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Uniqueness problem of meromorphic
mappings with few targets

Abstract. In this paper, using techniques of value distribution theory, we
give some uniqueness theorems for meromorphic mappings of Cm into CP n.

1. Introduction. Using the Second Main Theorem of Value Distribution
Theory and Borel’s lemma, R. Nevanlinna [11] proved that for two noncon-
stant meromorphic functions f and g on the complex plane C, if they have
the same inverse images for five distinct values, then f ≡ g, and that g is
a special type of linear fractional transformation of f if they have the same
inverse images, counted with multiplicities, for four distinct values.
In 1975, H. Fujimoto [5] generalized Nevanlinna’s result to the case of
meromorphic mappings of C into CPn. He showed that for two linearly
nondegenerate meromorphic mappings f and g of C into CPn, if they have
the same inverse images, counted with multiplicities for (3n+2) hyperplanes
in CPn located in general position, then f ≡ g, and there exists a projective
linear transformation L of CPn to itself such that g = L · f if they have the
same inverse images counted with multiplicities for (3n + 1) hyperplanes in
CPn located in general position. Since that time, this problem has been
studied intensively for the case of hyperplanes by H. Fujimoto ([7], [8]),
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W. Stoll [17], L. Smiley [14], S. Ji [9], M. Ru [13], Z. Ye [20], G. Dethloff–
T. V. Tan ([2], [3], [4]), D. D. Thai–S. D. Quang [15] and others.
Let f be a linearly nondegenerate meromorphic mapping ofCm intoCPn.
For each hyperplane H, we denote by ν(f,H) the map of Cm into N0 whose
value ν(f,H)(a) (a ∈ Cm) is the intersection multiplicity of the image of f
and H at f(a).
Take q hyperplanes H1, . . . ,Hq in CPn located in general position with
a) dim

(
f−1(Hi) ∩ f−1(Hj)

)
≤ m− 2 for all 1 ≤ i < j ≤ q.

For each positive integer (or +∞) M , denote by G
(
{Hj}q

j=1, f, M
)
the

set of all linearly nondegenerate meromorphic mappings g of Cm into CPn

such that
b) min{ν(g,Hj),M} = min{ν(f,Hj),M}, j ∈ {1, . . . , q} and
c) g = f on

⋃q
j=1 f−1(Hj).

In 1983, L. Smiley [14] showed that:

Theorem A. If q ≥ 3n + 2 then g1 = g2 for any g1, g2 ∈ G
(
{Hj}q

j=1, f, 1
)
.

In 1998, H. Fujimoto [7] obtained the following theorem:

Theorem B. If q ≥ 3n + 1 then G
(
{Hj}q

j=1, f, 2
)
contains at most two

mappings.

He also gave the open question: Does his result remain valid if the number
of hyperplanes is replaced by a smaller one? In 2006, G. Dethloff and T. V.
Tan [4] showed that the above result of Fujimoto remains valid if q ≥ 3n−1,
n ≥ 7. In this paper, by a different approach, we extend Theorem B to the
case of

q > max
{

7(n + 1)
4

,

√
17n2 + 16n + 3n + 4

4

}
.

In 1980, W. Stoll [19] obtained the following theorem:

Theorem C. Let f1, . . . , fk (k ≥ 2) be linearly nondegenerate holomorphic
mappings of C into CPn. Let H1, . . . ,Hq (q ≥ (k +1)n+2) be hyperplanes
in CPn located in general position. Assume that
i) f−1

1 (Hj) = · · · = f−1
k (Hj) for all j ∈ {1, . . . , q},

ii) f−1
1 (Hi) ∩ f−1

1 (Hj) = ∅ for all 1 ≤ i < j ≤ q and
iii) f1 ∧ · · · ∧ fk = 0 on

⋃q
j=1 f−1

1 (Hj).
Then f1 ∧ · · · ∧ fk ≡ 0.

In 2001, M. Ru [13] generalized the above result to the case of moving
hyperplanes. In the last part of this paper, we extend Theorem C to the
case of moving hypersurfaces.

Acknowledgements. The authors would like to thank Professors D. D.
Thai, G. Dethloff, J. Nugochi for constant help and encouragement.
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2. Preliminaries. For z = (z1, . . . , zm) ∈ Cm, we set

‖z‖ =
( m∑

j=1

|zj |2
)1/2

and define

B(r) = {z ∈ Cm : ‖z‖ < r}, S(r) = {z ∈ Cm : ‖z‖ = r},

dc =
√
−1
4π

(∂ − ∂), V =
(
ddc‖z‖2

)m−1
, σ = dc log ‖z‖2 ∧

(
ddc log ‖z‖

)m−1
.

Let F be a nonzero holomorphic function onCm. For a set α = (α1, . . . , αm)
of nonnegative integers, we set |α| = α1+· · ·+αm and DαF = D|α|F

∂α1z1...∂αmzm
.

We define the map νF : Cm → N0 by

νF (a) = max{p : DαF (a) = 0 for all α with |α| < p}.

Let ϕ be a nonzero meromorphic function on Cm. For each a ∈ Cm, we
choose nonzero holomorphic functions F and G on a neighborhood U of a
such that ϕ = F

G on U and dim
(
F−1(0) ∩ G−1(0)

)
≤ m − 2 and we define

the map νϕ : Cm −→ N0 by νϕ(a) = νF (a). Set

|νϕ| = {z : νϕ(z) 6= 0}.

Let k be positive integer or +∞. Set ν
(k)
ϕ (z) = min{νϕ(z), k}, and

N (k)
ϕ (r) :=

r∫
1

n(k)(t)
t2m−1

dt (1 < r < +∞)

where

n(k)(t) =
∫

|νϕ|∩B(t)

ν(k)
ϕ · V for m ≥ 2

and

n(k)(t) =
∑
|z|≤t

ν(k)
ϕ (z) for m = 1.

We simply write Nϕ(r) for N
(+∞)
ϕ (r). We have the following Jensen’s for-

mula:

Nϕ(r)−N 1
ϕ
(r) =

∫
S(r)

log |ϕ|σ −
∫

S(1)

log |ϕ|σ.
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Let f be a meromorphic mapping of Cm into CPn. For arbitrary fixed
homogeneous coordinates (w0 : · · · : wn) of CPn, we take a reduced rep-
resentation f = (f0 : · · · : fn) which means that each fi is holomor-
phic function on Cm and f(z) = (f0(z) : · · · : fn(z)) outside the ana-
lytic I(f) := {z : f0(z) = · · · = fn(z) = 0} of codimension ≥ 2. Set
‖f‖ = max{|f0|, . . . , |fn|}.
The characteristic function of f is defined by

Tf (r) :=
∫

S(r)

log ‖f‖σ −
∫

S(1)

log ‖f‖σ, 1 < r < +∞.

For a meromorphic function ϕ on Cm, the characteristic function Tϕ(r) of
ϕ is defined as ϕ is a meromorphic map of Cm into CP 1. The proximity
function m(r, ϕ) is defined by

m(r, ϕ) =
∫

S(r)

log+ |ϕ|σ,

where log+ x = max{log x, 0} for x ≥ 0.
Then

Tϕ(r) = N 1
ϕ
(r) + m(r, ϕ) + O(1).

We state the First and the Second Main Theorems of Value Distribution
Theory:
Let f be a nonconstant meromorphic mapping of Cm into CPn. We
say that a meromorphic function ϕ on Cm is “small” with respect to f if
Tϕ(r) = o(Tf (r)) as r → ∞ (outside a set of finite Lebesgues measure).
Denote by Rf the field of all “small” (with respect to f) meromorphic
functions on Cm.

Theorem D (First Main Theorem). Let f be a nonconstant meromorphic
mapping of Cm into CPn and Q be a homogeneous polynomial of degree d
in Rf [x0, . . . , xn] such that Q(f) 6≡ 0 then

NQ(f)(r) ≤ d · Tf (r) + o(Tf (r)) for all r > 1.

For a hyperplane H : a0w0 + · · ·+ anwn = 0 in CPn with im f 6⊆ H, we
denote (f,H) := a0f0 + · · · + anfn, where (f0 : · · · : fn) again is a reduced
representation of f .
As usual, by the notation “|| P” we mean the assertion P holds for all

r ∈ (1,+∞) excluding a subset E of (1,+∞) of finite Lebesgue measure.

Theorem E (Second Main Theorem). Let f be a linearly nondegenerate
meromorphic mapping of Cm into CPn and H1, . . . ,Hq (q ≥ n + 1) hyper-
planes in CPn located in general position, then

|| (q − n− 1)Tf (r) ≤
q∑

j=1

N
(n)
(f,Hj)

(r) + o
(
Tf (r)

)
.
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3. Uniqueness problem for hyperplanes. First of all, we give the fol-
lowing lemma, which is an extension of uniqueness theorem to the case of
few hyperplanes.

Lemma 1. Let f, g : Cm → CPn be two linearly nondegenerate mero-
morphic mappings with reduced representations f = (f0 : · · · : fn), g =
(g0 : · · · : gn). Let {Hi}q

i=1 be q hyperplanes located in general position with
dim

(
f−1(Hi) ∩ f−1(Hj)

)
≤ m− 2 for all 1 ≤ i < j ≤ q. Assume that

q >

√
17n2 + 16n + 3n + 4

4
and
(i) min{ν(f,Hi)(z), n} = min{ν(g,Hi)(z), n}, for all i ∈ {1, . . . , q},
(ii) Zero (fj)∩f−1(Hi) = Zero (gj)∩f−1(Hi), for all 1 ≤ i ≤ q, 0 ≤ j ≤

n,
(iii) Dα

(fk
fs

)
= Dα

(gk
gs

)
on
(⋃q

i=1 f−1(Hi)
)
\
(
Zero (fs)

)
, for all |α| ≤ 1,

0 ≤ k 6= s ≤ n.
Then f ≡ g.

Proof. Assume that f 6≡ g. We write Hi :
∑n

j=0 aijωj = 0.
For any fixed index i, (1 ≤ i ≤ q), it is easy to see that there exists

j ∈ {1, . . . , q}\{i} (depending on i) such that

Pij :=
(f,Hi)
(f,Hj)

− (g,Hi)
(g,Hj)

6≡ 0.

Set

I := I(f) ∪ I(g) ∪
⋃

1≤k<s≤q

{z ∈ Cm : ν(f,Hk)(z) > 0 and ν(f,Hs)(z) > 0}.

Then I is an analytic subset of codimension ≥ 2.
Case 1. n ≥ 2.
Let t be an arbitrary index in {1, . . . , q}\{i, j}. For any fixed point z0 6∈ I
satisfying ν(f,Ht)(z0) > 0, there exists l ∈ {0, . . . , n} such that fl(z0)gl(z0) 6=
0. It follows that

DαPij(z0) = Dα

(
(f,Hi)
(f,Hj)

− (g,Hi)
(g,Hj)

)
(z0)

= Dα

(∑n
v=0

fv

fl
aiv∑n

v=0
fv

fl
ajv

−
∑n

v=0
gv

gl
aiv∑n

v=0
gv

gl
ajv

)
(z0) = 0,

for all α with |α| < 2. So

νPij (z0) ≥ 2.(3.1)

For any fixed point z1 6∈ I satisfying ν(f,Hi)(z1) > 0, we have

νPij (z1) ≥ min{ν(f,Hi)(z1), ν(g,Hi)(z1)} ≥ min{ν(f,Hi)(z1), n}.(3.2)
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From (3.1) and (3.2), we have

νPij ≥ min{n, ν(f,Hi)}+
∑

t∈{1,...,q}\{i,j}

2 min{1, ν(f,Ht)},

(outside an analytic subset of codimension two).
It yields that

NPij (r) ≥ N
(n)
(f,Hi)

(r) +
∑

t∈{1,...,q}\{i,j}

2N
(1)
(f,Ht)

(r)(3.3)

It is clear that

N 1
Pij

(r) ≤ N(r, νj),(3.4)

where νj(z) := max{ν(f,Hj)(z), ν(g,Hj)(z)}.
We have

m

(
r,

(f,Hi)
(f,Hj)

)
= T (f,Hi)

(f,Hj)

(r)−N(f,Hj)(r) + O(1)

≤ Tf (r)−N(f,Hj)(r) + O(1),

and

m

(
r,

(g,Hi)
(g,Hj)

)
≤ Tg(r)−N(g,Hj)(r) + O(1),

This implies that

m(r, Pij) ≤ m

(
r,

(f,Hi)
(f,Hj)

)
+ m

(
r,

(g,Hi)
(g,Hj)

)
+ O(1)

= Tf (r) + Tg(r)−N(f,Hj)(r)−N(g,Hj)(r) + O(1).

Combining with (3.3) and (3.4) we get

N
(n)
(f,Hi)

(r) +
∑

t∈{1,...,q}\{i,j}

2N
(1)
(f,Ht)

(r) ≤ NPij (r) ≤ TPij (r) + O(1)

= N 1
Pij

(r) + m(r, Pij) + O(1)

≤ Tf (r) + Tg(r) + N(r, νj)−N(f,Hj)(r)

−N(g,Hj)(r) + o(Tf (r) + Tg(r)).

This gives

N(f,Hj)(r) + N(g,Hj)(r)−N(r, νj) + N
(n)
(f,Hi)

(r) +
∑

t∈{1,...,q}\{i,j}

2N
(1)
(f,Ht)

(r)

≤ Tf (r) + Tg(r) + o(Tf (r) + Tg(r)).

On the other hand, since

νj(z)− ν(f,Hj) − ν(g,Hj) + min{n, ν(f,Hj)} ≤ 0
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(outside an analytic subset of codimension two), we have

N(r, νj)−N(f,Hj)(r)−N(g,Hj)(r) + N
(n)
(f,Hj)

(r) ≤ 0.

Hence

N
(n)
(f,Hi)

(r) + N
(n)
(f,Hj)

(r) +
∑

t∈{1,...,q}\{i,j}

2N
(1)
(f,Ht)

(r)

≤ Tf (r) + Tg(r) + o(Tf (r) + Tg(r)).

It implies that

(3.5)
N

(n)
(f,Hi)

(r) +
2
n

∑
t∈{1,...,q}\{i}

N
(n)
(f,Ht)

(r)

≤ Tf (r) + Tg(r) + o(Tf (r) + Tg(r)),

(note that n ≥ 2).
Taking summing-up of both sides of (3.5) over all i ∈ {1, . . . , q}, we obtain

(3.6)

(
1 +

2(q − 1)
n

) q∑
i=1

N
(n)
(f,Hi)

(r)

≤ q(Tf (r) + Tg(r)) + o(Tff(r) + Tg(r)).

On the other hand, by Theorem E we have

|| (q − n− 1)(Tf (r) + Tg(r)) ≤ 2
q∑

i=1

N
(n)
(f,Hi)

(r) + o(Tf (r) + Tg(r)).(3.7)

From (3.6) and (3.7), letting r −→∞ we have

1 +
2(q − 1)

n
≤ 2q

q − n− 1
.

This contradicts to

q >

√
17n2 + 16n + 3n + 4

4
.

Thus f ≡ g.
Case 2. n = 1. We have q ≥ 4. If (f,H1)

(f,H4) ≡
(g,H1)
(g,H4) , then f ≡ g.

We now assume that

P14 :=
(f,H1)
(f,H4)

− (g,H1)
(g,H4)

6≡ 0.

Let t be an arbitrary index in {1, 2, 3}. For any fixed point z0 6∈ I satisfying
ν(f,Ht)(z0) > 0, there exists l ∈ {0, 1} such that fl(z0)gl(z0) 6= 0. It follows
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that

DαP14(z0) = Dα

(
(f,H1)
(f,H4)

− (g,H1)
(g,H4)

)
(z0)

= Dα

(
a10

f0

fl
+ a11

f1

fl

a40
f0

fl
+ a41

f1

fl

−
a10

g0

gl
+ a11

g1

gl

a40
g0

gl
+ a41

g1

gl

)
(z0) = 0,

for all α with |α| < 2. It implies that νP14(z0) ≥ 2. Hence, we have

νP14 ≥ 2
(
min{1, ν(f,H1)}+ min{1, ν(f,H2)}+ min{1, ν(f,H3)}

)
,

(outside an analytic subset of codimension two). It implies that

NP14(r) ≥ 2
(
N

(1)
(f,H1)(r) + N

(1)
(f,H2)(r) + N

(1)
(f,H3)(r)

)
.(3.8)

Let z1 be an arbitrary pole of P14 such that z1 6∈ I. Then z1 is a zero of
(f,H4) and there exists l ∈ {0, 1} such that fl(z1)gl(z1) 6= 0. Then

Dα

((
a10

f0

fl
+ a11

f1

fl

)(
a40

g0

gl
+ a41

g1

gl

)

−
(

a40
f0

fl
+ a41

f1

fl

)(
a10

g0

gl
+ a11

g1

gl

))
(z1) = 0,

for all α with |α| < 2. This implies that

ν((f,H1)(g,H4)−(f,H4)(g,H1))(z1) ≥ 2.

Then, we have

ν 1
P14

(z1) ≤ ν(f,H4)(z1) + ν(g,H4)(z1)− 2.

Hence we see

ν 1
P14

≤ ν(f,H4) + ν(g,H4) − 2 min{1, ν(f,H4)},

(outside an analytic subset of codimension two). This implies that

N 1
P14

(r) ≤ N(f,H4)(r) + N(g,H4)(r)− 2N
(1)
(f,H4)(r).
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Combining with (3.8) we have

2
(
N

(1)
(f,H1)(r) + N

(1)
(f,H2)(r) + N

(1)
(f,H3)(r)

)
≤ NP14(r) ≤ TP14(r) + O(1)

= m(r, P14) + N 1
P14

(r) + O(1)

≤ m

(
r,

(f,H1)
(f,H4)

)
+ m

(
r,

(g,H1)
(g,H4)

)
+ N(f,H4)(r) + N(g,H4)(r)− 2N

(1)
(f,H4)(r) + O(1)

= T (f,H1)
(f,H4)

(r) + T (g,H1)
(g,H4)

(r)− 2N
(1)
(f,H4)(r) + O(1)

≤ Tf (r) + Tg(r)− 2N
(1)
(f,H4)(r) + o(Tf (r) + Tg(r)).

It implies that

2
(
N

(1)
(f,H1)(r) + N

(1)
(f,H2)(r) + N

(1)
(f,H3)(r) + N

(1)
(f,H4)(r)

)
≤ Tf (r) + Tg(r) + o(Tf (r) + Tg(r)).

On the other hand, by Theorem E, we also have

|| 2Tf (r) ≤ N
(1)
(f,H1)(r) + N

(1)
(f,H2)(r) + N

(1)
(f,H3)(r) + N

(1)
(f,H4)(r) + o(Tf (r))

and

|| 2Tg(r) ≤ N
(1)
(g,H1)(r) + N

(1)
(g,H2)(r) + N

(1)
(g,H3)(r) + N

(1)
(g,H4)(r) + o(Tg(r))

= N
(1)
(f,H1)(r) + N

(1)
(f,H2)(r) + N

(1)
(f,H3)(r) + N

(1)
(f,H4)(r) + o(Tg(r))

Hence, we have

|| 2(Tf (r) + Tg(r)) ≤ Tf (r) + Tg(r) + o(Tf (r) + Tg(r)).

Letting r −→ ∞, we have 2 ≤ 1. This is a contradiction, hence f ≡ g. We
have completed the proof of Lemma 1. �

Let f be a linearly nondegenerate meromorphic mapping of Cm into CPn

with reduced representation f = (f0 : · · · : fn). Let d be a positive integer
and let H1, . . . ,Hq be q hyperplanes in CPn located in general position with

dim
{
z ∈ Cm : ν(f,Hi)(z) > 0 and ν(f,Hj)(z) > 0

}
≤ m− 2

(1 ≤ i < j ≤ q).
Consider the set F(f, {Hj}q

j=1, d) of all linearly nondegenerate meromor-
phic mappings g : Cm → CPn with reduced representation g = (g0 : · · · :
gn) satisfying the conditions:
(a) min(ν(f,Hi), d) = min(ν(g,Hi), d) (1 ≤ i ≤ q),
(b) Zero (fj)∩ f−1(Hi) = Zero (gj)∩ f−1(Hi), for all 1 ≤ i ≤ q, 0 ≤ j ≤

n,
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(c) Dα
(fk

fs

)
= Dα

(gk
gs

)
on
(⋃q

i=1 f−1(Hi)
)
\
(
Zero (fs)

)
, for all |α| < d,

0 ≤ k 6= s ≤ n.

Take M + 1 maps f0, . . . , fM ∈ F(f, {Hj}q
j=1, d) with reduced representa-

tions

fk :=
(
fk
0 : · · · : fk

n

)
and set T (r) :=

∑M
k=0 Tfk(r). For each c = (c0, . . . , cn) ∈ Cn+1 \{0} we put

(fk, c) :=
n∑

i=0

cif
k
i (0 ≤ k ≤ M).

Denote by C the set of all c ∈ Cn+1 \ {0} such that

dim{z ∈ Cm : (fk,Hj)(z) = (fk, c)(z) = 0} ≤ m− 2

(1 ≤ j ≤ q, 0 ≤ k ≤ M).

Lemma A ([9], Lemma 5.1). C is dense in Cn+1.

Lemma B ([7]). For each c ∈ C, we put F jk
c = (fk,Hj)

(fk,c)
. Then T

F jk
c

(r) ≤
Tfk(r) + o(T (r)).

Definition 1. Let F0, . . . , FM be meromorphic functions on Cm, where
M ≥ 1. Take a set α := (α0, . . . , αM−1) whose components αk are composed
of n nonnegative integers, and set |α| = |α0| + · · · + |αM−1|. We define
Cartan’s auxiliary function by

Φα(F0, . . . , FM ) := F0 · F1 · · · FM

×

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

Dα0
( 1

F0
) Dα0

( 1
F1

) · · · Dα0
( 1

FM
)

...
...

...
...

DαM−1
( 1

F0
) DαM−1

( 1
F1

) · · · DαM−1
( 1

FM
)

∣∣∣∣∣∣∣∣∣ .
Lemma C ([7], Proposition 3.4). If Φα(F,G,H) = 0 and Φα( 1

F , 1
G , 1

H ) = 0
for all α with |α| ≤ 1, then one of the following conditions holds:
i) F = G or G = H or H = F .
ii) F

G , G
H and

H
F are all constant.

Lemma 2. Assume that there exists Φα := Φα
(
F j00

c , . . . , F j0M
c

)
6≡ 0 for

some c ∈ C, |α| ≤ M(M−1)
2 , d ≥ |α|. Then, for each 0 ≤ i ≤ M, the

following holds:

|| N
(d−|α|)
(f i,Hj0

)
(r) + Md

∑
j 6=j0

N
(1)

(f i,Hj)
(r) ≤ NΦα(r) ≤ T (r) + o(T (r)).
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Proof. Denote by P the set of all β with |β| ≤ M(M−1)
2 , d ≥ |β| such

that Φβ = Φβ
(
F j00

c , . . . , F j0M
c

)
6≡ 0 for some c ∈ C. Let α be the minimal

multi-index in P (in the lexicographic order). Set

I :=
M⋃
t=0

I(f t) ∪
⋃

1≤t<j≤q

(
(f,Ht)−1{0} ∩ (f,Hj)−1{0}

)
∪

q⋃
t=1

(
(f,Ht)−1{0} ∩ (f, c)−1{0}

)
.

Then I is an analytic subset of codimension ≥ 2.
Assume that a is a zero of some (f i,Hj), j 6= j0 such that a 6∈ I. Let Γ be
an irreducible component of the zero-divisor of the function (f i,Hj) which
contains a. We take a holomorphic function h on Cm satisfying: νh|Γ = 1
and νh|(Cn\Γ)

= 0.
By the condition (c), we have that ϕi :=

(
1

hdF j0i − 1
hdF j0M

)
is a holomor-

phic function on a neighborhood U of a for all i ∈ {0, . . . ,M − 1}. Since
α := minP, we have

Φα := hMdF j00 · · ·F j0M ×

∣∣∣∣∣∣∣
Dα0

ϕ0 · · · Dα0
ϕM−1

...
...

...
DαM−1

ϕ0 · · · DαM−1
ϕM−1

∣∣∣∣∣∣∣ .
It implies that

νΦα(a) ≥ Md.(3.9)

Assume that b is a zero of (f i,Hj0) such that b 6∈ I. If ν(f i,Hj0
)(b) ≥ d,

we write

Φα =
∑

σ∈SM+1

sign(σ)F j00 · · ·F j0M

×Dα0
( 1

F j0(σ(2)−1)

)
· · ·DαM−1

( 1
F j0(σ(M+1)−1)

)
.

Then

νΦα(b) ≥ d− |α|.(3.10)

If ν(f i,Hj0
)(b) < d, then ν(f0,Hj0

)(b) = · · · = ν(fM ,Hj0
)(b) < d. There

exists a holomorphic function h on an open neighborhood U of b such that
νh = ν(f i,Hj0

)|U
.
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We write

Φα = h−MF j00
c · · ·F j0M

c

×

∣∣∣∣∣∣∣∣
(
Dα0( h

F
j00
c

)
−Dα0( h

F
j0M
c

))
· · ·

(
Dα0( h

F
j0(M−1)
c

)
−Dα0( h

F
j0M
c

))
...

...
...(

DαM−1( h

F
j00
c

)
−DαM−1( h

F
j0M
c

))
· · ·
(
DαM−1( h

F
j0(M−1)
c

)
−DαM−1( h

F
j0M
c

))
∣∣∣∣∣∣∣∣.

Then

νΦα(b) ≥ ν(f i,Hj0
)(b).(3.11)

From (3.9), (3.10) and (3.11), we have

min
{
d− |α|, ν(f i,Hj0

)

}
+ Md

∑
j∈{1,...,q}\{j0}

min
{
1, ν(f i,Hj)

}
≤ νΦα ,

(outside an analytic subset of codimension two). It immediately follows the
first inequality in the lemma.
It is easy to see that a pole of Φα is a zero or a pole of some F j0k

c . By
(3.9), (3.10) and (3.11) we have that Φα is holomorphic at all zeros of F j0i

c ,
(0 ≤ i ≤ M). Then

N 1
Φα

(r) ≤
M∑
i=0

N 1

F
j0i
c

(r).

On the other hand, it is easy to see that

m(r, Φα) ≤
M∑
i=0

m(r, F j0i
c ) + O

(∑
m

(
r,
Dαi

(ϕj0k
c )

ϕj0k
c

))
+ O(1)

≤
M∑
i=0

m(r, F j0i
c ) + o(T (r)),

where ϕj0k
c = 1/F j0k

c . Hence, we have

NΦα(r) ≤ TΦα(r) + O(1) ≤ m(r, Φα) + N 1
Φα

(r) + O(1)

≤
M∑
i=0

(
N 1

F
j0i
c

(r) + m(r, F j0i
c )
)

+ o(T (r))

=
M∑
i=0

T
F

j0i
c

(r) + o(T (r)) ≤ T (r) + o(T (r)). �

Theorem 1. If

q > max
{

7(n + 1)
4

,

√
17n2 + 16n + 3n + 4

4

}
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then F(f, {Hi}q
i=1, 2) contains at most two mappings.

Proof. If n = 1, by Lemma 1 we have ]F(f, {Hi}q
i=1, 1) = 1.

We prove the theorem for the case of n ≥ 2. Assume that there exist
three distinct mappings f0, f1, f2 ∈ F(f, {Hi}q

i=1, 2).
Denote by Q the set of all indices j ∈ {1, 2, . . . , q} satisfying the following:
There exist c ∈ C and α ∈ Zn

+ with |α| ≤ 1 such that Φα
(
F j0

c , F j1
c , F j2

c

)
6≡ 0.

Set T (r) = Tf0(r) + Tf1(r) + Tf2(r).
We now prove that Q = ∅. Suppose that there exists j0 ∈ Q. By Lem-
ma 2, we have

(3.12)
|| N

(1)

(f i,Hj0
)
(r) + 4

∑
j∈{1,...,q}\{j0}

N
(1)

(f i,Hj)
(r)

≤ N(r, νΦα) ≤ T (r) + o(T (r)).

(0 ≤ i ≤ 2).
By Theorem E, we have

||
∑
j 6=j0

N
(1)

(f i,Hj)
(r) ≥ q − n− 2

3n
T (r) + o(T (r))

and

q∑
j=0

N
(1)

(f i,Hj)
(r) ≥ q − n− 1

3n
T (r) + o(T (r)).

This implies that

(3.13)

|| N
(1)

(f i,Hj0
)
(r) + 4

∑
j∈{1,...,q}\{j0}

N
(1)

(f i,Hj)
(r)

≥ 4(q − n− 2) + 1
3n

T (r) + o(T (r)).

From (3.12) and (3.13), letting r →∞ we get

4(q − n− 2) + 1 ≤ 3n ⇔ q ≤ 7(n + 1)
4

.

This is a contradiction. Hence Q = ∅. Then for each 1 ≤ j ≤ q, c ∈ C,
α ∈ Zn

+, |α| < 2 we have Φα
(
F j0

c , F j1
c , F j2

c

)
≡ 0. Since C is dense in Cn+1,

we have that

Φα
(
F j0

i , F j1
i , F j2

i

)
≡ 0 (1 ≤ i, j ≤ q), for all |α| < 2,

where F jt
i := (f t,Hj)

(f t,Hi)
, 0 ≤ t ≤ 2. By Lemma C, for each 1 ≤ i, j ≤ q, there

exists a nonzero constant χij such that F
j0
i = χijF

j1
i , F

j1
i = χijF

j2
i or F

j2
i =
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χijF
j0
i . We now show that χij = 1. Indeed, if χij 6= 1, without loss of gener-

ality we may assume that F j0
i = χijF

j1
i . Then

⋃
t∈{1,...,q}\{i,j} f−1(Ht) = ∅.

Thus, by Theorem E, we have

|| (q − n− 3)Tf (r) ≤
∑

t∈{1,...,q}\{i,j}

N
(n)
(f,Ht)

(r) + o(Tf (r)) = o(Tf (r)).

Letting r −→ +∞, we obtain q − n − 3 ≤ 0. This contradicts to n ≥ 2.
Thus,

χij = 1 (1 ≤ i, j ≤ q).

We take an arbitrary element k ∈ {0, 1, 2} and an index i ∈ {1, . . . , q}.
We will show that ν(fk,Hi) = ν(f l,Hi) or ν(fk,Hi) = ν(f t,Hi), where {l, t} :=
{0, 1, 2} \ {k}. In fact, if there is no index j 6= i such that F jk

i = F jl
i or

F jk
i = F jt

i , then since χij = 1 we have F jl
i = F jt

i for all j 6= i. This implies
that fk ≡ f l. This is a contradiction. Hence there exists j 6= i such that
F jk

i = F jl
i or F jk

i = F jt
i . This yields that

ν(fk,Hi) = ν(f l,Hi) or ν(fk,Hi) = ν(f t,Hi)(3.14)

for all k ∈ {0, 1, 2}, i ∈ {1, . . . , q}. For any fixed index i ∈ {1, . . . , q}, by
(3.14) (with k = 0) we may assume that ν(f0,Hi) = ν(f1,Hi). By (3.14) (with
k = 2) we obtain ν(f2,Hi) = ν(f0,Hi) or ν(f2,Hi) = ν(f1,Hi). This implies that
ν(f0,Hi) = ν(f1,Hi) = ν(f2,Hi) for all i ∈ {1, . . . , q}. By Lemma 1, we have
f0 ≡ f1 ≡ f2 . This is a contradiction.
Thus, ]F(f, {Hi}q

i=1, 2) ≤ 2 if

q > max
{

7(N + 1)
4

,

√
17N2 + 16N + 3N + 4

4

}
. �

4. Uniqueness problem for hypersurfaces. Let f be a nonconstant
meromorphic mapping of Cm into CPn. We say that a meromorphic func-
tion ϕ on Cm is “small” with respect to f if Tϕ(r) = o(Tf (r)) as r → ∞
(outside a set of finite Lebesgues measure). Denote by Rf the field of all
“small” (with respect to f) meromorphic functions on Cm.
Take a reduced representation (f0 : · · · : fn) of f . We say that f is
algebraically nondegenerate over Rf if there is no nonzero homogeneous
polynomial Q ∈ Rf [x0, . . . , xn] such that Q(f) := Q(f0, . . . , fn) ≡ 0.
For a homogeneous polynomial Q ∈ Rf [x0, . . . , xn], denote by Q(z) the
homogeneous polynomial over C obtained by substituting a specific point
z ∈ Cm into the coefficients of Q.
We say that a set {Qj}n

j=0 of homogeneous polynomials of the same degree
in Rf [x0, . . . , xn] is admissible if there exists z ∈ Cm such that the system
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of equations {
Qj(z)(w0, . . . , wn) = 0

0 ≤ j ≤ n

has only the trivial solution w = (0, . . . , 0) in Cn+1.
First of all, we give the following lemma:

Lemma 3. Let f be a nonconstant meromorphic mapping of Cm into CPn

and {Qj}n
j=0 be an admissible set of homogeneous polynomials of degree d

in Rf [x0, . . . , xn]. Let γ0, . . . , γn be (n + 1) nonzero meromorphic functions
in Rf .
Put P = γ0Q

p
0 + · · ·+ γnQp

n, where p is a positive integer, p > n(n + 1).
Assume that f is algebraically nondegenerate over Rf . Then

|| d(p− n(n + 1))Tf (r) ≤ N
(n)
P (f)(r) + o(Tf (r)).

Proof. Set Td :=
{
I := (i0, . . . , in) ∈ Nn+1

0 : i0 + · · ·+ in = d
}
.

Assume that

Qj =
∑
I∈Td

ajIx
I (j = 0, . . . , n).

where ajI ∈ Rf , xI = xi0
0 · · ·xin

n .
Set

F =
(
γ0Q

p
0(f) : · · · : γnQp

n(f)
)

: Cm −→ CPn.

Since f is algebraically nondegenerate over Rf we have that F is linearly
nondegenerate (over C).
Assume that

(
γ0Qp

0(f)
h : · · · : γnQp

n(f)
h

)
is a reduced representation of F,

where h is a meromorphic function on Cm. Put Fi = γiQ
p
i (f)
h , i ∈ {0, . . . , n}.

We have

max
0≤j≤n

|Qp
j (f)| ≤ |h| ·

( n∑
i=0

∣∣∣ 1
γi

∣∣∣) · max
1≤i≤n+1

|Fi|.(4.1)

Let t = (. . . , tkI , . . . ) be a family of variables, (k ∈ {0, . . . , n}, I ∈ Td).
Set

Q̃j =
∑
I∈Td

tjIx
I ∈ Z[t, x], j = 0, . . . , n.

Let R̃ ∈ Z[t] be the resultant of Q̃0, . . . , Q̃n.
Since

{
Qj

}n

j=0
is an admissible set, R := R̃(. . . , akI , . . . ) 6≡ 0. It is clear

that R ∈ Rf since akI ∈ Rf .
By Theorems 3.4 and 3.5 in [10], there exists a positive integer s > d and
polynomials

{
R̃ij

}
0≤i,j≤n

in Z[t, x] which are zero or homogeneous in x of
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degree s− d such that

xs
i · R̃ =

n∑
j=0

R̃ij · Q̃j for all i ∈ {0, . . . , n}.

Set

Rij = R̃ij

(
(. . . , akI , . . . ), (f0, . . . , fn)

)
, 0 ≤ i, j ≤ n.

Then,

fs
i ·R =

n∑
j=0

Rij ·Qj(f0, . . . , fn) for all i ∈ {0, . . . , n}.(4.2)

So,

(4.3)

|fs
i ·R| =

∣∣∣∣ n∑
j=0

Rij ·Qj(f0, . . . , fn)
∣∣∣∣

≤
n∑

j=0

|Rij | · max
k∈{0,...,n}

|Qk(f0, . . . , fn)|

for all i ∈ {0, . . . , n}.
We write,

Rij =
∑

I∈Ts−d

βij
I f I , βij

I ∈ Rf .

By (4.3), we have

|fs
i ·R| ≤

( ∑
0≤j≤n
I∈Ts−d

|βij
I | · ‖f‖

s−d

)
· max

k∈{0,...,n}
|Qk(f0, . . . , fn)|,

i ∈ {0, . . . , n}. So,

|fi|s

‖f‖s−d
≤
( ∑

0≤j≤n
I∈Ts−d

∣∣∣βij
I

R

∣∣∣) · max
k∈{0,...,n}

|Qk(f0, . . . , fn)|

for all i ∈ {0, . . . , n}.
Thus

‖f‖d ≤
( ∑

0≤i,j≤n
I∈Ts−d

∣∣∣βij
I

R

∣∣∣) max
k∈{0,...,n}

|Qk(f0, . . . , fn)|.(4.4)
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By (4.1) and (4.4) we have

‖f‖dp ≤
( ∑

0≤i,j≤n
I∈Ts−d

∣∣∣βij
I

R

∣∣∣)p

· |h| ·
( n∑

i=0

∣∣∣ 1
γi

∣∣∣) · ‖F‖.(4.5)

By (4.2) and since
(

γ0Qp
0(f)
h : · · · : γnQp

n(f)
h

)
is a reduced representation of

F, we have

Nh(r) ≤ pNR(r) +
n∑

i=0

Nγi(r) = o(Tf (r))

and

N 1
h
(r) ≤

∑
0≤j≤n
I∈Td

N 1
ajI

(r) +
n∑

i=0

N 1
γi

= o(Tf (r)).

By (4.5), we have

(4.6)

dp · Tf (r) = pd

∫
S(r)

log ‖f‖σ + O(1)

≤
∫

S(r)

log
( ∑

0≤i,j≤n
I∈Ts−d

∣∣∣βij
I

R

∣∣∣)p

|h|
( n∑

i=0

∣∣∣ 1
γi

∣∣∣)σ + TF (r) + O(1)

≤ p

∫
S(r)

log+

( ∑
0≤i,j≤n
I∈Ts−d

∣∣∣βij
I

R

∣∣∣)σ +
∫

S(r)

log+

( n∑
i=0

∣∣∣ 1
γi

∣∣∣)σ

+
∫

S(r)

log |h|σ + TF (r) + O(1)

≤ p
∑

0≤i,j≤n
I∈Ts−d

m
(
r,

βij
I

R

)
+

n∑
i=0

m
(
r,

1
γi

)
+ Nh(r)−N 1

h
(r) + TF (r) + O(1)

= TF (r) + o(Tf (r)).
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By (4.6) and Theorem E, we have

|| dp · Tf (r) ≤ TF (r) + o(Tf (r))

≤
n∑

i=0

N
(n)
γiQ

p
i
(f)

h

(r) + N
(n)∑n

i=0

γiQ
p
i
(f)

h

(r) + o(Tf (r))

≤
n∑

i=0

N
(n)
γiQ

p
i
(f)

h

(r) + N
(n)
P (f)

h

(r) + o(Tf (r))

≤
n∑

i=0

N
(n)

Qp
i (f)

(r) +
n∑

i=0

N (n)
γi

(r) + (n + 2)N 1
h
(r) + N

(n)
P (f)(r) + o(Tf (r))

≤
n∑

i=0

nNQi(f)(r) + N
(n)
P (f)(r) + o(Tf (r))

≤ d(n + 1)nTf (r) + N
(n)
P (f)(r) + o(Tf (r)).

This implies that

|| d(p− (n + 1)n)Tf (r) ≤ N
(n)
P (f)(r) + o(Tf (r)).

This has completed the proof of the lemma. �

Theorem 2. Let f1, . . . , fk (k ≥ 2) be nonconstant meromorphic mappings
of Cm into CPn and {Qj}n

j=0 be an admissible set of homogeneous poly-
nomials of degree d in Rf1 [x0, . . . , xn]. Let γ0, . . . , γn be (n + 1) nonzero
meromorphic functions in Rf1.
Put P = γ0Q

p
0 + · · ·+γnQp

n, where p is a positive integer, p > n(d(n+1)+k)
d .

Assume that fi is algebraically nondegenerate over Rfi
for all i ∈ {1, . . . , k},

and

i) Zero
(
P (fi)

)
= Zero

(
P (f1)

)
, for all i ∈ {2, . . . , k}, and

ii) f1 ∧ · · · ∧ fk = 0 on Zero
(
P (f1)

)
.

Then f1 ∧ · · · ∧ fk ≡ 0.

Proof. Assume that f1 ∧ · · · ∧ fk 6≡ 0. We denote by µf1∧···∧fk
the divisor

associated with f1 ∧ · · · ∧ fk. Denote Nµf1∧···∧fk
(r) the counting function

associated with the divisor µf1∧···∧fk
. It is easy to see that

Nµf1∧···∧fk
(r) ≤

k∑
i=1

Tfi
(r) + O(1).

Since Zero
(
P (fi)

)
= Zero

(
P (f1)

)
, for all i ∈ {2, . . . , k}, we have,

N
(1)
P (f1)(r) ≤ Nµf1∧···∧fk

(r) ≤
k∑

i=1

Tfi
(r) + O(1) ≤

k∑
i=1

Tfi
(r) + O(1).
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Thus, since Zero
(
P (fi)

)
= Zero

(
P (f1)

)
, for all i ∈ {2, . . . , k}, we have

k∑
i=1

N
(n)
P (fi)

(r) ≤ nkN
(1)
P (f1)(r) ≤ nk

k∑
i=1

Tfi
(r) + O(1).(4.7)

By Lemma 3 we have

d(p− n(n + 1))Tf1(r) ≤ N
(n)
P (f1)(r) + o(Tf1(r))

≤ nN
(1)
P (fi)

(r) + o(Tf1(r))

≤ ndpTfi
(r) + o(Tf1(r)) (1 ≤ i ≤ k).

This implies that Rf1 ⊂ Rfi
for all 2 ≤ i ≤ k. Thus, by Lemma 3 we have

d(p− n(n + 1))Tfi
(r) ≤ N

(n)
P (fi)

(r) + o(Tfi
(r)) (1 ≤ i ≤ k).

Combining with (4.7) we have

d(p− n(n + 1))
k∑

i=1

Tfi
(r) ≤ nk

k∑
i=1

Tfi
(r) + o

( k∑
i=1

Tfi
(r)
)

.

This contradicts to p > n(d(n+1)+k)
d . Thus, f1 ∧ · · · ∧ fk ≡ 0. �
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