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Some geometric constructions
of second order connections

Abstract. We determine all natural operators A transforming pairs (Θ,∇)

of second order semiholonomic connections Θ : Y → J
2
Y and projectable tor-

sion free classical linear connections ∇ on Y into second order semiholonomic
connections A(Θ,∇) : Y → J

2
Y .

1. Introduction. Denote by FM the category of fibered manifolds and
fiber respecting mappings, by FMm the subcategory of fibered manifolds
withm-dimensional bases and their fibered maps over local diffeomorphisms
and by FMm,n the subcategory of fibered manifolds with m-dimensional
bases, n-dimensional fibres and local fibered diffeomorphisms.
The first jet prolongation J1Y of a fibered manifold Y → M is defined
as the bundle of 1-jets of local sections of Y → M . Given an FMm-
map f : Y1 → Y2 covering f : M1 → M2, we have a fibered map J1f :
J1Y1 → J1Y2 covering f given by J1f(j1

xσ) = j1
f(x)(f ◦σ ◦f−1), j1

xσ ∈ J1Y1.
Using iteration, we obtain the second order nonholonomic prolongation
J̃2Y = J1(J1Y → M). Moreover, the restriction yields the second or-
der semiholonomic prolongation J

2
Y := {ξ ∈ J̃2Y | βJ1Y (ξ) = J1βY (ξ)},

where βZ : J1Z → Z is the bundle projection for any fibered manifold
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Z → N . We have also the second order holonomic prolongation J2Y , which
is the bundle of 2-jets of local sections of Y → M . Clearly, J2, J

2
and J̃2

are bundle functors FMm → FM in the sense of [3] that preserve fiber
products and we have the obvious inclusions J2Y ⊂ J

2
Y ⊂ J̃2Y .

A general connection on a fibered manifold Y → M is a section Γ : Y →
J1Y , which can be also interpreted as a lifting map Y ×M TM → TY , see
[3]. By [1], [2] or [7], it is also useful to study higher order connections, which
are defined as sections of higher order jet prolongations of Y . In particular,
a second order nonholonomic connection on a fibered manifold Y → M
is a section Θ : Y → J̃2Y . Such a connection is called semiholonomic
or holonomic, if it has values in J̃2Y or J2Y , respectively. We also recall
that a torsion free classical linear connection ∇ on p : Y → M is called
projectable, if there exists a (unique) p-related to ∇ torsion free classical
linear connection ∇ on M .
In this paper we study the problem how a pair (Θ,∇) of a second order
semiholonomic connection Θ : Y → J

2
Y on Y → M and a projectable

torsion free classical linear connection ∇ on Y can induce canonically a
second order semiholonomic connection A(Θ,∇) : Y → J

2
Y . This problem

is reflected in the concept of FMm,n-natural operators J
2 × Cτ-proj  J

2
.

In Theorem 1 below we describe all such operators. We also show some
applications of our main result. All manifolds and maps are assumed to be
infinitely differentiable.

2. Preliminaries. We recall that the general concept of natural operators
can be found in [3]. In particular, an FMm,n-natural operator A : J

2 ×
Cτ-proj  J

2
is a system of FMm,n-invariant regular operators (functions)

A = AY→M : Γ(J2
Y )× Cτ-proj(Y → M) → Γ(J2

Y )

for any fibered manifold Y → M , where Γ(J2
Y ) is the set of second or-

der semiholonomic connections on Y → M and Cτ-proj(Y → M) is the
set of all projectable torsion free classical linear connections on Y → M .
The invariance means that if Θ1 ∈ Γ(J2

Y1) and Θ2 ∈ Γ(J2
Y2) are f -

related by an FMm,n-map f : Y1 → Y2 (i.e. J
2
f ◦ Θ1 = Θ2 ◦ f) and

∇1 ∈ Cτ-proj(Y1 → M1) and ∇2 ∈ Cτ-proj(Y2 → M2) are f -related by the
same f , then A(Θ1,∇1) and A(Θ2,∇2) are f -related. The regularity means
that A transforms smoothly parametrized families of pairs of second order
semiholonomic connections and projectable torsion free classical linear con-
nections into smoothly parametrized families of second order semiholonomic
connections.

Proposition 1. Second order semiholonomic connections Θ on Y → M
are in bijection with couples (Γ, G) consisting of first order connections Γ
on Y → M and tensor fields G : Y → ⊗2T ∗M ⊗ V Y .
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Proof. The bijection is given by (Γ, G) → Γ∗Γ+G, where Γ∗Γ = J1Γ◦Γ :
Y → J

2
Y is the second order semiholonomic Ehresmann prolongation of Γ

and the sum operation “+” is the addition in the affine bundle J
2
Y → J1Y

with the corresponding vector bundle ⊗2T ∗M ⊗V Y over J1Y . The inverse
bijection is given by Θ → (Γ, G), where Γ is the underlying first order
connection of Θ and G = Θ− Γ ∗ Γ. �

3. The main result. Let Θ be a second order semiholonomic connection
on Y → M and ∇ be a projectable torsion free classical linear connection
on Y → M . By Proposition 1 it suffices to classify all FMm,n-natural
operators A1 : J

2 × Cτ-proj  J1 and A2 : J
2 × Cτ-proj  ⊗2T ∗B ⊗ V

transforming pairs (Θ,∇) into first order connections A1(Θ,∇) on Y →
M and into tensor fields A2(Θ,∇) : Y → ⊗2T ∗M ⊗ V Y , respectively.
The definitions of A1 and A2 are quite similar to the definition of natural
operators J

2 × Cτ-proj  J
2
.

Example 1. Let Θ : Y → J
2
Y be a second order semiholonomic connection

on Y → M and denote by (ΓΘ, GΘ) the corresponding couple in the sense of
Proposition 1. Let ∇ be a projectable torsion free classical linear connection
on Y → M . We put Ao(Θ,∇) = ΓΘ : Y → J1Y . Then Ao : J

2 × Cτ-proj  
J1 is an FMm,n-natural operator.

Proposition 2. The operator Ao from Example 1 is the unique FMm,n-
natural operator A1 : J

2 × Cτ-proj  J1.

Proof. Let A1 : J
2 × Cτ-proj  J1 be an FMm,n-natural operator. It is

well known that J1Y → Y is an affine bundle with the associated vector
bundle T ∗M ⊗ V Y . Thus we have the difference operator ∆ = A1 − Ao :
J

2 × Cτ-proj  T ∗B ⊗ V given by ∆(Θ,∇) = A1(Θ,∇) − Ao(Θ,∇). Then
Proposition 2 follows from Lemma 1 below. �

Lemma 1. Any FMm,n-natural operator ∆ : J
2 × Cτ-proj  T ∗B ⊗ V is

zero.

Proof. Any element ξ ∈ J1
0 (Rm × Rn) is of the form ξ = j1

0(x, σ(x)) for
some linear map σ : Rm → Rn. Since a linear FMm,n-map (x, y − σ(x))
sends j1

0(x, σ(x)) into j1
0(x, 0), J1

0 (Rm × Rn) is the FMm,n-orbit of θo =
j1
0(x, 0) ∈ J1

0 (Rm × Rn). By the FMm,n-invariance, ∆ is determined by
the values

D(Γ, G,∇)(0, 0) ∈ T ∗0 Rm ⊗ V(0,0)(R
m ×Rn)

for all first order connections Γ on Rm ×Rn → Rm with Γ(0, 0) = θo, all
tensor fields G : Rm ×Rn → ⊗2T ∗Rm ⊗ V (Rm ×Rn) and all projectable
torsion free classical linear connections ∇ on Rm ×Rn → Rm. Using the
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invariance of ∆ with respect to the homotheties 1
t idRm×Rn for t > 0 and

putting t → 0 we deduce that ∆ is determined by the value

(1) ∆(Γo, 0,∇o)(0, 0) ∈ T ∗0 Rm ⊗ V(0,0)(R
m ×Rn)

where Γo is the trivial first order connection on Rm ×Rn → Rm and ∇o

is the usual flat projectable classical linear connection on Rm × Rn →
Rm. Then using the invariance of ∆ with respect to fibre homotheties
idRm × tidRn for t > 0 and putting t → 0 we deduce that the value (1) is
zero. That is why, ∆ = 0. �

So it remains to classify all FMm,n-natural operators D : J
2×Cτ-proj  

⊗2T ∗B ⊗ V transforming Θ = (Γ, G) and ∇ into tensor fields D(Γ, G,∇) :
Y → ⊗2T ∗M ⊗ V Y .

Example 2. Let Θ = (Γ, G) be a second order semiholonomic connection
on Y → M and ∇ be a projectable torsion free classical linear connection
on Y → M . Take the curvature CΓ = [Γ,Γ] : Y → ∧2T ∗M ⊗ V Y of Γ, see
17.1 in [3]. The correspondence D1 : J

2 × Cτ-proj  ⊗2T ∗B ⊗ V given by
D1(Γ, G,∇) = CΓ is an FMm,n-natural operator.

Example 3. Denote by Alt(G) : Y → ∧2T ∗M ⊗ V Y the alternation of G.
The correspondence D2 : J

2×Cτ-proj  ⊗2T ∗B⊗V given by D2(Γ, G,∇) =
Alt(G) is an FMm,n-natural operator.

Example 4. Denote by Sym(G) : Y → S2T ∗M ⊗ V Y the symmetriza-
tion of G. The correspondence D3 : J

2 × Cτ-proj  ⊗2T ∗B ⊗ V given by
D3(Γ, G,∇) = Sym(G) is an FMm,n-natural operator.

Example 5. Let (Γ, G,∇) be in question. We have the tangent valued
1-form Γ : Y → T ∗Y ⊗ V Y (the horizontal projection of Γ onto V Y ).
Its covariant derivative ∇Γ can be treated as the tensor field ∇Γ : Y →
⊗2T ∗Y ⊗ V Y . Composing with the horizontal lifting map h : Y → T ∗M ⊗
TY of Γ, we define a tensor field E(Γ,∇) : Y → ⊗2T ∗M ⊗ V Y . Then the
correspondence D4 : J

2 × Cτ-proj  ⊗2T ∗B ⊗ V given by D4(Γ, G,∇) =
E(Γ,∇) is an FMm,n-natural operator.

Remark 1. Of course, we could also take the symmetric and antisymmetric
parts of E(Γ,∇), but such examples will turn the linear combinations of
E(Γ,∇) and CΓ, see Proposition 3 below.

Proposition 3. If m ≥ 2, then all FMm,n-natural operators D : J
2 ×

Cτ-proj  ⊗2T ∗B ⊗ V are of the form

D = k1D1 + k2D2 + k3D3 + k4D4

for (uniquely determined) real numbers k1, k2, k3, k4. If m = 1, then D1 = 0
and D2 = 0 and we have D = k3D3 + k4D4 for some (uniquely determined)
k3, k4 ∈ R.
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Proof. By the above mentioned arguments, D is uniquely determined by
the values

(2) D(Γ, G,∇)(0, 0) ∈ ⊗2T ∗0 Rm ⊗ V(0,0)(R
m ×Rn)

for all first order connections Γ on Rm ×Rn → Rm with Γ(0, 0) = θo and
all tensor fields G : Rm ×Rn → ⊗2T ∗Rm ⊗ V (Rm ×Rn) and projectable
torsion free classical linear connections ∇ on Rm × Rn → Rm such that
the identity map idRm×Rn is a ∇-normal coordinate system with centre
(0, 0) (then Christoffell symbols of ∇ in the identity map are zero in (0, 0)).
Using non-linear Peetre theorem, see 19 in [3], and the invariance of D with
respect to the homotheties tidRm×Rn for t > 0 and applying homogeneous
function theorem, see 24 in [3], we deduce that the values (2) are of the
form

D(Γ, 0,∇o)(0, 0) + D(Γo, Go,∇o)(0, 0),
where Γo is the trivial connection and Go is the constant tensor field such
that Go(0, 0) = G(0, 0) and ∇o is the usual flat projectable classical linear
connection on Rm ×Rn → Rm. Moreover, if Γ is of the form of the right
hand side of (2), then D(Γ, 0,∇o)(0, 0) is a linear combination of ∂

∂xa Γk
j (0, 0)

for a = 1, . . . ,m and ∂
∂yb Γk

j (0, 0) for b = 1, . . . , n with real coefficients. By
the FMm,n-invariance of D, the map Go → D(Γo, Go,∇o) can be treated as
GL(m)×GL(n)-invariant map ⊗2(Rm)∗⊗Rn → ⊗2(Rm)∗⊗Rn. It is well
known that it is a linear combination of the alternation and symmetrization.
Thus replacing D by D − k2D2 − k3D3 for some respective real numbers
k2, k3, we may assume that D(Γo, Go,∇o)(0, 0) = 0. Using the invariance
of D with respect to fibre homotheties idRm × tidRn for all t > 0, we
deduce that D(Γ, 0,∇o)(0, 0) is a linear combination of ∂

∂xa Γk
j (0, 0) for a =

1, . . . ,m. By the invariance ofD, the valuesD(Γ, 0,∇o)(0, 0) are determined
by GL(m)×GL(n)-invariant maps ⊗2(Rm)∗⊗Rn → ⊗2(Rm)∗⊗Rn. Thus
the vector space of all D(Γ, 0,∇o)(0, 0) is 2-dimensional if m ≥ 2 (or 1-
dimensional if m = 1). Then D = k1D1 + k4D4 (or D = k4D4 if m = 1)
because of the dimension argument. �

Thus we have proved

Theorem 1. If m ≥ 2, then all FMm,n-natural operators A : J
2×Cτ-proj  

J
2
transforming second order semiholonomic connections Θ = (Γ, G) on

Y → M and projectable torsion free classical linear connections ∇ on Y →
M into second order semiholonomic connections on Y → M are of the form

A(Θ,∇) = (Γ, k1CΓ + k2Alt(G) + k3Sym(G) + k4E(Γ,∇)), ki ∈ R.

If m = 1, then CΓ = 0 and Alt(G) = 0 and we have

A(Θ,∇) = (Γ, k3Sym(G) + k4E(Γ,∇))

for some uniquely determined k3, k4 ∈ R.
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Extracting from Theorem 1 the operators that do not depend on ∇, we
have

Corollary 1. If m ≥ 2, then all FMm,n-natural operators A : J
2
 J

2

transforming second order semiholonomic connections Θ = (Γ, G) on Y →
M into second order semiholonomic connections A(Θ) on Y → M are of
the form

A(Θ) = (Γ, k1CΓ + k2Alt(G) + k3Sym(G)), ki ∈ R.

If m = 1, then A(Θ) = (Γ, k3Sym(G)).

For G = 0 we reobtain the following result of [6] in another equivalent
form.

Corollary 2 ([6]). Ifm ≥ 2, then all FMm,n-natural operators A : J1  J
2

transforming first order connections Γ on Y → M into second order semi-
holonomic connections A(Γ) on Y → M form the following one-parameter
family

A(Γ) = (Γ, kCΓ), k ∈ R.

If m = 1, then CΓ = 0 and we have A(Γ) = (Γ, 0) = Γ ∗ Γ.

For second order holonomic connections we have the following version of
Proposition 1.

Proposition 4. Second order holonomic connections Θ : Y → J2Y on
Y → M are in bijection with couples (Γ, G) of first order connections Γ on
Y → M and tensor fields G : Y → S2T ∗M ⊗ V Y .

Proof. The bijection is given by (Γ, G) → C(2)(Γ ∗ Γ) + G, where C(2) :
J

2
Y → J2Y is the well-known symmetrization of second order semiholo-
nomic jets and the addition “+” is the one of affine bundle J2Y → J1Y
with the corresponding associated vector bundle S2T ∗M ⊗ V Y over J1Y .
The inverse bijection is given by Θ → (Γ, G), where Γ is the underlying first
order connection of Θ and G = Θ− C(2)(Γ ∗ Γ). �

Using quite similar methods as above one can show directly

Theorem 2. All FMm,n-natural operators A : J2 × Cτ-proj  J2 trans-
forming second order holonomic connections Θ = (Γ, G) on Y → M and
projectable torsion free classical linear connections ∇ on Y → M into second
order holonomic connections A(Θ,∇) on Y → M are of the form

A(Θ,∇) = (Γ, k1G + k2Sym(E(Γ,∇)), k1, k2 ∈ R.

In particular, for the trivial Weil algebra R we reobtain the following
result of [5].
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Corollary 3 ([5]). All FMm,n-natural operators A : J2  J2 transforming
second order holonomic connections Θ = (Γ, G) on Y → M into second
order holonomic connection A(Θ) on Y → M are of the form

A(Θ) = (Γ, kG), k ∈ R.

Putting G = 0 in Theorem 2 we reobtain the following result of [2].

Corollary 4 ([2]). All FMm,n-natural operators A : J1 × Cτ-proj  J2

transforming first order connections Γ on Y → M and torsion free pro-
jectable classical linear connections ∇ on Y → M into second order holo-
nomic connections A(Γ) on Y → M are of the form

A(Γ,∇) = (Γ, kSym(E(Γ,∇)), k ∈ R.

An open problem: It seems that one can also in similar (but more
technically complicated) way classify all FMm,n-natural operators A : J̃2×
Cτ-proj  J̃2 transforming second order nonholonomic connections Θ : Y →
J̃2Y on Y → M and torsion free projectable classical linear connections ∇
on Y → M into second order nonholonomic connections A(Θ,∇) on Y →
M . By [1], such Θ′s are in bijection with triples (Γ1,Γ2, G) of first order
connections Γ1,Γ2 on Y → M and tensor fields G : Y → ⊗2T ∗M ⊗ V Y .
However, the classification of all above operators A is still an open problem.
We inform that in [4] there are described all FMm,n-natural operators J̃2  
J̃2 transforming second order nonholonomic connections into themselves.
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