# ANNALES <br> UNIVERSITATIS MARIAE CURIE-SKもODOWSKA <br> LUBLIN - POLONIA 

VOL. LXII, 2008
SECTIO A
143-147

## PAWEŁ SOBOLEWSKI

## Properties of harmonic conjugates


#### Abstract

We give a new proof of Hardy and Littlewood theorem concerning harmonic conjugates of functions $u$ such that $\int_{\mathbb{D}}|u(z)|^{p} d A(z)<\infty, 0<p \leq 1$. We also obtain an inequality for integral means of such harmonic functions $u$.


Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and $d A$ be the Lebesgue measure normalized so that $A(\mathbb{D})=1$. The harmonic Hardy space $h^{p}, 0<p<\infty$, consists of all real-valued functions $u$ harmonic in $\mathbb{D}$ whose integral means

$$
M_{p}(r, u)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|u\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}
$$

are bounded. The harmonic Bergman space $a^{p}$ is the collection of all realvalued harmonic functions $u$ in $\mathbb{D}$ for which the integral

$$
\|u\|_{p}^{p}=\int_{\mathbb{D}}|u(z)|^{p} d A(z)
$$

is finite. For a real-valued function $u$ harmonic in $\mathbb{D}$ we define the harmonic conjugate as the function $v$ with $v(0)=0$ such that $f=u+i v$ is analytic in $\mathbb{D}$. By the theorem of M. Riesz, if $1<p<\infty$ and $u \in h^{p}$, then $v \in h^{p}$ and $M_{p}(r, v) \leq C M_{p}(r, u)$ where $C$ depends only on $p$. For $0<p \leq 1$ or $p=\infty$ the theorem fails.

[^0]It follows immediately from the theorem of M. Riesz that for every $p$ in the range $1<p<\infty$ if $u \in a^{p}$, then $v \in a^{p}$ and $\|v\|_{p} \leq C\|u\|_{p}$. However, in the space $a^{p}$ the last inequality holds also for $0<p \leq 1$. This result was first stated by Hardy and Littlewood [4] and its proof was indicated there. Thus the following theorem holds.

Theorem HL. Let $0<p<\infty$. If $u \in a^{p}$, then its conjugate $v \in a^{p}$ and $\|v\|_{p} \leq C\|u\|_{p}$, where $C$ depends only on $p$.

In [4] Watanabe presented the proof of the above theorem, when $0<p \leq$ 1. There are some gaps and the proof seems to be incomplete. For example the inequality in line 9 from the above on page 53 is not proved. We note that in the case when $0<p<1$ and $u$ is harmonic in $\mathbb{D}$ the integral mean $M_{p}(r, u)$ need not be monotonically increasing function of $r$. Moreover, the application of Lemma 4 in [1] at the end of the proof is not explained. In this paper we give a complete detailed proof of Theorem HL for the case $0<p \leq 1$, shorter than that in [4]. Throughout this paper $C$ denotes a general positive constant which may differ from line to line.

Proof of Theorem HL for the case when $\mathbf{0}<\boldsymbol{p} \leq 1$. Let $f=u+i v$ be analytic in $\mathbb{D}$ and assume that $v(0)=0$. We start with the following inequality proved in [1] p. 411.

$$
\begin{equation*}
\sigma\left|z f^{\prime}(z)\right| \leq \eta^{-1}(|u(r+h, \theta)|+|u(r, \theta+h)|+2|u(r, \theta)|)+A r \mu \sigma \eta, \tag{1}
\end{equation*}
$$

where $z=r e^{i \theta}, 0<r<1, u(r, \theta)=u\left(r e^{i \theta}\right), \sigma=\sigma(r)=\sqrt{r}-r, h=$ $\eta \sigma, A=\sum_{m=2}^{\infty} 2^{m} \eta^{m-2}=4 /(1-2 \eta), \eta$ is any positive number less than $\frac{1}{4}$. Moreover, $\mu=\mu(r, \theta)=\max _{\gamma}\left|f^{\prime}(z)\right|$ and $\gamma$ denotes the circle centered at the point $r e^{i \theta}$ and the radius $\sigma$.

Since $0<p \leq 1$, we get from (1)

$$
\begin{align*}
& \sigma(r)^{p} \frac{1}{2 \pi} \int_{0}^{2 \pi} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta \\
& \leq  \tag{2}\\
& \quad \eta^{-p}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|u(r+h, \theta)|^{p} d \theta\right. \\
& \left.\quad \quad+\frac{1}{2 \pi} \int_{0}^{2 \pi}|u(r, \theta+h)|^{p} d \theta+2^{p} \frac{1}{2 \pi} \int_{0}^{2 \pi}|u(r, \theta)|^{p} d \theta\right) \\
& \quad+(A \sigma \eta)^{p} \frac{1}{2 \pi} \int_{0}^{2 \pi}(r \mu)^{p} d \theta .
\end{align*}
$$

It was shown in [1] p. 411 that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}(r \mu)^{p} d \theta \leq C \frac{1}{2 \pi} \int_{0}^{2 \pi} r^{\frac{p}{4}}\left|f^{\prime}\left(r^{\frac{1}{4}} e^{i \theta}\right)\right|^{p} d \theta
$$

Moreover, an easy calculation shows that $\sigma(r) \leq 4 \sigma\left(r^{\frac{1}{4}}\right)$. Now multiplying both sides of inequality (2) by $2 r$ and integrating with respect $r$ give

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta r d r \\
& \leq \eta^{-p}\left(\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}|u(r+h, \theta)|^{p} d \theta r d r\right. \\
& \left.\quad+\left(2^{p}+1\right) \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}|u(r, \theta)|^{p} d \theta r d r\right) \\
& \quad+C \eta^{p} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma\left(r^{\frac{1}{4}}\right)^{p} r^{\frac{p}{4}}\left|f^{\prime}\left(r^{\frac{1}{4}} e^{i \theta}\right)\right|^{p} d \theta r d r .
\end{aligned}
$$

Substituting $t^{4}=r$ in the last integral yields

$$
\begin{align*}
& \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta r d r \\
& \leq \eta^{-p}\left(\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}|u(r+h, \theta)|^{p} d \theta r d r\right.  \tag{3}\\
& \left.\quad+\left(2^{p}+1\right) \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}|u(r, \theta)|^{p} d \theta r d r\right) \\
& \quad+C \eta^{p} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma(t)^{p} t^{p}\left|f^{\prime}\left(t e^{i \theta}\right)\right|^{p} d \theta t d t
\end{align*}
$$

It is clear that $r+h=r+\eta(\sqrt{r}-r)<1$ on $0<r<1$ and $0<\eta<\frac{1}{4}$. Moreover, the function $g(r)=r+\eta(\sqrt{r}-r)$ is increasing in the interval $0<r<1$. Substituting $r+h=t^{2}$ in the first integral on the right hand side of (3) we get

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}|u(r+h, \theta)|^{p} d \theta r d r \\
& =\frac{2}{1(1-\eta)} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|u\left(t^{2}, \theta\right)\right|^{p}\left(\frac{-\eta+\sqrt{\eta^{2}+4(1-\eta) t^{2}}}{2(1-\eta)}\right)^{2} \\
& \quad \times\left(\frac{-\eta}{\sqrt{\eta^{2}+4(1-\eta) t^{2}}}+1\right) t d \theta d t \\
& \leq \frac{4}{2(1-\eta)} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|u\left(t^{2}, \theta\right)\right|^{p}\left(\frac{-\eta+\sqrt{\eta^{2}+4(1-\eta) t^{2}}}{2(1-\eta)}\right)^{2} \\
& \quad \times\left(\frac{-\eta}{2-\eta}+1\right) d \theta t d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{4}{2-\eta} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|u\left(t^{2}, \theta\right)\right|^{p}\left(\frac{-\eta+\sqrt{\eta^{2}+4(1-\eta) t^{2}}}{2(1-\eta)}\right)^{2} d \theta t d t \\
& \leq \frac{4}{2-\eta} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|u\left(t^{2}, \theta\right)\right|^{p}\left(\frac{-\eta+\eta+\sqrt{4(1-\eta) t^{2}}}{2(1-\eta)}\right)^{2} d \theta t d t \\
& =\frac{4}{(2-\eta)(1-\eta)} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}\left|u\left(t^{2}, \theta\right)\right|^{p} t^{2} d \theta t d t \\
& =\frac{2}{(2-\eta)(1-\eta)} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}|u(t, \theta)|^{p} d \theta t d t
\end{aligned}
$$

By the assumption $u \in a^{p}$ and (3) we get

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta r d r \\
& \quad \leq \frac{1}{\eta^{p}}\left(\frac{2}{(2-\eta)(1-\eta)}+2^{p}+1\right)\|u\|_{a^{p}}^{p} \\
& \quad+C \eta^{p} \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma(t)^{p} t^{p}\left|f^{\prime}\left(t e^{i \theta}\right)\right|^{p} d \theta t d t
\end{aligned}
$$

Now choosing $\eta$ so that $\eta<C^{-\frac{1}{p}}$ we get

$$
\begin{equation*}
\left(1-C \eta^{p}\right) \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta r d r \leq C\|u\|_{a^{p}}^{p} \tag{4}
\end{equation*}
$$

We note that the convergence of the above integral implies the convergence of

$$
\frac{1}{\pi} \int_{0}^{1} \int_{0}^{2 \pi}(1-r)^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta r d r
$$

which means that $f \in A^{p}$, see e.g. Lemma 4 in [4].
Corollary. If $u \in a^{p}, u(0)=0,0<p \leq 1$, then

$$
M_{p}(r, u) \leq C \frac{\|u\|_{a^{p}}}{(1-r)^{\frac{1}{p}}}
$$

where a constant $C$ depends only on $p$.
Proof. Let $f$ and $\sigma$ be as in our proof of Theorem HL and assume that $f(0)=0$. It is clear that the function $\sigma$ is monotonically increasing in ( $0, \frac{1}{4}$ ) and monotonically decreasing in $\left(\frac{1}{4}, 1\right)$. Since $M_{p}\left(r, f^{\prime}\right)$ is increasing
function of $r$ on $(0,1)$, using the Chebyshev inequality (see e.g. [3]) we get

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} r d \theta d r \\
& \quad=\int_{0}^{\frac{1}{4}} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} r d \theta d r+\int_{\frac{1}{4}}^{1} \int_{0}^{2 \pi} \sigma(r)^{p} r^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} r d \theta d r \\
& \quad \geq C \int_{0}^{\frac{1}{4}} \int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} r d \theta d r+\frac{1}{8^{p}} \int_{\frac{1}{4}}^{1} \int_{0}^{2 \pi}(1-\sqrt{r})^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} r d \theta d r \\
& \quad \geq C \int_{0}^{1} \int_{0}^{2 \pi}(1-r)^{p}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{p} d r \theta d r \geq C \int_{0}^{1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} r d \theta d r
\end{aligned}
$$

where the last inequality follows from e.g. Lemma 4 in [4]. Thus
$M_{p}^{p}(r, u)(1-r) \leq M_{p}^{p}(r, f)(1-r) \leq \int_{r}^{1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(t e^{i \theta}\right)\right|^{p} d \theta t d t \leq C\|u\|_{a^{p}}^{p}$.

## References

[1] Hardy, G. H., Littlewood, J. E., Some properties of conjugate functions, J. Reine Angew. Math. 167 (1931), 405-423.
[2] Hardy, G. H., Littlewood, J. E., Some properties of fractional integrals II, Math. Z. 34 (1932), no. 1, 403-439.
[3] Kaczor, W. J., Nowak, M. T., Problems in Mathematical Analysis III, Amer. Math. Soc., Providence, RI, 2003.
[4] Watanabe, H., Some properties of functions in Bergman space $A^{p}$, Proc. Fac. Sci. Tokai Univ. 13 (1978), 39-54.

Paweł Sobolewski
Institute of Mathematics
M. Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: ptsob@hektor.umcs.lublin.pl
Received December 4, 2007


[^0]:    2000 Mathematics Subject Classification. 30H05, 32A36.
    Key words and phrases. Hardy and Littlewood theorem, harmonic conjugate, $a^{p}$ space.

