DOI: 10.2478/v10062-008-0015-1

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXII, 2008	SECTIO A	143 - 147
VOL. LIXII, 2000	DLOTIO A	140 141

PAWEŁ SOBOLEWSKI

Properties of harmonic conjugates

ABSTRACT. We give a new proof of Hardy and Littlewood theorem concerning harmonic conjugates of functions u such that $\int_{\mathbb{D}} |u(z)|^p dA(z) < \infty, \ 0 < p \leq 1$. We also obtain an inequality for integral means of such harmonic functions u.

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and dA be the Lebesgue measure normalized so that $A(\mathbb{D}) = 1$. The harmonic Hardy space h^p , 0 , consists ofall real-valued functions <math>u harmonic in \mathbb{D} whose integral means

$$M_p(r,u) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |u(re^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}$$

are bounded. The harmonic Bergman space a^p is the collection of all realvalued harmonic functions u in \mathbb{D} for which the integral

$$||u||_p^p = \int_{\mathbb{D}} |u(z)|^p dA(z)$$

is finite. For a real-valued function u harmonic in \mathbb{D} we define the harmonic conjugate as the function v with v(0) = 0 such that f = u + iv is analytic in \mathbb{D} . By the theorem of M. Riesz, if $1 and <math>u \in h^p$, then $v \in h^p$ and $M_p(r, v) \leq CM_p(r, u)$ where C depends only on p. For $0 or <math>p = \infty$ the theorem fails.

²⁰⁰⁰ Mathematics Subject Classification. 30H05, 32A36.

Key words and phrases. Hardy and Littlewood theorem, harmonic conjugate, a^p space.

P. Sobolewski

It follows immediately from the theorem of M. Riesz that for every p in the range $1 if <math>u \in a^p$, then $v \in a^p$ and $||v||_p \leq C||u||_p$. However, in the space a^p the last inequality holds also for 0 . This result was first stated by Hardy and Littlewood [4] and its proof was indicated there. Thus the following theorem holds.

Theorem HL. Let $0 . If <math>u \in a^p$, then its conjugate $v \in a^p$ and $||v||_p \leq C||u||_p$, where C depends only on p.

In [4] Watanabe presented the proof of the above theorem, when 0 . There are some gaps and the proof seems to be incomplete. For example the inequality in line 9 from the above on page 53 is not proved. We note that in the case when <math>0 and <math>u is harmonic in \mathbb{D} the integral mean $M_p(r, u)$ need not be monotonically increasing function of r. Moreover, the application of Lemma 4 in [1] at the end of the proof is not explained. In this paper we give a complete detailed proof of Theorem HL for the case 0 , shorter than that in [4]. Throughout this paper <math>C denotes a general positive constant which may differ from line to line.

Proof of Theorem HL for the case when 0**.**Let <math>f = u + iv be analytic in \mathbb{D} and assume that v(0) = 0. We start with the following inequality proved in [1] p. 411.

(1)
$$\sigma |zf'(z)| \le \eta^{-1} (|u(r+h,\theta)| + |u(r,\theta+h)| + 2|u(r,\theta)|) + Ar\mu\sigma\eta,$$

where $z = re^{i\theta}$, 0 < r < 1, $u(r,\theta) = u(re^{i\theta})$, $\sigma = \sigma(r) = \sqrt{r} - r$, $h = \eta\sigma$, $A = \sum_{m=2}^{\infty} 2^m \eta^{m-2} = 4/(1-2\eta)$, η is any positive number less than $\frac{1}{4}$. Moreover, $\mu = \mu(r,\theta) = \max_{\gamma} |f'(z)|$ and γ denotes the circle centered at

the point $re^{i\theta}$ and the radius σ .

Since 0 , we get from (1)

(2)

$$\begin{aligned} \sigma(r)^{p} \frac{1}{2\pi} \int_{0}^{2\pi} r^{p} |f'(re^{i\theta})|^{p} d\theta \\ &\leq \eta^{-p} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |u(r+h,\theta)|^{p} d\theta \\ &+ \frac{1}{2\pi} \int_{0}^{2\pi} |u(r,\theta+h)|^{p} d\theta + 2^{p} \frac{1}{2\pi} \int_{0}^{2\pi} |u(r,\theta)|^{p} d\theta \right) \\ &+ (A\sigma\eta)^{p} \frac{1}{2\pi} \int_{0}^{2\pi} (r\mu)^{p} d\theta.
\end{aligned}$$

It was shown in [1] p. 411 that

$$\frac{1}{2\pi} \int_0^{2\pi} (r\mu)^p d\theta \le C \frac{1}{2\pi} \int_0^{2\pi} r^{\frac{p}{4}} |f'(r^{\frac{1}{4}} e^{i\theta})|^p d\theta.$$

Moreover, an easy calculation shows that $\sigma(r) \leq 4\sigma(r^{\frac{1}{4}})$. Now multiplying both sides of inequality (2) by 2r and integrating with respect r give

$$\begin{split} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} \sigma(r)^p r^p |f'(re^{i\theta})|^p d\theta r dr \\ &\leq \eta^{-p} \left(\frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(r+h,\theta)|^p d\theta r dr \\ &\quad + (2^p+1) \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(r,\theta)|^p d\theta r dr \right) \\ &\quad + C \eta^p \frac{1}{\pi} \int_0^1 \int_0^{2\pi} \sigma(r^{\frac{1}{4}})^p r^{\frac{p}{4}} |f'(r^{\frac{1}{4}}e^{i\theta})|^p d\theta r dr. \end{split}$$

Substituting $t^4 = r$ in the last integral yields

(3)
$$\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} \sigma(r)^{p} r^{p} |f'(re^{i\theta})|^{p} d\theta r dr \\
\leq \eta^{-p} \left(\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} |u(r+h,\theta)|^{p} d\theta r dr \\
+ (2^{p}+1) \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} |u(r,\theta)|^{p} d\theta r dr \right) \\
+ C \eta^{p} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} \sigma(t)^{p} t^{p} |f'(te^{i\theta})|^{p} d\theta t dt.$$

It is clear that $r + h = r + \eta(\sqrt{r} - r) < 1$ on 0 < r < 1 and $0 < \eta < \frac{1}{4}$. Moreover, the function $g(r) = r + \eta(\sqrt{r} - r)$ is increasing in the interval 0 < r < 1. Substituting $r + h = t^2$ in the first integral on the right hand side of (3) we get

$$\begin{split} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(r+h,\theta)|^p d\theta r dr \\ &= \frac{2}{1(1-\eta)} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(t^2,\theta)|^p \left(\frac{-\eta + \sqrt{\eta^2 + 4(1-\eta)t^2}}{2(1-\eta)}\right)^2 \\ &\qquad \times \left(\frac{-\eta}{\sqrt{\eta^2 + 4(1-\eta)t^2}} + 1\right) t d\theta dt \\ &\leq \frac{4}{2(1-\eta)} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(t^2,\theta)|^p \left(\frac{-\eta + \sqrt{\eta^2 + 4(1-\eta)t^2}}{2(1-\eta)}\right)^2 \\ &\qquad \times \left(\frac{-\eta}{2-\eta} + 1\right) d\theta t dt \end{split}$$

$$\begin{split} &= \frac{4}{2-\eta} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(t^2,\theta)|^p \left(\frac{-\eta + \sqrt{\eta^2 + 4(1-\eta)t^2}}{2(1-\eta)}\right)^2 d\theta t dt \\ &\leq \frac{4}{2-\eta} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(t^2,\theta)|^p \left(\frac{-\eta + \eta + \sqrt{4(1-\eta)t^2}}{2(1-\eta)}\right)^2 d\theta t dt \\ &= \frac{4}{(2-\eta)(1-\eta)} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(t^2,\theta)|^p t^2 d\theta t dt \\ &= \frac{2}{(2-\eta)(1-\eta)} \frac{1}{\pi} \int_0^1 \int_0^{2\pi} |u(t,\theta)|^p d\theta t dt. \end{split}$$

By the assumption $u \in a^p$ and (3) we get

$$\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} \sigma(r)^{p} r^{p} |f'(re^{i\theta})|^{p} d\theta r dr
\leq \frac{1}{\eta^{p}} \left(\frac{2}{(2-\eta)(1-\eta)} + 2^{p} + 1 \right) ||u||_{a^{p}}^{p}
+ C \eta^{p} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} \sigma(t)^{p} t^{p} |f'(te^{i\theta})|^{p} d\theta t dt.$$

Now choosing η so that $\eta < C^{-\frac{1}{p}}$ we get

(4)
$$(1 - C\eta^p) \frac{1}{\pi} \int_0^1 \int_0^{2\pi} \sigma(r)^p r^p |f'(re^{i\theta})|^p d\theta r dr \le C ||u||_{a^p}^p d\theta$$

We note that the convergence of the above integral implies the convergence of

$$\frac{1}{\pi} \int_0^1 \int_0^{2\pi} (1-r)^p |f'(re^{i\theta})|^p d\theta r dr,$$

which means that $f \in A^p$, see e.g. Lemma 4 in [4].

Corollary. If $u \in a^p$, u(0) = 0, 0 , then

$$M_p(r, u) \le C \frac{||u||_{a^p}}{(1-r)^{\frac{1}{p}}},$$

where a constant C depends only on p.

Proof. Let f and σ be as in our proof of Theorem HL and assume that f(0) = 0. It is clear that the function σ is monotonically increasing in $\left(0, \frac{1}{4}\right)$ and monotonically decreasing in $\left(\frac{1}{4}, 1\right)$. Since $M_p(r, f')$ is increasing

function of r on (0, 1), using the Chebyshev inequality (see e.g. [3]) we get

$$\begin{split} &\int_{0}^{1} \int_{0}^{2\pi} \sigma(r)^{p} r^{p} |f'(re^{i\theta})|^{p} r d\theta dr \\ &= \int_{0}^{\frac{1}{4}} \int_{0}^{2\pi} \sigma(r)^{p} r^{p} |f'(re^{i\theta})|^{p} r d\theta dr + \int_{\frac{1}{4}}^{1} \int_{0}^{2\pi} \sigma(r)^{p} r^{p} |f'(re^{i\theta})|^{p} r d\theta dr \\ &\geq C \int_{0}^{\frac{1}{4}} \int_{0}^{2\pi} |f'(re^{i\theta})|^{p} r d\theta dr + \frac{1}{8^{p}} \int_{\frac{1}{4}}^{1} \int_{0}^{2\pi} \left(1 - \sqrt{r}\right)^{p} |f'(re^{i\theta})|^{p} r d\theta dr \\ &\geq C \int_{0}^{1} \int_{0}^{2\pi} (1 - r)^{p} |f'(re^{i\theta})|^{p} dr \theta dr \geq C \int_{0}^{1} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} r d\theta dr, \end{split}$$

where the last inequality follows from e.g. Lemma 4 in [4]. Thus

$$M_p^p(r,u)(1-r) \le M_p^p(r,f)(1-r) \le \int_r^1 \frac{1}{2\pi} \int_0^{2\pi} |f(te^{i\theta})|^p d\theta t dt \le C ||u||_{a^p}^p .$$

References

- Hardy, G. H., Littlewood, J. E., Some properties of conjugate functions, J. Reine Angew. Math. 167 (1931), 405–423.
- [2] Hardy, G. H., Littlewood, J. E., Some properties of fractional integrals II, Math. Z. 34 (1932), no. 1, 403–439.
- [3] Kaczor, W. J., Nowak, M. T., Problems in Mathematical Analysis III, Amer. Math. Soc., Providence, RI, 2003.
- [4] Watanabe, H., Some properties of functions in Bergman space A^p, Proc. Fac. Sci. Tokai Univ. 13 (1978), 39–54.

Paweł Sobolewski Institute of Mathematics M. Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: ptsob@hektor.umcs.lublin.pl

Received December 4, 2007