(0 ; 1)$. Hence there is $r_{0} \in(0 ; 1)$ such that

$$
m\left(r_{0}, f^{\prime}\right) \frac{\left(1+r_{0}\right)^{\alpha+1}}{\left(1-r_{0}\right)^{\alpha-1}}>\delta_{0}-\frac{\delta_{0}-\delta}{3}
$$

It follows from the uniform convergence of $f_{n}(z)$ that it is possible to choose $\varepsilon>0$ and a natural n such that

$$
\left|m\left(r_{0}, f_{n}^{\prime}\right)-m\left(r_{0}, f^{\prime}\right)\right|<\varepsilon, \quad \varepsilon \frac{\left(1+r_{0}\right)^{\alpha+1}}{\left(1-r_{0}\right)^{\alpha-1}}<\frac{\delta_{0}-\delta}{3}
$$

Then

$$
\left|m\left(r_{0}, f_{n}^{\prime}\right)-m\left(r_{0}, f^{\prime}\right)\right| \frac{\left(1+r_{0}\right)^{\alpha+1}}{\left(1-r_{0}\right)^{\alpha-1}}<\varepsilon \frac{\left(1+r_{0}\right)^{\alpha+1}}{\left(1-r_{0}\right)^{\alpha-1}}<\frac{\delta_{0}-\delta}{3}
$$

therefore,

$$
\begin{aligned}
m\left(r_{0}, f_{n}^{\prime}\right) \frac{\left(1+r_{0}\right)^{\alpha+1}}{\left(1-r_{0}\right)^{\alpha-1}} & >m\left(r_{0}, f^{\prime}\right) \frac{\left(1+r_{0}\right)^{\alpha+1}}{\left(1-r_{0}\right)^{\alpha-1}}+\frac{\delta-\delta_{0}}{3} \\
& >\delta_{0}+\frac{2}{3}\left(\delta-\delta_{0}\right)=\frac{2}{3} \delta+\frac{1}{3} \delta_{0} \\
& >\frac{2}{3} \delta+\frac{1}{3} \delta=\delta,
\end{aligned}
$$

which contradicts to $f_{n} \in \mathcal{U}_{\alpha}(\delta)$.

Therefore, it follows that classes $\mathcal{U}_{\alpha}(\delta)$ extend with increase of δ, as if $\delta_{1} \leq \delta_{2}$ then we can approximate functions from class $\mathcal{U}_{\alpha}\left(\delta_{1}\right)$ by functions from $\mathcal{U}_{\alpha}\left(\delta_{2}\right)$ and it is impossible to do so in the opposite direction.

References

[1] Bieberbach, L., Einführung in die konforme Abbildung, Walter de Gruyter \& Co., Berlin, 1967.
[2] Campbell, D. M., Locally univalent function with locally univalent derivatives, Trans. Amer. Math. Soc. 162 (1971), 395-409.
[3] Ganenkova, E. G., A theorem of regularity of decrease in linearly invariant families of functions, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 13 (2006), 46-59 (Russian).
[4] Ganenkova, E. G., A theorem of regularity of decrease in linearly invariant families of functions, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (2007), 75-78 (Russian).
[5] Godula, J., Starkov, V. V., Linearly invariant families, Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 5 (1998), 3-96 (Russian).
[6] Goluzin, G. M., The Geometrical Theory of Functions of a Complex Variable, Izdat. Nauka, Moscow, 1966 (Russian).
[7] Hayman, W., Multivalent Functions, Cambridge University Press, Cambridge, 1958.
[8] Krzyż, J., On the maximum modulus of univalent functions, Bull. Acad. Polon. Sci. 3 (1955), 203-206.
[9] Noshiro, K., Cluster Sets, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.
[10] Pommerenke, Ch., Linear invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), 108-154.
[11] Starkov, V. V., A theorem of regularity in universal linearly invariant families of functions, Proceedings of the International Conference of Constructed Theory of Functions Varna 1984, Sofia, 1984, 76-79 (Russian).
[12] Starkov, V. V., Regularity theorems for universal linearly invariant families of functions, Serdika 11 (1985), 299-318 (Russian).
[13] Starkov, V. V., Directions of intensive growth of locally univalent functions, Complex Analysis and Applications '87 (Varna 1987), Publ. House Bulgar. Acad. Sci., Sofia, 1989, 517-522.

Ekaterina G. Ganenkova
Department of Mathematics
University of Petrozavodsk
Pr. Lenina, 185640 Petrozavodsk, Russia
e-mail: g_ek@inbox.ru
Received April 19, 2007

[^0]: 2000 Mathematics Subject Classification. 30E35, 30C55, 30D99.
 Key words and phrases. Locally univalence, linear invariance, linearly invariant family, theorem of regularity.

