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mappings with few targets

ABSTRACT. In this paper, using techniques of value distribution theory, we
give some uniqueness theorems for meromorphic mappings of C" into CP".

1. Introduction. Using the Second Main Theorem of Value Distribution
Theory and Borel’s lemma, R. Nevanlinna [11] proved that for two noncon-
stant meromorphic functions f and g on the complex plane C, if they have
the same inverse images for five distinct values, then f = g, and that g is
a special type of linear fractional transformation of f if they have the same
inverse images, counted with multiplicities, for four distinct values.

In 1975, H. Fujimoto [5] generalized Nevanlinna’s result to the case of
meromorphic mappings of C into CP™. He showed that for two linearly
nondegenerate meromorphic mappings f and g of C into CP", if they have
the same inverse images, counted with multiplicities for (3n+2) hyperplanes
in CP" located in general position, then f = g, and there exists a projective
linear transformation L of CP" to itself such that g = L- f if they have the
same inverse images counted with multiplicities for (3n + 1) hyperplanes in
CP" located in general position. Since that time, this problem has been
studied intensively for the case of hyperplanes by H. Fujimoto ([7], [8]),
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W. Stoll [17], L. Smiley [14], S. Ji [9], M. Ru [13], Z. Ye [20], G. Dethloff-
T. V. Tan (2], [3], [4]), D. D. Thai-S. D. Quang [15] and others.

Let f be a linearly nondegenerate meromorphic mapping of C” into CP".
For each hyperplane H, we denote by v(; ) the map of C™ into Ny whose
value v(s pry(a) (a € C™) is the intersection multiplicity of the image of f
and H at f(a).

Take g hyperplanes Hy, ..., H, in CP" located in general position with

a) dim(f~'(H;) N f~H(H;)) <m—2forall1 <i<j<q.

For each positive integer (or +00) M, denote by g({Hj}?zl,f, M) the
set of all linearly nondegenerate meromorphic mappings g of C™ into CP"™
such that

b) min{v(y gy, M} = min{v (s ), M}, j € {1,...,q} and
c) g=fonUj_ f~(H;)
In 1983, L. Smiley [14] showed that:

Theorem A. If g > 3n+ 2 then g1 = g2 for any g1,92 € Q({Hj}?zl, 1, 1).
In 1998, H. Fujimoto [7] obtained the following theorem:

Theorem B. If ¢ > 3n + 1 then Q({Hj}gzl,f, 2) contains at most two
mappings.

He also gave the open question: Does his result remain valid if the number
of hyperplanes is replaced by a smaller one? In 2006, G. Dethloff and T. V.
Tan [4] showed that the above result of Fujimoto remains valid if ¢ > 3n—1,
n > 7. In this paper, by a different approach, we extend Theorem B to the

case of
{7(n+1) \/17n2+16n+3n—|—4}
g > max 1 , 1 .

In 1980, W. Stoll [19] obtained the following theorem:

Theorem C. Let f1,..., fr (k> 2) be linearly nondegenerate holomorphic
mappings of C into CP™. Let Hy,...,Hy (¢ > (k+1)n+2) be hyperplanes
in CP™ located in general position. Assume that

i) frH(Hy) == fN(Hy) forall j € {1,....q},

i) fN(H) N fHH) =0 for all1 <i< j<qand

i) fiA-A =0 on Ul fi 1 (Hj).
Then fi N--- N fr =0.

In 2001, M. Ru [13] generalized the above result to the case of moving

hyperplanes. In the last part of this paper, we extend Theorem C to the
case of moving hypersurfaces.

Acknowledgements. The authors would like to thank Professors D. D.
Thai, G. Dethloff, J. Nugochi for constant help and encouragement.
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2. Preliminaries. For z = (z1,...,2y,) € C™, we set
m 1/2
= (X158
j=1
and define

Br)y={ze€C™:|z||<r}, Sr)={ze€C™:|z|=r}

c \/?1 —= c m—1 c c m—1
d- = ?(3—3)7 V = (dd ”ZHQ) , 0 =dlog||z[* A (dd”log||z]|) :

Let F be a nonzero holomorphic function on C™. For aset o = (a1, ..., )

of nonnegative integers, we set || = a1+ - -+ a,, and D*F = %.
We define the map vp : C™ — Ny by

vp(a) = max{p : D*F(a) = 0 for all & with |a| < p}.

Let ¢ be a nonzero meromorphic function on C™. For each a € C™, we
choose nonzero holomorphic functions F' and G on a neighborhood U of a
such that ¢ = g on U and dim(F~1(0) N G71(0)) < m — 2 and we define
the map v, : C™ — Ny by v,(a) = vr(a). Set

lvp| = {2z : vp(2) # 0}.

Let k be positive integer or +o00. Set I/S(Ok)(z) = min{v,(z), k}, and

k)
NP (r) = / n ) g (1 <7< +00)
1

t2m—1
where
n®) (1) / BV form > 2
[ve|NB(t)
and

We simply write N (r) for Ngroo) (r). We have the following Jensen’s for-
mula:

Nolr) = Ny(r) = [ toglelo — [ toglelo

v
S(r) (1)
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Let f be a meromorphic mapping of C™ into CP™. For arbitrary fixed

homogeneous coordinates (wg : --- : wy) of CP™, we take a reduced rep-
resentation f = (fp : .-+ : f,) which means that each f; is holomor-
phic function on C™ and f(z) = (fo(z) : -+ : fau(2)) outside the ana-
lytic I(f) == {z : fo(z) = --- = fau(z) = 0} of codimension > 2. Set

If1l = max{[fol,..., | /nl}-
The characteristic function of f is defined by

Ty(r) = / log [|fllo - / log|[flo, 1<r < +oo.
S(r) S(1)
For a meromorphic function ¢ on C™, the characteristic function Ty, (r) of

¢ is defined as ¢ is a meromorphic map of C™ into CP!. The proximity
function m(r, ¢) is defined by

m(r, p) = / log™ |¢|o,
S(r)

where log™ x = max{log z, 0} for z > 0.
Then
Ty(r) = Ni(r)+m(r,¢) + O(1).
©

We state the First and the Second Main Theorems of Value Distribution
Theory:

Let f be a nonconstant meromorphic mapping of C™ into CP". We
say that a meromorphic function ¢ on C™ is “small” with respect to f if
Ty(r) = o(T¢(r)) as r — oo (outside a set of finite Lebesgues measure).
Denote by Ry the field of all “small” (with respect to f) meromorphic
functions on C™.

Theorem D (First Main Theorem). Let f be a nonconstant meromorphic
mapping of C™ into CP™ and Q) be a homogeneous polynomial of degree d
in Rylzo,...,xn) such that Q(f) # 0 then
Nop(r) <d-Ty(r) +o(Ty(r)) for all r > 1.
For a hyperplane H : agwg + - - - + apwy, = 0 in CP" with im f € H, we
denote (f, H) == aofo+ -+ + anfn, where (fo:---: fn) again is a reduced
representation of f.

As usual, by the notation “|| P” we mean the assertion P holds for all
r € (1,+00) excluding a subset E of (1,+00) of finite Lebesgue measure.

Theorem E (Second Main Theorem). Let f be a linearly nondegenerate
meromorphic mapping of C™ into CP™ and Hi,...,H, (¢ > n+ 1) hyper-
planes in CP"™ located in general position, then

| (g —=n—1)T¢(r) ZN((?,H) )+ o(T¢(r)).
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3. Uniqueness problem for hyperplanes. First of all, we give the fol-
lowing lemma, which is an extension of uniqueness theorem to the case of
few hyperplanes.

Lemma 1. Let f,g : C™ — CP" be two linearly nondegenerate mero-
morphic mappings with reduced representations f = (fo : -+ : fn), g =
(go:-++:gn). Let {H;}_, be q hyperplanes located in general position with
dim(f_l(Hi) N f_l(Hj)) <m-—2 foralll <i<j<gq. Assume that

> V1Tn2+16n+3n+4
4

and

(1) min{v(s g,)(2),n} = min{v(y g, (2),n}, for all i € {1,...,q},
(ii) Zero (fj)ﬂf_l(Hi) = Zero (g;) Nf=YH;), forall1 <i<q,0<j<

n,
(iii) Da(%) = Da(g—’:) on (UL, [~ (H:i)\(Zero(fs)), for all o] < 1,
0<k#s<mn.
Then f=g.

Proof. Assume that f # g. We write H; : 37 a;jw; = 0.
For any fixed index i, (1 < ¢ < q), it is easy to see that there exists
je{l,...,q}\{i} (depending on %) such that

7T Hy) (g, H))

Set
I=1I(f)UI(g) U J{z € C™: vy py(2) > 0 and v(s 5, (2) > 0}
1<k<s<q
Then [ is an analytic subset of codimension > 2.
Case 1. n > 2.

Let t be an arbitrary index in {1,...,q}\{4,j}. For any fixed point zy & I
satisfying v g,)(20) > 0, there exists | € {0,...,n} such that fj(20)g1(20) #
0. It follows that

(f, Hi) _ (g, Hi)
D*P;i(20) = ’DO‘( — (20)
’ (f, Hj) (9, Hj)
o flaiv 00 Zay,
— po <Zv—0 i - Z’U—O aq )(ZO) _ 0,

n fu NS
Yoo Faje Dv=0g G

for all @ with |a| < 2. So
(3.1) vp,;(20) > 2.
For any fixed point 21 ¢ I satisfying v(s g,)(21) > 0, we have

(3.2) vp,;(z1) > min{v(s g,)(21), V(g i) (21)} = min{v(s g,y (21),n}-
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From (3.1) and (3.2), we have
vp,; > min{n, v g}t + Z 2min{1, vy g, },
te{L,...aF\{i.j}

(outside an analytic subset of codimension two).
It yields that

(n) (1)
(3.3) Np, (r) = N (r) + Y 2Ny (1)
te{1,....q}\{i,5}
It is clear that

(3.4) N

1 (r) < N(r,v),
2
where v;(2) == max{v(y u,)(2), V(g,u,)(2)}
We have

and

This implies that
m(r,P;) <mlr, +m| +0(1
P < m(n 5 y) Tow
=T¢(r) +Ty(r) — Npu;)(r) = Nigm;)(r) + O(1).
Combining with (3.3) and (3.4) we get

+ > 2NfH r) < Np,(r) < Tp,(r) + O(1)
t€{17 -aH\{e.5}

= N%(T) + m(r, Pi;) + O(1)

ij
S Tf( ) —|—T ( ) + N(T Vj) — N(ﬂHj)(T’)
= Nig.)(r) + o(Ty(r) + Ty(r)).
This gives
n 1
Niga) () + Nigary (r) = N(r,03) + NPy (1) + > 2N ()
te{l,...,q}\{i,j}
S Ty(r) + Ty(r) + o(Ty(r) + Ty(r)).
On the other hand, since
vj(2) = vigmy) — Ug.y) + mindn, vyt <0
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(outside an analytic subset of codimension two), we have
N(r,v5) = N1,y (1) = Nig.a (r) + N{ () < 0.
Hence

(n)
NPy )+ Ny ) + > 2Ny (o
tG{l, a3\ {i,5}
STyp(r) 4+ Ty(r) + o(Ty(r) +Ty(r)).

It implies that

(n) 2 (n)
Nip () + > Ny (1)

(3.5) te{l g\ (i}
< Tf(r) + Tg(r) + O(Tf(r) + Tg(r))a

(note that n > 2).
Taking summing-up of both sides of (3.5) over alli € {1,...,q}, we obtain

1+ M ZQ:N(") (7,)
(3.6) n — (f.Hi)
< q(Ty(r) + Ty(r) + o(Tr f(r) + Ty(r))-
On the other hand, by Theorem E we have

q
B.7) (g —n—=1)(Ts(r) Z r) +o(Ty(r) + Ty(r)).

From (3.6) and (3.7), letting r — oo we have

20¢-1) _ 2%
n T qg—n—1

1+

This contradicts to

- V1ITm?2 +16n+3n+4
1 )
Thus f=g.

_ (f,Hi) — (9,H1) _
Case 2. n=1. We have ¢ > 4. If {575 = (g,Hi)’ then f = g.

We now assume that

_(fH) (g H)
(f.Hi) (9. H)

Let ¢ be an arbitrary index in {1, 2,3}. For any fixed point zo ¢ I satisfying
V(s,H,)(%0) > 0, there exists [ € {0,1} such that fi(20)gi(z0) # 0. It follows

£ 0.
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that

D Pr4(20) = Da<(f’ ) _ (g’H1)> (20)

(fv H4) (gvH4)

o [ @10 j}o +any fl ajoL g 0 +apn m
=D — g1 (Zo) = 0,
a40f + a41 f asp® al O+ ay

gt
for all a with |a| < 2. It implies that vp,(20) > 2. Hence, we have
vpy, > 2(min{1, vy gy} + min{1, v g,y 4+ min{1, v gy},

(outside an analytic subset of codimension two). It implies that

M) M |
(3.8) Ny () 2 2(N{ ) (0) 4 N (0 + N ().

Let z; be an arbitrary pole of Py4 such that z; € I. Then z; is a zero of
(f, Hy) and there exists [ € {0,1} such that fj(z1)g;(z1) # 0. Then

D~ (alof +an fl) <a4ogo + a41g1>
Ji i gt g

- <a40 2 + a41 ?) <a10f;l) + a“:)) (21) =0,

for all & with || < 2. This implies that

V(f.H1) (g, Ha)—(f,Ha) (g, H1)) (21) = 2.

Then, we have

v (21) S vp ) (21) + Vg mg(21) — 2.

Prg

Hence we see

v Sy T Vg HY) — 2min{1, V(f7H4)},

Prg

(outside an analytic subset of codimension two). This implies that

N o (1) < Ny (r) + Niguazy (r) = 2N Py ().

Prg
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Combining with (3.8) we have

2(N Py (1) + Ny 00+ Ny (1)) < Ny, () < Ty, () + 0(1)

(f7H1)) < (97H1)>
< m(r, (7. Hy) +m| r, (0. )

+ Nig.a) () + Nig sz (r) = 2Ny (1) + O(1)
ZTQ£Q0)+TQEQUO—2N8L@0%+00)

(f,Hy) (9,Hy)

1
< Ty(r) + Ty(r) = 2Ny (1) + o(T(r) + Ty(r)).
It implies that
(1) 1) (1) 1
2Ny (1) + NPy (1) + NPy (1) + N ()
< Ty(r) + Ty(r) + o(Ty(r) + Ty(r)).
On the other hand, by Theorem E, we also have

1 2T(r) < NPy, (1) + N () 4+ N () Ny () + 0T (1)

and

12Ty (r) < Ny (1) + Nig gy (r) + Nig () NGl (1) + o(Ty (1)
_ () ) i )
= Ny (1) + Ny (1) + N oy (1) N () + o(Ty ()

Hence, we have
| 2(T¢(r) +Tg(r)) < Ty(r) + Ty(r) + o(T(r) 4+ Ty(r)).

Letting r — oo, we have 2 < 1. This is a contradiction, hence f = g. We
have completed the proof of Lemma 1. ]

Let f be a linearly nondegenerate meromorphic mapping of C™ into CP"
with reduced representation f = (fo:---: fn). Let d be a positive integer
and let Hy, ..., H, be ¢ hyperplanes in CP" located in general position with

dim{z € C™ : vs.p,(z) > 0 and v(s,m;)(2) > 0} <m-—2
(1<i<j<q).

Consider the set F(f,{H; };1-:1, d) of all linearly nondegenerate meromor-
phic mappings g : C™ — CP™ with reduced representation g = (go : -+ :
gn) satisfying the conditions:

(a) min(v(s m,), d) = min(v(g p,),d) (1 <i<q),
(b) Zero(f;)N f~Y(H;) = Zero(gj) N f~1(H;), forall1<i<gq,0<j <
n?
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(c) DO‘(%) = D“(g—’:) on (UL, f~1(H;))\(Zero(fs)), for all o] < d,
0<k#s<n.

Take M + 1 maps f°,..., fM ¢ F(f, {Hj}?:p d) with reduced representa-
tions

fr= (S f)
and set T'(r) = 224:0 Ty (r). For each ¢ = (co, ..., cn) € C"T1\ {0} we put

(ff0)=> aff (0<k<M),
=0

Denote by C the set of all c € C"*1\ {0} such that

dim{z € C™ : (%, H;)(2) = (f*,)(z) = 0} < m — 2
(1<j<gq 0<k<M).
Lemma A ([9], Lemma 5.1). C is dense in C"*1L.

jk _ (f*.Hj) .
Lemma B ([7]). For each ¢ € C, we put F!" = . Then Tp(r) <

(fF.c
T (r) +o(T'(r)).
Definition 1. Let Fy,...,F)y; be meromorphic functions on C™, where
M > 1. Takeaset a == (a2, ..., aMfl) whose components o are composed
of n nonnegative integers, and set |a| = [a®]| + --- + [&™~!|. We define
Cartan’s auxiliary function by
(I)a(F(],...,FM) = Fo-Fl . FM
1 1 e 1
0 0 0
| PTG e )
]\/If.l 1\/17:1 : ]\47:1
D) D) e D)

Lemma C ([7], Proposition 3.4). If ®*(F,G,H) =0 and ®*(+, &, %) =0
for all o with |o| < 1, then one of the following conditions holds:
i) F=GorG=H orH=F.

ii) £, % and % are all constant.

Ql

Lemma 2. Assume that there exists ¢ = ®¢ (Fgoo,...,FgoM) % 0 for

some ¢ € C, |a| < %, d > |a|. Then, for each 0 < i < M, the

following holds:
| NG )+ Md >~ NG () < Noa () < T(r) + o(T(r).

(fi»HjO) — J
J#jo
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Proof. Denote by P the set of all  with || < M(A;[_l), d > || such

that ®° = @ﬁ(FgOO, . ,FgOM) % 0 for some ¢ € C. Let a be the minimal
multi-index in P (in the lexicographic order). Set

=1t o Y ((F, H) o} n (£, Hy) 7 {0})
t=0

1<t<j<q

U H)THO} N (£,0)7{0}).

t=1

Then [ is an analytic subset of codimension > 2.

Assume that a is a zero of some (f?, H;), j # jo such that a ¢ I. Let I be
an irreducible component of the zero-divisor of the function (f?, H;) which
contains a. We take a holomorphic function h on C™ satisfying: vy, =1
and Vhliompy = 0.

By the condition (c), we have that ¢; == (hdplv'oi — hdpljoM) is a holomor-
phic function on a neighborhood U of a for all ¢ € {0,...,M — 1}. Since
« = min P, we have

DV - Dopq
P — thFjoo . F]oM % . .
DMy DM oy
It implies that
(3.9) veo(a) > Md.

Assume that b is a zero of (f, Hj,) such that b & I. If V(fi7Hj0)(b) > d,
we write

% = " sign(o) Fi0 ... pioM

oSt
<2 (o) P (pworn):
Then
(3.10) vae(b) > d — |af.
If V(fi:Hjo)(b) < d, then vipo g (b)) = -+ = vipm m,,)(0) < d. There

exists a holomorphic function i on an open neighborhood U of b such that

Vi = V(S ),
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We write
¥ = p~MFgo0... pjoM
(O () = D2 (L)) o (D% (i)~ D ()
X : . :
(D () — D2 ) o (D7 ) — D ()
Then
(311) Vo (b) Z V(fi,HjO)(b)'

From (3.9), (3.10) and (3.11), we have

min{d — |a|,u(f¢7H7_0)} + Md Z min{l,y(fiij)} < Vga,
Je{t,.at\{do}
(outside an analytic subset of codimension two). It immediately follows the
first inequality in the lemma.
It is easy to see that a pole of ®“ is a zero or a pole of some chok. By
(3.9), (3.10) and (3.11) we have that ®“ is holomorphic at all zeros of FZ°",
(0 <i < M). Then

FJo*

M
N (r) < > N_ ().
=0

On the other hand, it is easy to see that

m(r, ®*) < im(r, FIo)y + O (Z m(r, %)) +0(1)
M

<" mlr, F2Y) + o(T(r)),

=0
where 2" = 1/F*_ Hence, we have

Noo(r) < Tpa(r) + O(1) < m(r, %) + N1 (r) + O(1)

D

IN

(N 1 (1) +m(r, Fgoi)) +o(T(r))

FJ0°

M= 1IMs=

-
Il
o

TFg’Oi(T’) +o(T(r)) <T(r)+o(T(r)). O

Theorem 1. If

T(n+1) \/17n2+16n+3n+4}

>
q max{ 1 1
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then F(f,{H;}!_,,2) contains at most two mappings.

Proof. If n =1, by Lemma 1 we have §F(f, {H;}{_,,1) =

We prove the theorem for the case of n > 2. Assume that there exist
three distinct mappings f°, f1, f2 € F(f, {H;}_,,2).

Denote by Q the set of all indices j € {1,2,..., ¢} satisfying the following:
There exist ¢ € C and o € Z7 with |o| < 1 such that & (F°, FI', FZ*) # 0.

Set T(r) = Tyo(r) +Tpi(r) + Ty2(r).

We now prove that Q@ = (). Suppose that there exists jo € Q. By Lem-
ma 2, we have

1) 1)
I N(fi,HjO)(T) +4 Z N(fi,Hj)(r)
(312) je{l»"'zq}\{jO}
< N(r,vge) < T(r) + o(T(r).
(0<i<2).
By Theorem E, we have

q—n—2
132 NG () = T =T () + olT(r))
J#jo

and
q o
SIND L 0) 2 LTI + o1 ().

3n
Jj=0

This implies that
(1)
I N(fz o) (r) +4 Z N(fi’H].)(r)
(3‘13) J€{l,....a}\{jo}
- 4(g—n—-2)+1
- 3n
From (3.12) and (3.13), letting r — oo we get

T(r) 4+ o(T(r)).

T(n+1)

—

This is a contradiction. Hence Q = 0. Then for each 1 < j < ¢, c € C,
a € 72, |a| < 2 we have CIDO‘(F(?O,FCJI,Féﬂ) = 0. Since C is dense in C"+1,
we have that

4(g—n—-2)+1<3neq¢<

o (F/° F/N F®) =0 (1<i,j <q), forall |o] <2,

where Fijt ((;Zt ; 0 <t <2 By Lemma C, for each 1 < 4,5 < g, there

i g JO _ il @il _ . g2 92 _
exists a nonzero constant x;; such that F;" = x;; 7", F; ™ = x;;F; " or F}” =
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XijF,f 0. We now show that Xi; = 1. Indeed, if x;; # 1, without loss of gener-
ality we may assume that FZ?O = XijFiﬂ- Then Ute{lqu}\{i,j} Y (Hy) = 0.
Thus, by Theorem E, we have

(g —n=3Ty(r) < 3 N () + 0Ty (r)) = of Ty (r)).
te{l, Sai\{i,5}

Letting r — 400, we obtain ¢ — n — 3 < 0. This contradicts to n > 2.
Thus,

xij =1 (1<14,j<q).

We take an arbitrary element k& € {0,1,2} and an index i € {1,...,q}.
We will show that v(sx 7,y = V(s m,) OF V(pr ) = V(st,m,), Where {[,t} =
{0,1,2} \ {k}. In fact, if there is no index j # ¢ such that Fljk = Fz-jl or
FZ] - Fijt, then since x;; = 1 we have FZJ b= Fl] " for all j # i. This implies
that f* = f. This is a contradiction. Hence there exists j # i such that
FI% = It or F7¥ = F7'. This yields that
(3.14) VUt ) T VL E) OF V(R H) = V)
for all k € {0,1,2}, i € {1,...,q}. For any fixed index i € {1,...,q}, by
(3.14) (with k = 0) we may assume that v o g,y = V(1 g,)- By (3.14) (with
k = 2) we obtain V(fgﬂi) = V(y0,H;) OF V(y2,1,) = V(f1,H;)- Lhis implies that

(foH) = l/(fl H) = V(s2,m,) for alli € {1,...,q}. By Lemma 1, we have

fO= fl = f2 . This is a contradiction.
Thus, £7(f, {Hi}!,,2) <2 if

q>max{ T(N+1) \/17N2+16N+3N+4}

O
4 4

4. Uniqueness problem for hypersurfaces. Let f be a nonconstant
meromorphic mapping of C™ into CP". We say that a meromorphic func-
tion ¢ on C™ is “small” with respect to f if T,(r) = o(T¢(r)) as r — oo
(outside a set of finite Lebesgues measure). Denote by R¢ the field of all
“small” (with respect to f) meromorphic functions on C™.

Take a reduced representation (fy : --- : f,) of f. We say that f is
algebraically nondegenerate over Ry if there is no nonzero homogeneous
polynomial Q € R¢[xo, ..., xy,] such that Q(f) := Q(fo,..., fn) =0.

For a homogeneous polynomial @ € R¢[zo,...,zy,], denote by Q(z) the
homogeneous polynomial over C obtained by substituting a specific point
z € C™ into the coefficients of Q.

We say that a set {QJ} _o of homogeneous polynomials of the same degree
in Rylxo,...,zp] is admlsSJble if there exists z € C™ such that the system
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of equations

Qj(2)(wo,...,wy) =0
0<j<n
has only the trivial solution w = (0,...,0) in C"*!.
First of all, we give the following lemma:;:

Lemma 3. Let f be a nonconstant meromorphic mapping of C™ into CP"
and {Qj}?:o be an admissible set of homogeneous polynomials of degree d
in Rf[xo,...,xn]. Let Yo,...,vn be (n+ 1) nonzero meromorphic functions
in Ry.
Put P =v%Qb + -+ + 7,Q%, where p is a positive integer, p > n(n + 1).
Assume that f is algebraically nondegenerate over Ry. Then

| d(p = n(n + D)Ty(r) < Ny (r) + o(T(r).

Proof. Set 7; := {I = (igy...,in) € NSLH tig i, = d}.

Assume that

Qj = Z aﬂxl (j=0,...,n).
Ie1y

where a;; € Ry, ! = 3:60 oegping

Set

F=(7Q4(f) -+ : mQh(f)) : C™ — CP™.

Since f is algebraically nondegenerate over Ry we have that F' is linearly
nondegenerate (over C).

Assume that (%ﬁ'(f) D %) is a reduced representation of F,
where h is a meromorphic function on C™. Put F; = %Qg(f), i€{0,...,n}.
We have
"1
P < . =1 . A
(41) max [Q4(7)] < I (ZJW ) 12
1=

Let t = (...,tgs,...) be a family of variables, (k € {0,...,n}, I € Ty).
Set

ij = Z tﬂxl €Zjt,x], j=0,...,n.
IeTy
Let R € Z[t] be the resultant of Qo, ..., Qp.
Since {Qj }?:0 is an admissible set, R = ]5;( coyagg,...) Z0. It is clear
that R € Ry since axr € Ry.
By Theorems 3.4 and 3.5 in [10], there exists a positive integer s > d and

polynomials {]?i in Z[t, x] which are zero or homogeneous in = of

ij}ogi,jgn
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degree s — d such that
$f§: Ei]"@j fOI‘&HiE{O,...,TL}.
§j=0

Set

Rij :Rij((...,ak],...),(fo,...,fn)), 0 SZ,] §n
Then,

(4.2) fiR=) Ry Qj(fo,-... fn) forallie{0,...,n}.
0

j=
So,
2Rl = 3 Ry Qi(fos- - fo)
(4.3) =
< R;i|- s
_j:0’ 4 ke?é?ffn}@k(fo )l

for all i € {0,...,n}.
We write,

Riy= Y B, B eRry
IeT;_q
By (4.3), we have
gm0 17U - e Qu(one S
0552 ke{0,...,n}

IeT, 4

i€{0,...,n}. So,

| fil® 347
s < > %

> - max }\Qk(f07-~,fn)|

0<j<n ke{0,....,n
IeT;_4
for all i € {0,...,n}.
Thus
(4.4) If< (> ‘ﬂ}]‘ max |Qk(fo,- -, fn)l-
- 0<iz<n R 1) kefo,...,n}

IeT, 4
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By (4.1) and (4.4) we have

(45) Hm@s(izijDpww(iy;waw

0<i,j<n
IeT, 4
By (4.2) and since (WOQ;SU) R V"Q}?(f)) is a reduced representation of
F, we have
n
Nu(r) < pNe(r) + > Nyy(r) = o(Ty(r))
1=0
and

By (4.5), we have

dpiﬂm:pd/d%Lﬂa+ou>

S(r)
5}] p n 1
< /log< Z ‘RD ’h’(Z%>U+TF(T)+O(1)
o
<p/logJr Z ‘ﬂ}j‘ 0+/10g+ Zn:i o
- — R — |7y,
5(r) 0<%,7<n S(r) =0
(46) 1€T,_4
—i—/log]h!a—l—TF(T)—i-O(l)
S(r)
AR 1
<p Z m(r, — —I-Zm T, —
2 () o)
I€7,_4

+ Nh(T‘) — N% (T) + TF(T) + 0(1)
=Tr(r) + o(Ty(r)).
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By (4.6) and Theorem E, we have
| dp-Tf( ) < Tp(r) + o(T(r))

< ZN ,Q”m N(ni %QP (D) (r) + o(T¢(r))
1=0 h

< ZNS%PW)( )+N§:2“)( )+ o(Ty(r))

<y NGy (1) + 32 N@) + (n+ 2)Ny (1) + NEy () + o( Ty (7))
=0 =0

1
h
< Ny (1) + Np gy (r) + o(Ty(r))

< d(n+ 1)nTy(r) + Npjh (r) + o(Ty(r).
This implies that

| d(p = (n+ 1)) Ty(r) < N§7y (1) + (T (r)).
This has completed the proof of the lemma. O

Theorem 2. Let fi,..., fr (k> 2) be nonconstant meromorphic mappings
of C™ into CP"™ and {Q]} _o be an admissible set of homogeneous poly-
nomials of degree d in Ry, [a:o, ooy xyp]. Let yo,...,m be (n + 1) nonzero
meromorphic functions in Ry, .

Put P = 5oQb +- - - +7,Qh, where p is a positive integer, p > w
Assume that f; is algebraically nondegenerate over Ry, for alli € {1,...,k},
and

i) Zero (P(f;)) = Zero (P(f1)), for all i € {2,...,k}, and
ii) fi N-- A fr, =0 on Zero (P(f1)).
Then fi N--- A fr =0.

Proof. Assume that fi A--- A fi, Z 0. We denote by g a...np, the divisor

associated with fi A--- A fi. Denote Ny, . ., (r) the counting function

associated with the divisor jif a..np,. It is easy to see that
MflA /\fk < ZTf
Since Zero (P(f;)) = Zero (P(f1)), for all i € {2,...,k}, we have,

k
1
NI(D()fl)( ) <N Hfn- Afk < ZTf (1) < E :Tfi(r) +O(1
=1
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Thus, since Zero (P(fz)) = Zero (P(fl)), for all i € {2,...,k}, we have

k

k
(4.7) S UNBG () < nkNp (7)< nk Y Ty (r) + 0(1).
i=1 =1

By Lemma 3 we have

d(p = n(n + )Ty, (r) < NEgh () + o(Ty, (1))

1
<N () + o(Ty, (1)
< ndpTy,(r)+o(Ty (r) (1<i<k).
This implies that Ry, C Ry, for all 2 <4 < k. Thus, by Lemma 3 we have

d(p — n(n + 1)Ty,(r) < Npgy () +o(Ty, () (1 <i < k).

Combining with (4.7) we have
k k k
dlp =+ 1) ST () < 0k ST+ 0 T30 ).
i=1 i=1 i=1

This contradicts to p > w. Thus, fi A--- A fr, =0. g
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