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Properties of harmonic conjugates

Abstract. We give a new proof of Hardy and Littlewood theorem concerning
harmonic conjugates of functions u such that

∫
D |u(z)|pdA(z) < ∞, 0 < p ≤ 1.

We also obtain an inequality for integral means of such harmonic functions u.

Let D = {z ∈ C : |z| < 1} and dA be the Lebesgue measure normalized
so that A(D) = 1. The harmonic Hardy space hp, 0 < p < ∞, consists of
all real-valued functions u harmonic in D whose integral means

Mp(r, u) =
{

1
2π

∫ 2π

0
|u(reiθ)|pdθ

} 1
p

are bounded. The harmonic Bergman space ap is the collection of all real-
valued harmonic functions u in D for which the integral

||u||pp =
∫

D
|u(z)|pdA(z)

is finite. For a real-valued function u harmonic in D we define the harmonic
conjugate as the function υ with υ(0) = 0 such that f = u + iυ is analytic
in D. By the theorem of M. Riesz, if 1 < p < ∞ and u ∈ hp, then υ ∈ hp

and Mp(r, υ) ≤ CMp(r, u) where C depends only on p. For 0 < p ≤ 1 or
p = ∞ the theorem fails.
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It follows immediately from the theorem of M. Riesz that for every p in
the range 1 < p < ∞ if u ∈ ap, then υ ∈ ap and ||υ||p ≤ C||u||p. However,
in the space ap the last inequality holds also for 0 < p ≤ 1. This result was
first stated by Hardy and Littlewood [4] and its proof was indicated there.
Thus the following theorem holds.

Theorem HL. Let 0 < p < ∞. If u ∈ ap, then its conjugate υ ∈ ap and
||υ||p ≤ C||u||p, where C depends only on p.

In [4] Watanabe presented the proof of the above theorem, when 0 < p ≤
1. There are some gaps and the proof seems to be incomplete. For example
the inequality in line 9 from the above on page 53 is not proved. We note
that in the case when 0 < p < 1 and u is harmonic in D the integral mean
Mp(r, u) need not be monotonically increasing function of r. Moreover, the
application of Lemma 4 in [1] at the end of the proof is not explained. In
this paper we give a complete detailed proof of Theorem HL for the case
0 < p ≤ 1, shorter than that in [4]. Throughout this paper C denotes a
general positive constant which may differ from line to line.

Proof of Theorem HL for the case when 0 < p ≤ 1. Let f = u + iυ
be analytic in D and assume that υ(0) = 0. We start with the following
inequality proved in [1] p. 411.

(1) σ|zf ′(z)| ≤ η−1 (|u(r + h, θ)|+ |u(r, θ + h)|+ 2|u(r, θ)|) + Arµση,

where z = reiθ, 0 < r < 1, u(r, θ) = u(reiθ), σ = σ(r) =
√

r − r, h =
ησ, A =

∑∞
m=2 2mηm−2 = 4/(1 − 2η), η is any positive number less than

1
4 . Moreover, µ = µ(r, θ) = max

γ
|f ′(z)| and γ denotes the circle centered at

the point reiθ and the radius σ.
Since 0 < p ≤ 1, we get from (1)

(2)

σ(r)p 1
2π

∫ 2π

0
rp|f ′(reiθ)|pdθ

≤ η−p

(
1
2π

∫ 2π

0
|u(r + h, θ)|pdθ

+
1
2π

∫ 2π

0
|u(r, θ + h)|pdθ + 2p 1

2π

∫ 2π

0
|u(r, θ)|pdθ

)
+ (Aση)p 1

2π

∫ 2π

0
(rµ)pdθ.

It was shown in [1] p. 411 that

1
2π

∫ 2π

0
(rµ)pdθ ≤ C

1
2π

∫ 2π

0
r

p
4 |f ′(r

1
4 eiθ)|pdθ.
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Moreover, an easy calculation shows that σ(r) ≤ 4σ
(
r

1
4

)
. Now multiplying

both sides of inequality (2) by 2r and integrating with respect r give

1
π

∫ 1

0

∫ 2π

0
σ(r)prp|f ′(reiθ)|pdθrdr

≤ η−p

(
1
π

∫ 1

0

∫ 2π

0
|u(r + h, θ)|pdθrdr

+ (2p + 1)
1
π

∫ 1

0

∫ 2π

0
|u(r, θ)|pdθrdr

)
+ Cηp 1

π

∫ 1

0

∫ 2π

0
σ(r

1
4 )

p
r

p
4 |f ′(r

1
4 eiθ)|pdθrdr.

Substituting t4 = r in the last integral yields

(3)

1
π

∫ 1

0

∫ 2π

0
σ(r)prp|f ′(reiθ)|pdθrdr

≤ η−p

(
1
π

∫ 1

0

∫ 2π

0
|u(r + h, θ)|pdθrdr

+ (2p + 1)
1
π

∫ 1

0

∫ 2π

0
|u(r, θ)|pdθrdr

)
+ Cηp 1

π

∫ 1

0

∫ 2π

0
σ(t)ptp|f ′(teiθ)|pdθtdt.

It is clear that r + h = r + η(
√

r − r) < 1 on 0 < r < 1 and 0 < η < 1
4 .

Moreover, the function g(r) = r + η(
√

r − r) is increasing in the interval
0 < r < 1. Substituting r + h = t2 in the first integral on the right hand
side of (3) we get

1
π

∫ 1

0

∫ 2π

0
|u(r + h, θ)|pdθrdr

=
2

1(1− η)
1
π

∫ 1

0

∫ 2π

0
|u(t2, θ)|p

(
−η +

√
η2 + 4(1− η)t2

2(1− η)

)2

×

(
−η√

η2 + 4(1− η)t2
+ 1

)
tdθdt

≤ 4
2(1− η)

1
π

∫ 1

0

∫ 2π

0
|u(t2, θ)|p

(
−η +

√
η2 + 4(1− η)t2

2(1− η)

)2

×
(
−η

2− η
+ 1
)

dθtdt
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=
4

2− η

1
π

∫ 1

0

∫ 2π

0
|u(t2, θ)|p

(
−η +

√
η2 + 4(1− η)t2

2(1− η)

)2

dθtdt

≤ 4
2− η

1
π

∫ 1

0

∫ 2π

0
|u(t2, θ)|p

(
−η + η +

√
4(1− η)t2

2(1− η)

)2

dθtdt

=
4

(2− η)(1− η)
1
π

∫ 1

0

∫ 2π

0
|u(t2, θ)|pt2dθtdt

=
2

(2− η)(1− η)
1
π

∫ 1

0

∫ 2π

0
|u(t, θ)|pdθtdt.

By the assumption u ∈ ap and (3) we get

1
π

∫ 1

0

∫ 2π

0
σ(r)prp|f ′(reiθ)|pdθrdr

≤ 1
ηp

(
2

(2− η)(1− η)
+ 2p + 1

)
||u||pap

+ Cηp 1
π

∫ 1

0

∫ 2π

0
σ(t)ptp|f ′(teiθ)|pdθtdt.

Now choosing η so that η < C
− 1

p we get

(4) (1− Cηp)
1
π

∫ 1

0

∫ 2π

0
σ(r)prp|f ′(reiθ)|pdθrdr ≤ C||u||pap .

We note that the convergence of the above integral implies the convergence
of

1
π

∫ 1

0

∫ 2π

0
(1− r)p|f ′(reiθ)|pdθrdr,

which means that f ∈ Ap, see e.g. Lemma 4 in [4]. �

Corollary. If u ∈ ap, u(0) = 0, 0 < p ≤ 1, then

Mp(r, u) ≤ C
||u||ap

(1− r)
1
p

,

where a constant C depends only on p.

Proof. Let f and σ be as in our proof of Theorem HL and assume that
f(0) = 0. It is clear that the function σ is monotonically increasing in(
0, 1

4

)
and monotonically decreasing in

(
1
4 , 1
)
. Since Mp(r, f ′) is increasing
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function of r on (0, 1), using the Chebyshev inequality (see e.g. [3]) we get∫ 1

0

∫ 2π

0
σ(r)prp|f ′(reiθ)|prdθdr

=
∫ 1

4

0

∫ 2π

0
σ(r)prp|f ′(reiθ)|prdθdr +

∫ 1

1
4

∫ 2π

0
σ(r)prp|f ′(reiθ)|prdθdr

≥ C

∫ 1
4

0

∫ 2π

0
|f ′(reiθ)|prdθdr +

1
8p

∫ 1

1
4

∫ 2π

0

(
1−

√
r
)p|f ′(reiθ)|prdθdr

≥ C

∫ 1

0

∫ 2π

0
(1− r)p|f ′(reiθ)|pdrθdr ≥ C

∫ 1

0

∫ 2π

0
|f(reiθ)|prdθdr,

where the last inequality follows from e.g. Lemma 4 in [4]. Thus

Mp
p (r, u)(1− r) ≤ Mp

p (r, f)(1− r) ≤
∫ 1

r

1
2π

∫ 2π

0
|f(teiθ)|pdθtdt ≤ C||u||pap .

�
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