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Central limit theorem
for an additive functional of a Markov process,

stable in the Wesserstein metric

Abstract. We study the question of the law of large numbers and central
limit theorem for an additive functional of a Markov processes taking values in
a Polish space that has Feller property under the assumption that the process
is asymptotically contractive in the Wasserstein metric.

1. Introduction. In the present note we are concerned with the problem
of proving the law of large numbers (LLN) and central limit theorem (CLT)
for Markov processes {Xt, t ≥ 0} that take values in a Polish metric space X.
Our principal assumption is that the considered process is asymptotically
contractive in the Wasserstein metric, i.e. that there exist constants c, γ > 0
such that d(µP t, νP t) ≤ ce−γtd(µ, ν) for all µ, ν ∈ M1(X) and t ≥ 0. Here
M1(X) denotes the set of all Borel, probability measures on X, P t is the
dual to the transition probability operator, acting on such measures, d(·, ·)
is the Wasserstein metric, see (2.1) below. The LLN and CLT we have in
mind concern the case when the process is out of the equilibrium, i.e. we
do not assume that the initial state of the process is invariant. This of
course implies that the process under consideration needs not be stationary.
The question of establishing the LLN and CLT for an additive functional
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of a Markov process is one of the most fundamental in probability theory
and there exists a rich literature on the subject, see e.g. the monograph of
Meyn and Tweedie [7] and the citations therein. However, in most of the
existing results, see e.g. [6, 9, 8], it is usually assumed that the process under
consideration is stationary and its equilibrium state µ∗ is stable in some
sense, usually in the L2, or total variation norm. Our stability condition is
formulated without invoking any reference measure and in a weaker metric
than the total variation distance.
The organization of this note is as follows. In Section 2 we present some
preliminaries concerning the basic notions appearing in the article. We shall
also formulate our main result, see Theorem 2.1 below. Its proof is given in
Section 3. It is based on the martingale approach of Kipnis and Varadhan,
see [6].

2. Preliminaries and the statement of the main theorem. Let (X, ρ)
be a Polish metric space, B denote its Borel σ-algebra. Let Bb(X) be
the space of bounded, Borel measurable functions. For a real-valued func-
tion f on X, its Lipschitz seminorm is defined by ‖f‖L := supx 6=y |f(x) −
f(y)|/ρ(x, y). Note that ‖f‖L = 0 if and only if f is constant. Let also
‖f‖∞ := supx |f(x)| and ‖f‖Lip := ‖f‖L+‖f‖∞. By Lipb(X) (resp. Cb(X)))
we denote the space of bounded, Lipschitz continuous (resp. continuous)
functions. Below, we recall basic notation related to Markov processes the-
ory. An interested reader should consult [4] for details. Consider a Markov
process {Xt, t ≥ 0} taking values in X. We say that the Markov process is
stochastically continuous at point s if limt→s P[|Xt −Xs| ≥ ε] = 0 for every
ε > 0. Denote by {P t, t ≥ 0} the transition probability semi-group defined
on Bb(X). It is a semi-group of contractions under the supremum norm. We
have then

E[f(Xt)|Fs] =
(
P t−sf

)
(Xs), for t ≥ s, f ∈ Bb(X).

Here Fs = σ(Xh, h ≤ s). We can also write P tf(x) :=
∫
P (t, x, dy)f(y),

where P (t, x, ·), t ≥ 0, x ∈ X, are transition probability functions corre-
sponding to the process. Let L be the generator of the semi-group and
D(L) be its domain. Assume that Pµ is the law of the Markov process
Xt, t ≥ 0 with the initial distribution µ on the appropriate path space and
Eµ the expectation with respect to Pµ. In the case when µ = δx we use
the notation Px, Ex. We say that processes have the Feller property if for
f ∈ Cb(X) we have P tf ∈ Cb(X), t ≥ 0. We denote 〈µ, f〉 =

∫
X f(x)µ(dx).

Let µP t(A) :=
∫
µ(dx)P (t, x, A), A ∈ B. Notice that 〈µ, P tf〉 = 〈µP t, f〉.

For any laws µ and ν on X define their Wasserstein’s distance

(2.1) d(µ, ν) := sup
‖ψ‖Lip≤1

∣∣∣∣∫ ψ dµ−
∫
ψ dν

∣∣∣∣,
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see e.g. [2], p. 310. For any Polish metric space (X, ρ), d metrizes the weak*
topology on M1(X) and the space (M1(X), d) is complete. This can be seen
from the fact that (M1(X), ρ1) is complete, where ρ1 is the Levy–Prokhorov’s
metric (that also metrizes the topology of weak convergence of measures),
see e.g. [1] p. 73, and the fact that ρ1(µ, ν) ≤ 2

√
d(µ, ν), see p. 311 of [2].

We say that µ∗ is invariant if µ∗ = µ∗P
t or equivalently 〈µ∗, P tf〉 =

〈µ∗, f〉, for every t ≥ 0. Now we state our main result.

Theorem 2.1. In addition to the above, suppose that the following condi-
tions are satisfied:

(i) there exist constants c, γ > 0 such that:

(2.2) d
(
µ1P

t, µ2P
t
)
≤ c e−γt d(µ1, µ2) for every t ≥ 0, µ1, µ2 ∈ M1(X),

(ii) ψ∈Lip b(X).
Then,

(i) there is a unique invariant measure µ∗ for the process {Xt, t ≥ 0},
(ii) the weak law of large numbers holds

(2.3)
1
T

∫ T

0
ψ(Xs)ds

T→∞−−−−→ v∗

in Pµ probability for any initial distribution µ, where v∗ :=
∫
ψdµ∗,

(iii) central limit theorem: there exists σ > 0

(2.4) Pµ

(∫ T
0 ψ(Xs)ds− v∗T√

T
< ξ

)
T→∞−−−−→ Φσ(ξ), ξ ∈ R

where Φσ(ξ) = (2πσ)−
1
2

∫ ξ
−∞ e−y

2/2σ2
dy,

(iv) let D = σ2. Then,

(2.5)
1
T

Eµ

(∫ T

0
ψ(Xs)ds− v∗T

)2
T→∞−−−−→ D ≥ 0.

Remark 2.2. From condition (2.2) it follows that for any ψ∈Cb(X)

(2.6)
1
T

∫ T

0
P tψ(x) dt T→∞−−−−→ v∗ for every x ∈ X.

Indeed, suppose that µ∗ is the unique invariant measure and ψ ∈ Cb(X).
We have

sup
‖ψ‖Lip≤1

∣∣∣∣∫ ψ(y)δxP t(dy)−
∫
ψ(y)µ∗P t(dy)

∣∣∣∣ ≤ ce−γtd(δx, µ∗).

From weak convergence we have the weak convergence of ergodic averages,
so

sup
‖ψ‖Lip≤1

∣∣∣∣ 1T
∫ T

0
P tψ(x)dt− v∗

∣∣∣∣ ≤ ce−γtd(δx, µ∗).
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If T →∞ we obtain (2.6).
Remark 2.3. From condition (2.6) it follows that the invariant measure,
µ∗, if exists, is unique.

Indeed, assume that there exists another invariant measure ν∗. Then
uniqueness can be concluded from (2.2) because

d(ν∗, µ∗) = d
(
ν∗P

t, µ∗P
t
)
≤ 2ce−γt.

Taking t→∞ we get the result.

3. The proof of Theorem 2.1. We take t0, such that ce−γt0 < 1. Then
from (2.2) P t0 is contraction in metric d. The spaceM1(X) with Wesserstein
metric d is complete, so from the Banach contraction principle there exists
µ0
∗ such that µ

0
∗P

t0 = µ0
∗. Let µ∗ := t−1

0

∫ t0
0 µ0

∗P
sds. Notice that µ∗ is

invariant for every t ≥ 0, so part (i) is proved.
Let v(T ) :=

∫ T
0 ψ(Xs)ds. In order to prove (ii) part of theorem it suffices

to show that: Eµv(T )/T T→∞−−−−→ v∗ and Eµ(v(T )/T )2 T→∞−−−−→ v2
∗. Then by of

Chebyshev’s inequality we obtain the result. As Xs is a Markov process:

Eµ
v(T )
T

= Eµ
1
T

∫ T

0
ψ(Xs)ds =

1
T

∫ T

0

∫
P sψ(x)µ(dx)ds

=
∫

1
T

∫ T

0
P sψ(x)dsµ(dx) T→∞−−−−→

∫
ψdµ∗ = v∗.

By symmetry we have

Eµ
(
v(T )
T

)2

=
1
T 2

Eµ
(∫ T

0
ψ(Xt)dt

∫ T

0
ψ(Xs)ds

)
=

2
T 2

Eµ
∫ T

0
dt

∫ t

0
dsψ(Xt)ψ(Xs).

Using Markov property we obtain that the right hand side equals

2
T 2

∫ T

0
dt

∫ t

0
dsEµ

(
ψ(Xs)P t−sψ(Xs)

)
=

2
T 2

∫ T

0
dt

∫ t

0
ds

∫
Ex
(
ψ(Xs)P t−sψ(Xs)

)
µ(dx)

=
2
T 2

∫ T

0
dt

∫ t

0
ds

∫ (
P s(ψP t−sψ)

)
(x)µ(dx).

In order to finish the first part of the proof we need the following.

Lemma 3.1. For every ε > 0 and compact K ⊂ X there exists t0 such that
for every t ≥ t0

(3.1) sup
x∈K

∣∣∣∣1t
∫ t

0
P sψ(x)ds− υ∗

∣∣∣∣ < ε.
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Proof. Note that {P sψ, s ≥ 0} is uniformly continuous. Indeed, from equal-
ity 〈δx, P sψ〉 = 〈δxP s, ψ〉 and assumptions of Theorem 2.1 we have:∣∣P sψ(x1)− P sψ(x2)

∣∣ = ∣∣∣∣∫ P sψ(y)δx1(dy)−
∫
P sψ(y)δx2(dy)

∣∣∣∣
=
∣∣∣∣∫ ψ(y)δx1P

s(dy)−
∫
ψ(y)δx2P

s(dy)
∣∣∣∣

≤ d
(
δx1P

s, δx2P
s
)
‖ψ‖Lip

≤ e−γsd(δx1 , δx2)‖ψ‖Lip
≤ e−γsρ(x1, x2)‖ψ‖Lip.

Suppose now that tn → +∞. The above shows that {(1/tn)
∫ tn
0 P sψ(x)ds,

n ≥ 1} is a sequence of functions uniformly continuous on K. It is also
bounded. The result follows then from Arzela–Ascoli theorem, see [1], and
assumption (i) Theorem 2.1. �

Because

1
T

∫ T

0
P tψ(x) dt =

1
T

∫ T

0

∫
ψ(y)δxP t(dy) dt

T→∞−−−−→
∫
ψdµ∗

we get that {T−1
∫ T
0 µP

t dt, T ≥ 0} converges weakly to µ∗, as T → ∞.
Then, the above family of measures is relatively compact and by Prokhorov
theorem it is tight, see [1]. Using tightness of

{
T−1

∫ T
0 µP

t dt, T ≥ 0
}
, for

every ε > 0 one can find K compact such that

(3.2)
1
T

∫ T

0
µP t(Kc) dt < ε for every T ≥ 0.

Suppose that we know that

(3.3)
∣∣∣∣ 2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s(ψ(P t−sψ − υ∗))dµ

∣∣∣∣ < ε

then

lim
T→∞

Eµ
(
v(T )
T

)2

= lim
T→∞

2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s
(
ψP t−sψ

)
dµ

= lim
T→∞

2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s(ψυ∗) dµ

= lim
T→∞

2
T 2
υ∗

∫ T

0
t dt

∫
1
t

∫ t

0
P sψ ds dµ −→ υ2

∗.



154 A. Walczuk

Now we prove inequality (3.3). Note that∣∣∣∣ 2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s
(
ψ
(
P t−sψ − υ∗

))
dµ

∣∣∣∣
≤
∣∣∣∣ 2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s
(
ψ
(
P t−sψ − υ∗

)
1K
)
dµ

∣∣∣∣
+
∣∣∣∣ 2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s
(
ψ
(
P t−sψ − υ∗

)
1Kc

)
dµ

∣∣∣∣.
Denote the first and second terms on the right hand side above by I and
II respectively. Note that from contractivity of operator P s on Bb(X) and
inequality (3.1) we have:

I =
∣∣∣∣ 2
T 2

∫ T

0
dt

∫ t

0
ds

∫
P s
(
ψ
(
P t−sψ − υ∗

)
1K
)
dµ

∣∣∣∣
=
∣∣∣∣ 2
T 2

∫ T

0
(T − s)ds

∫
P s
(
ψ

(
1

T − s

∫ T−s

0
P tψdt− υ∗

)
1K

)
dµ

∣∣∣∣
≤ 2
T 2

∫ T

0
(T − s)ds‖ψ‖∞

∥∥∥∥( 1
T − s

∫ T−s

0
P tψdt− υ∗

)
1K

∥∥∥∥
∞

<
2ε
T 2

‖ψ‖∞
∫ T

0
s ds

= ε‖ψ‖∞.

Next from contractivity of P t−s and inequality (3.2):

II =
∣∣∣∣ 2
T 2

∫ T

0
dt

∫ t

0
ds

∫
ψ
(
P t−sψ − υ∗

)
1KcµP s(dx)

∣∣∣∣
≤ 2
T 2

∫ T

0

∫ t

0

∫ (
2‖ψ‖2

∞

)
1Kc µP sdx ds dt

=
4
T 2

‖ψ‖2
∞

∫ T

0
t

(
1
t

∫ t

0
µP s(Kc)ds

)
dt

< 2ε‖ψ‖2
∞.

Hence, we obtain expression (3.3) which completes the part (ii) of the proof.
We will prove now parts (iii) and (iv) of the theorem. We need the
following lemma.

Lemma 3.2. Let ψ̃ := ψ−
∫
ψ dµ∗. The integral χ :=

∫∞
0 P sψ̃ ds converges

in Cb(X).
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Proof. We show that the sequence
{ ∫ tn

0 P sψ̃(x) ds, n ≥ 1
}
satisfies Cauchy

condition, as tn →∞. For tm > tn we have∣∣∣∣∫ tm

0
P sψ̃(x) ds−

∫ tn

0
P sψ̃(x) ds

∣∣∣∣ = ∣∣∣∣∫ tm

tn

P sψ̃(x) ds
∣∣∣∣

=
∣∣∣∣∫ tm

tn

(
P sψ(x)−

∫
P sψ(y)µ∗(dy)

)
ds

∣∣∣∣
≤
∫ tm

tn

∣∣∣∣∫ P sψ(y)δx(dy)−
∫
P sψ(y)µ∗(dy)

∣∣∣∣ ds
≤
∫ tm

tn

sup
‖ψ‖Lip≤1

∣∣∣∣∫ ψ(y)δxP s(dy)−
∫
ψ(y)µ∗P s(dy)

∣∣∣∣ ds
=
∫ tm

tn

‖ψ‖Lip d(δxP s, µ∗P s) ds ≤ ‖ψ‖Lip
∫ tm

tn

c e−γsd(δx, µ∗) ds

≤ 2c ‖ψ‖Lip
e−γtn

γ
.

So the sequence satisfies Cauchy condition, thus it converges in Cb(X). �

Let χT =
∫ T
0 P tψ̃ dt. Next, we note that χ ∈ D(L) for

LχT = L

∫ T

0
P tψ̃ dt =

∫ T

0
LP tψ̃ dt = P T ψ̃ − ψ̃.

Indeed, because χ = limT→∞ χT in Cb(X) we have

lim
T→∞

LχT = lim
T→∞

P T ψ̃ − ψ̃ = −ψ̃

in Cb(X). We have

Lχ = L lim
T→∞

χT = lim
T→∞

LχT = −ψ̃.

We show the central limit theorem for {t−1/2
∫ t
0 (ψ(Xs)−v∗)ds}, as t→ +∞.

With no loss of generality we assume that v∗ :=
∫
ψdµ∗ = 0, otherwise take

ψ̃ := ψ − v∗.∫ T
0 ψ(Xs) ds− Tv∗√

T
=

∫ T
0 (ψ(Xs)− v∗) ds√

T

=

∫ T
0 ψ̃(Xs) ds√

T
= − 1√

T

∫ T

0
Lχ(Xs) ds

= − 1√
T

{∫ T

0
Lχ(Xs) ds− χ(XT ) + χ(X0)

}
+

1√
T

(
χ(X0)− χ(XT )

)
=
MT +

(
χ(X0)− χ(XT )

)
√
T
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where

MT = χ(XT )− χ(x)−
∫ T

0
Lχ(Xs) ds.

So it suffices to verify the central limit theorem for MT /
√
T . Note that

{MT , T ≥ 0} is a square integrable martingale and

(3.4)
1
N

N−1∑
n=0

Ex
(
(Mn+1 −Mn)2|Fn

) N→∞−−−−→
P

−2
∫
Lχχdµ∗.

The central limit theorem is then a consequence of a version of Billingsley’s
central limit theorem for martingale increments, see e.g. [5]. Because we
could not find the formulation of the result in the precise form we need, we
provide its proof in the appendix. Note that

Ex(Mn+1 −Mn)2 = Ex
[
χ(Xn+1)− χ(Xn)−

∫ n+1

n
Lχ(Xs) ds

]2

= PnF (x),

where

F (x) := P 0F (x) = Ex
[
χ(X1)− χ(x)−

∫ 1

0
Lχ(Xs) ds

]2

.

Hence, by the Markov property

(3.5)

Ex

[
1
N

N−1∑
n=0

Ex
(
(Mn+1 −Mn)2|Fn

)]
=

1
N

N−1∑
n=0

ExEx(Mn+1 −Mn)2

=
1
N

N−1∑
n=0

PnF (x) =
1
N

N−1∑
n=0

∫
PnF (y)δx(dy)

=
1
N

N−1∑
n=0

∫
F (y)δxPn(dy) =

∫
F (y)

1
N

N−1∑
n=0

δxP
n(dy) −→

∫
F dµ∗.

The final limit holds due to δxPn
n→∞−−−→ µ∗. Next, by the Markov property

Ex

[
1
N

N−1∑
n=0

Ex((Mn+1 −Mn)2|Fn)

]2

= Ex

[
1
N2

N−1∑
n=0

F 2(Xn)

]
+ Ex

{
2
N2

N−1∑
n=1

[ n−2∑
m=0

F (Xm)
]
F (Xn)

}

=
2
N2

N−1∑
n=1

∑
m<n

Ex
[
F (Xm)Pn−mF (Xm)

]
+O

(
1
N

)

=
2
N2

N−2∑
m=0

N−1∑
n=m+1

Pm(FPn−mF )(x) +O

(
1
N

)
N→∞−−−−→

(∫
F dµ∗

)2

.
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The last formulas and (3.5) together imply (3.4), which ends the proof of
part (iii) of the theorem.
As for part (iv), we can write

1
T

Eµ
(∫ T

0
ψ̃ ds

)2

=
2
T

∫ T

0
dt

∫ t

0
ds

∫
P s
(
ψ̃P t−sψ̃

)
dµ

=
2
T

∫ T

0
ds

∫
P s
(
ψ̃

∫ T−s

0
P tψ̃ dt

)
dµ.

Note that:∣∣∣∣ 2T
∫ T

0
ds

∫
P s
(
ψ̃

∫ T−s

0
P tψ̃ dt

)
dµ− 2

T

∫ T

0
ds

∫
P s
(
ψ̃

∫ ∞

0
P tψ̃ dt

)
dµ

∣∣∣∣
=

2
T

∣∣∣∣∫ T

0
ds

∫
P s
(
ψ̃

∫ ∞

T−s
P tψ̃ dt

)
dµ

∣∣∣∣
≤

4‖ψ‖Lip‖ψ̃‖∞
Tγ

∫ T

0
e−γ(T−s)ds

T→∞−−−−→ 0.

Hence we obtain

lim
T→∞

1
T

Eµ
(∫ T

0
ψ̃ ds

)2

= lim
T→∞

2
T

∫ T

0

∫
P s
(
ψ̃χ
)
dµ ds

= lim
T→∞

2
1
T

∫ T

0
P s
(∫ (

ψ̃χ
)
dµ

)
ds

T→∞−−−−→
∫

2
∫ (

ψ̃χ
)
dµ dµ∗

= 2
∫ (

ψ̃χ
)
dµ∗ = D

and part (iv) is proved. �

Appendix. Central limit theorem for martingales. We prove here
a version of the central limit theorem for martingales. This is obtained by
well known methods, see e.g. [5]. We present it for the convenience of a
reader.

Theorem A.1. Let {Zj , j ≥ 0} be a sequence of bounded random variables
adapted with respect to a filtration {Fj , j ≥ 0}. Assume that Ex[Zj |Fj−1] = 0
for j ≥ 1 and that

1
N

∑
1≤j≤N

Ex
[
Z2
j |Fj−1

]
→ σ2,

as N → +∞ in Px probability. Then, for all x in X, as N ↑ ∞,

MN√
N

=
1√
N

N∑
j=1

Zj

converges in Px distribution to a mean zero Gaussian random variable with
variance σ2.
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Proof. For |θ| small enough, so |θZj | < π, we may define

Aj(θ) := log Ex[exp{iθZj}|Fj−1].

Fix θ ∈ R. An elementary computation shows that for all N large enough
(to make sure that

∣∣(θZi)/√N ∣∣ < π),

Ex
[
exp

{(
iθ/

√
N
)
MN −

N∑
j=1

Aj
(
θ/
√
N
)}]

= 1.

It follows from the second order Taylor expansion (taking into account that
Ex[Zj |Fj−1] = 0) that

N∑
j=1

Aj
(
θ/
√
N
)

= − θ2

2N

N∑
j=1

Ex
[
Z2
j |Fj−1

]
+

1√
N
RN ,

for some random variable RN bounded from above by a constant. Since

1
N

∑
1≤j≤N

Ex
[
Z2
j |Fj−1

] N→∞−−−−→
P

σ2,

∑
1≤j≤N Aj

(
θ/
√
N
)
converges Px-a.s. to

(
−θ2σ2

)
/2. In particular,

lim
N→∞

Ex
[
exp
(
iθ/

√
N
)
MN

]
= e−θ

2σ2/2

and this ends the proof of the theorem. �
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