ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXII, 2008 SECTIO A 123–142

SI DUC QUANG and TRAN VAN TAN

Uniqueness problem of meromorphic mappings with few targets

ABSTRACT. In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of \mathbb{C}^m into $\mathbb{C}P^n$.

1. Introduction. Using the Second Main Theorem of Value Distribution Theory and Borel's lemma, R. Nevanlinna [11] proved that for two nonconstant meromorphic functions f and g on the complex plane \mathbf{C} , if they have the same inverse images for five distinct values, then $f \equiv g$, and that g is a special type of linear fractional transformation of f if they have the same inverse images, counted with multiplicities, for four distinct values.

In 1975, H. Fujimoto [5] generalized Nevanlinna's result to the case of meromorphic mappings of \mathbb{C} into $\mathbb{C}P^n$. He showed that for two linearly nondegenerate meromorphic mappings f and g of \mathbb{C} into $\mathbb{C}P^n$, if they have the same inverse images, counted with multiplicities for (3n+2) hyperplanes in $\mathbb{C}P^n$ located in general position, then $f \equiv g$, and there exists a projective linear transformation L of $\mathbb{C}P^n$ to itself such that $g = L \cdot f$ if they have the same inverse images counted with multiplicities for (3n+1) hyperplanes in $\mathbb{C}P^n$ located in general position. Since that time, this problem has been studied intensively for the case of hyperplanes by H. Fujimoto ([7], [8]),

²⁰⁰⁰ Mathematics Subject Classification. 32H30, 32H04.

Key words and phrases. Meromorphic mappings, value distribution theory, uniqueness problem.

W. Stoll [17], L. Smiley [14], S. Ji [9], M. Ru [13], Z. Ye [20], G. Dethloff— T. V. Tan ([2], [3], [4]), D. D. Thai–S. D. Quang [15] and others.

Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$. For each hyperplane H, we denote by $\nu_{(f,H)}$ the map of \mathbb{C}^m into \mathbb{N}_0 whose value $\nu_{(f,H)}(a)$ $(a \in \mathbb{C}^m)$ is the intersection multiplicity of the image of f and H at f(a).

Take q hyperplanes H_1, \ldots, H_q in $\mathbb{C}P^n$ located in general position with a) $\dim(f^{-1}(H_i) \cap f^{-1}(H_j)) \le m-2$ for all $1 \le i < j \le q$.

For each positive integer (or $+\infty$) M, denote by $\mathcal{G}(\{H_j\}_{j=1}^q, f, M)$ the set of all linearly nondegenerate meromorphic mappings q of \mathbb{C}^m into $\mathbb{C}P^n$ such that

- b) $\min\{\nu_{(g,H_j)}, M\} = \min\{\nu_{(f,H_i)}, M\}, j \in \{1, \dots, q\}$ and
- c) g = f on $\bigcup_{j=1}^{q} f^{-1}(H_j)$.

In 1983, L. Smiley [14] showed that:

Theorem A. If $q \geq 3n + 2$ then $g_1 = g_2$ for any $g_1, g_2 \in \mathcal{G}(\{H_j\}_{j=1}^q, f, 1)$.

In 1998, H. Fujimoto [7] obtained the following theorem:

Theorem B. If $q \geq 3n+1$ then $\mathcal{G}(\{H_j\}_{j=1}^q, f, 2)$ contains at most two mappings.

He also gave the open question: Does his result remain valid if the number of hyperplanes is replaced by a smaller one? In 2006, G. Dethloff and T. V. Tan [4] showed that the above result of Fujimoto remains valid if q > 3n-1, $n \geq 7$. In this paper, by a different approach, we extend Theorem B to the case of

$$q > \max \left\{ \frac{7(n+1)}{4}, \frac{\sqrt{17n^2 + 16n} + 3n + 4}{4} \right\}.$$

In 1980, W. Stoll [19] obtained the following theorem:

Theorem C. Let f_1, \ldots, f_k $(k \ge 2)$ be linearly nondegenerate holomorphic mappings of \mathbb{C} into $\mathbb{C}P^n$. Let H_1, \ldots, H_q $(q \ge (k+1)n+2)$ be hyperplanes in $\mathbb{C}P^n$ located in general position. Assume that

- i) $f_1^{-1}(H_j) = \dots = f_k^{-1}(H_j)$ for all $j \in \{1, \dots, q\}$, ii) $f_1^{-1}(H_i) \cap f_1^{-1}(H_j) = \emptyset$ for all $1 \le i < j \le q$ and iii) $f_1 \wedge \dots \wedge f_k = 0$ on $\bigcup_{j=1}^q f_1^{-1}(H_j)$.

Then $f_1 \wedge \cdots \wedge f_k \equiv 0$.

In 2001, M. Ru [13] generalized the above result to the case of moving hyperplanes. In the last part of this paper, we extend Theorem C to the case of moving hypersurfaces.

Acknowledgements. The authors would like to thank Professors D. D. Thai, G. Dethloff, J. Nugochi for constant help and encouragement.

2. Preliminaries. For $z = (z_1, \ldots, z_m) \in \mathbb{C}^m$, we set

$$||z|| = \left(\sum_{j=1}^{m} |z_j|^2\right)^{1/2}$$

and define

$$B(r) = \{ z \in \mathbf{C}^m : ||z|| < r \}, \quad S(r) = \{ z \in \mathbf{C}^m : ||z|| = r \},$$
$$d^c = \frac{\sqrt{-1}}{4\pi} (\overline{\partial} - \partial), \ \mathcal{V} = \left(dd^c ||z||^2 \right)^{m-1}, \ \sigma = d^c \log ||z||^2 \wedge \left(dd^c \log ||z|| \right)^{m-1}.$$

Let F be a nonzero holomorphic function on \mathbf{C}^m . For a set $\alpha = (\alpha_1, \dots, \alpha_m)$ of nonnegative integers, we set $|\alpha| = \alpha_1 + \dots + \alpha_m$ and $\mathcal{D}^{\alpha} F = \frac{\mathcal{D}^{|\alpha|} F}{\partial^{\alpha_1} z_1 \dots \partial^{\alpha_m} z_m}$. We define the map $\nu_F : \mathbf{C}^m \to \mathbf{N}_0$ by

$$\nu_F(a) = \max\{p : \mathcal{D}^{\alpha}F(a) = 0 \text{ for all } \alpha \text{ with } |\alpha| < p\}.$$

Let φ be a nonzero meromorphic function on \mathbb{C}^m . For each $a \in \mathbb{C}^m$, we choose nonzero holomorphic functions F and G on a neighborhood U of a such that $\varphi = \frac{F}{G}$ on U and $\dim(F^{-1}(0) \cap G^{-1}(0)) \leq m-2$ and we define the map $\nu_{\varphi} : \mathbb{C}^m \longrightarrow \mathbb{N}_0$ by $\nu_{\varphi}(a) = \nu_F(a)$. Set

$$|\nu_{\varphi}| = \overline{\{z : \nu_{\varphi}(z) \neq 0\}}.$$

Let k be positive integer or $+\infty$. Set $\nu_{\varphi}^{(k)}(z) = \min\{\nu_{\varphi}(z), k\}$, and

$$N_{\varphi}^{(k)}(r) := \int_{1}^{r} \frac{n^{(k)}(t)}{t^{2m-1}} dt \quad (1 < r < +\infty)$$

where

$$n^{(k)}(t) = \int_{|\nu_{\varphi}| \cap B(t)} \nu_{\varphi}^{(k)} \cdot \mathcal{V} \text{ for } m \ge 2$$

and

$$n^{(k)}(t) = \sum_{|z| \le t} \nu_{\varphi}^{(k)}(z) \text{ for } m = 1.$$

We simply write $N_{\varphi}(r)$ for $N_{\varphi}^{(+\infty)}(r)$. We have the following Jensen's formula:

$$N_{\varphi}(r) - N_{\frac{1}{\varphi}}(r) = \int_{S(r)} \log |\varphi| \sigma - \int_{S(1)} \log |\varphi| \sigma.$$

Let f be a meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$. For arbitrary fixed homogeneous coordinates $(w_0 : \cdots : w_n)$ of $\mathbb{C}P^n$, we take a reduced representation $f = (f_0 : \cdots : f_n)$ which means that each f_i is holomorphic function on \mathbb{C}^m and $f(z) = (f_0(z) : \cdots : f_n(z))$ outside the analytic $I(f) := \{z : f_0(z) = \cdots = f_n(z) = 0\}$ of codimension ≥ 2 . Set $||f|| = \max\{|f_0|, \dots, |f_n|\}$.

The characteristic function of f is defined by

$$T_f(r) := \int_{S(r)} \log ||f|| \sigma - \int_{S(1)} \log ||f|| \sigma, \quad 1 < r < +\infty.$$

For a meromorphic function φ on \mathbb{C}^m , the characteristic function $T_{\varphi}(r)$ of φ is defined as φ is a meromorphic map of \mathbb{C}^m into $\mathbb{C}P^1$. The proximity function $m(r,\varphi)$ is defined by

$$m(r,\varphi) = \int_{S(r)} \log^+ |\varphi| \sigma,$$

where $\log^+ x = \max\{\log x, 0\}$ for $x \ge 0$.

Then

$$T_{\varphi}(r) = N_{\frac{1}{2}}(r) + m(r, \varphi) + O(1).$$

We state the First and the Second Main Theorems of Value Distribution Theory:

Let f be a nonconstant meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$. We say that a meromorphic function φ on \mathbb{C}^m is "small" with respect to f if $T_{\varphi}(r) = o(T_f(r))$ as $r \to \infty$ (outside a set of finite Lebesgues measure). Denote by \mathcal{R}_f the field of all "small" (with respect to f) meromorphic functions on \mathbb{C}^m .

Theorem D (First Main Theorem). Let f be a nonconstant meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$ and Q be a homogeneous polynomial of degree d in $\mathcal{R}_f[x_0,\ldots,x_n]$ such that $Q(f) \not\equiv 0$ then

$$N_{Q(f)}(r) \le d \cdot T_f(r) + o(T_f(r))$$
 for all $r > 1$.

For a hyperplane $H: a_0w_0 + \cdots + a_nw_n = 0$ in $\mathbb{C}P^n$ with $im f \not\subseteq H$, we denote $(f, H) := a_0f_0 + \cdots + a_nf_n$, where $(f_0 : \cdots : f_n)$ again is a reduced representation of f.

As usual, by the notation "|| P" we mean the assertion P holds for all $r \in (1, +\infty)$ excluding a subset E of $(1, +\infty)$ of finite Lebesgue measure.

Theorem E (Second Main Theorem). Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$ and H_1, \ldots, H_q $(q \ge n+1)$ hyperplanes in $\mathbb{C}P^n$ located in general position, then

$$|| (q-n-1)T_f(r) \le \sum_{i=1}^q N_{(f,H_j)}^{(n)}(r) + o(T_f(r)).$$

3. Uniqueness problem for hyperplanes. First of all, we give the following lemma, which is an extension of uniqueness theorem to the case of few hyperplanes.

Lemma 1. Let $f,g: \mathbb{C}^m \to \mathbb{C}P^n$ be two linearly nondegenerate meromorphic mappings with reduced representations $f = (f_0 : \cdots : f_n), g =$ $(g_0:\cdots:g_n)$. Let $\{H_i\}_{i=1}^q$ be q hyperplanes located in general position with $\dim(f^{-1}(H_i) \cap f^{-1}(H_j)) \leq m-2$ for all $1 \leq i < j \leq q$. Assume that

$$q > \frac{\sqrt{17n^2 + 16n} + 3n + 4}{4}$$

and

- (i) $\min\{\nu_{(f,H_i)}(z), n\} = \min\{\nu_{(g,H_i)}(z), n\}, \text{ for all } i \in \{1, \dots, q\},$ (ii) $Zero(f_j) \cap f^{-1}(H_i) = Zero(g_j) \cap f^{-1}(H_i), \text{ for all } 1 \le i \le q, 0 \le j \le q$
- (iii) $\mathcal{D}^{\alpha}\left(\frac{f_k}{f_s}\right) = \mathcal{D}^{\alpha}\left(\frac{g_k}{g_s}\right)$ on $\left(\bigcup_{i=1}^q f^{-1}(H_i)\right)\setminus \left(Zero\left(f_s\right)\right)$, for all $|\alpha| \leq 1$, $0 \leq k \neq s \leq n$.

Then $f \equiv g$.

Proof. Assume that $f \not\equiv g$. We write $H_i : \sum_{j=0}^n a_{ij}\omega_j = 0$.

For any fixed index i, $(1 \le i \le q)$, it is easy to see that there exists $j \in \{1, \dots, q\} \setminus \{i\}$ (depending on i) such that

$$P_{ij} := \frac{(f, H_i)}{(f, H_j)} - \frac{(g, H_i)}{(g, H_j)} \not\equiv 0.$$

Set

$$I \coloneqq I(f) \cup I(g) \cup \bigcup_{1 \le k < s \le q} \{z \in \mathbf{C}^m : \nu_{(f,H_k)}(z) > 0 \text{ and } \nu_{(f,H_s)}(z) > 0\}.$$

Then I is an analytic subset of codimension ≥ 2 .

Case 1. $n \ge 2$.

Let t be an arbitrary index in $\{1,\ldots,q\}\setminus\{i,j\}$. For any fixed point $z_0\notin I$ satisfying $\nu_{(f,H_t)}(z_0) > 0$, there exists $l \in \{0,\ldots,n\}$ such that $f_l(z_0)g_l(z_0) \neq 0$ 0. It follows that

$$\mathcal{D}^{\alpha} P_{ij}(z_0) = \mathcal{D}^{\alpha} \left(\frac{(f, H_i)}{(f, H_j)} - \frac{(g, H_i)}{(g, H_j)} \right) (z_0)$$

$$= \mathcal{D}^{\alpha} \left(\frac{\sum_{v=0}^{n} \frac{f_v}{f_l} a_{iv}}{\sum_{v=0}^{n} \frac{f_v}{f_l} a_{jv}} - \frac{\sum_{v=0}^{n} \frac{g_v}{g_l} a_{iv}}{\sum_{v=0}^{n} \frac{g_v}{g_l} a_{jv}} \right) (z_0) = 0,$$

for all α with $|\alpha| < 2$. So

(3.1)
$$\nu_{P_{ij}}(z_0) \ge 2.$$

For any fixed point $z_1 \notin I$ satisfying $\nu_{(f,H_i)}(z_1) > 0$, we have

$$(3.2) \nu_{P_{ij}}(z_1) \ge \min\{\nu_{(f,H_i)}(z_1), \nu_{(g,H_i)}(z_1)\} \ge \min\{\nu_{(f,H_i)}(z_1), n\}.$$

From (3.1) and (3.2), we have

(outside an analytic subset of codimension two).

It yields that

(3.3)
$$N_{P_{ij}}(r) \ge N_{(f,H_i)}^{(n)}(r) + \sum_{t \in \{1,\dots,q\} \setminus \{i,j\}} 2N_{(f,H_t)}^{(1)}(r)$$

It is clear that

(3.4)
$$N_{\frac{1}{P_{ij}}}(r) \le N(r, \nu_j),$$

where $\nu_j(z) := \max\{\nu_{(f,H_j)}(z), \nu_{(g,H_j)}(z)\}.$

We have

$$m\left(r, \frac{(f, H_i)}{(f, H_j)}\right) = T_{\frac{(f, H_i)}{(f, H_j)}}(r) - N_{(f, H_j)}(r) + O(1)$$

$$\leq T_f(r) - N_{(f, H_j)}(r) + O(1),$$

and

$$m\left(r, \frac{(g, H_i)}{(g, H_j)}\right) \le T_g(r) - N_{(g, H_j)}(r) + O(1),$$

This implies that

$$m(r, P_{ij}) \le m\left(r, \frac{(f, H_i)}{(f, H_j)}\right) + m\left(r, \frac{(g, H_i)}{(g, H_j)}\right) + O(1)$$

= $T_f(r) + T_g(r) - N_{(f, H_i)}(r) - N_{(g, H_i)}(r) + O(1).$

Combining with (3.3) and (3.4) we get

$$\begin{split} N_{(f,H_{i})}^{(n)}(r) + & \sum_{t \in \{1,\dots,q\} \setminus \{i,j\}} 2N_{(f,H_{t})}^{(1)}(r) \leq N_{P_{ij}}(r) \leq T_{P_{ij}}(r) + O(1) \\ & = N_{\frac{1}{P_{ij}}}(r) + m(r,P_{ij}) + O(1) \\ & \leq T_{f}(r) + T_{g}(r) + N(r,\nu_{j}) - N_{(f,H_{j})}(r) \\ & - N_{(g,H_{i})}(r) + o(T_{f}(r) + T_{g}(r)). \end{split}$$

This gives

$$N_{(f,H_{j})}(r) + N_{(g,H_{j})}(r) - N(r,\nu_{j}) + N_{(f,H_{i})}^{(n)}(r) + \sum_{t \in \{1,\dots,q\} \setminus \{i,j\}} 2N_{(f,H_{t})}^{(1)}(r)$$

$$\leq T_{f}(r) + T_{g}(r) + o(T_{f}(r) + T_{g}(r)).$$

On the other hand, since

$$\nu_j(z) - \nu_{(f,H_j)} - \nu_{(g,H_j)} + \min\{n, \nu_{(f,H_j)}\} \le 0$$

(outside an analytic subset of codimension two), we have

$$N(r, \nu_j) - N_{(f,H_j)}(r) - N_{(g,H_j)}(r) + N_{(f,H_j)}^{(n)}(r) \le 0.$$

Hence

$$N_{(f,H_i)}^{(n)}(r) + N_{(f,H_j)}^{(n)}(r) + \sum_{t \in \{1,\dots,q\} \setminus \{i,j\}} 2N_{(f,H_t)}^{(1)}(r)$$

$$\leq T_f(r) + T_g(r) + o(T_f(r) + T_g(r)).$$

It implies that

(3.5)
$$N_{(f,H_i)}^{(n)}(r) + \frac{2}{n} \sum_{t \in \{1,\dots,q\} \setminus \{i\}} N_{(f,H_t)}^{(n)}(r) \\ \leq T_f(r) + T_g(r) + o(T_f(r) + T_g(r)),$$

(note that $n \geq 2$).

Taking summing-up of both sides of (3.5) over all $i \in \{1, ..., q\}$, we obtain

(3.6)
$$\left(1 + \frac{2(q-1)}{n}\right) \sum_{i=1}^{q} N_{(f,H_i)}^{(n)}(r)$$

$$\leq q(T_f(r) + T_g(r)) + o(T_f f(r) + T_g(r)).$$

On the other hand, by Theorem E we have

(3.7)
$$|| (q-n-1)(T_f(r)+T_g(r)) \le 2\sum_{i=1}^q N_{(f,H_i)}^{(n)}(r)+o(T_f(r)+T_g(r)).$$

From (3.6) and (3.7), letting $r \longrightarrow \infty$ we have

$$1 + \frac{2(q-1)}{n} \le \frac{2q}{q-n-1}.$$

This contradicts to

$$q>\frac{\sqrt{17n^2+16n}+3n+4}{4}.$$

Thus $f \equiv g$.

Case 2. n = 1. We have $q \ge 4$. If $\frac{(f,H_1)}{(f,H_4)} \equiv \frac{(g,H_1)}{(g,H_4)}$, then $f \equiv g$. We now assume that

$$P_{14} := \frac{(f, H_1)}{(f, H_4)} - \frac{(g, H_1)}{(g, H_4)} \not\equiv 0.$$

Let t be an arbitrary index in $\{1, 2, 3\}$. For any fixed point $z_0 \notin I$ satisfying $\nu_{(f, H_t)}(z_0) > 0$, there exists $l \in \{0, 1\}$ such that $f_l(z_0)g_l(z_0) \neq 0$. It follows

that

$$\mathcal{D}^{\alpha} P_{14}(z_0) = \mathcal{D}^{\alpha} \left(\frac{(f, H_1)}{(f, H_4)} - \frac{(g, H_1)}{(g, H_4)} \right) (z_0)$$

$$= \mathcal{D}^{\alpha} \left(\frac{a_{10} \frac{f_0}{f_l} + a_{11} \frac{f_1}{f_l}}{a_{40} \frac{f_0}{f_l} + a_{41} \frac{f_1}{f_l}} - \frac{a_{10} \frac{g_0}{g_l} + a_{11} \frac{g_1}{g_l}}{a_{40} \frac{g_0}{g_l} + a_{41} \frac{g_1}{g_l}} \right) (z_0) = 0,$$

for all α with $|\alpha| < 2$. It implies that $\nu_{P_{14}}(z_0) \geq 2$. Hence, we have

$$\nu_{P_{14}} \geq 2 \bigl(\min\{1,\nu_{(f,H_1)}\} + \min\{1,\nu_{(f,H_2)}\} + \min\{1,\nu_{(f,H_3)}\}\bigr),$$

(outside an analytic subset of codimension two). It implies that

$$(3.8) N_{P_{14}}(r) \ge 2 \left(N_{(f,H_1)}^{(1)}(r) + N_{(f,H_2)}^{(1)}(r) + N_{(f,H_3)}^{(1)}(r) \right).$$

Let z_1 be an arbitrary pole of P_{14} such that $z_1 \notin I$. Then z_1 is a zero of (f, H_4) and there exists $l \in \{0, 1\}$ such that $f_l(z_1)g_l(z_1) \neq 0$. Then

$$\mathcal{D}^{\alpha} \left(\left(a_{10} \frac{f_0}{f_l} + a_{11} \frac{f_1}{f_l} \right) \left(a_{40} \frac{g_0}{g_l} + a_{41} \frac{g_1}{g_l} \right) - \left(a_{40} \frac{f_0}{f_l} + a_{41} \frac{f_1}{f_l} \right) \left(a_{10} \frac{g_0}{g_l} + a_{11} \frac{g_1}{g_l} \right) \right) (z_1) = 0,$$

for all α with $|\alpha| < 2$. This implies that

$$\nu_{((f,H_1)(g,H_4)-(f,H_4)(g,H_1))}(z_1) \ge 2.$$

Then, we have

$$\nu_{\frac{1}{P_{14}}}(z_1) \le \nu_{(f,H_4)}(z_1) + \nu_{(g,H_4)}(z_1) - 2.$$

Hence we see

$$u_{\frac{1}{P_{14}}} \le \nu_{(f,H_4)} + \nu_{(g,H_4)} - 2\min\{1,\nu_{(f,H_4)}\},$$

(outside an analytic subset of codimension two). This implies that

$$N_{\frac{1}{P_{14}}}(r) \le N_{(f,H_4)}(r) + N_{(g,H_4)}(r) - 2N_{(f,H_4)}^{(1)}(r).$$

Combining with (3.8) we have

$$2\left(N_{(f,H_{1})}^{(1)}(r) + N_{(f,H_{2})}^{(1)}(r) + N_{(f,H_{3})}^{(1)}(r)\right) \leq N_{P_{14}}(r) \leq T_{P_{14}}(r) + O(1)$$

$$= m(r, P_{14}) + N_{\frac{1}{P_{14}}}(r) + O(1)$$

$$\leq m\left(r, \frac{(f, H_{1})}{(f, H_{4})}\right) + m\left(r, \frac{(g, H_{1})}{(g, H_{4})}\right)$$

$$+ N_{(f,H_{4})}(r) + N_{(g,H_{4})}(r) - 2N_{(f,H_{4})}^{(1)}(r) + O(1)$$

$$= T_{\frac{(f,H_{1})}{(f,H_{4})}}(r) + T_{\frac{(g,H_{1})}{(g,H_{4})}}(r) - 2N_{(f,H_{4})}^{(1)}(r) + O(1)$$

$$\leq T_{f}(r) + T_{g}(r) - 2N_{(f,H_{4})}^{(1)}(r) + o(T_{f}(r) + T_{g}(r)).$$

It implies that

$$2\left(N_{(f,H_1)}^{(1)}(r) + N_{(f,H_2)}^{(1)}(r) + N_{(f,H_3)}^{(1)}(r) + N_{(f,H_4)}^{(1)}(r)\right) \\ \leq T_f(r) + T_g(r) + o(T_f(r) + T_g(r)).$$

On the other hand, by Theorem E, we also have

$$|| 2T_f(r) \le N_{(f,H_1)}^{(1)}(r) + N_{(f,H_2)}^{(1)}(r) + N_{(f,H_3)}^{(1)}(r) + N_{(f,H_4)}^{(1)}(r) + o(T_f(r))$$

and

$$|| 2T_g(r) \le N_{(g,H_1)}^{(1)}(r) + N_{(g,H_2)}^{(1)}(r) + N_{(g,H_3)}^{(1)}(r) + N_{(g,H_4)}^{(1)}(r) + o(T_g(r))$$

$$= N_{(f,H_1)}^{(1)}(r) + N_{(f,H_2)}^{(1)}(r) + N_{(f,H_3)}^{(1)}(r) + N_{(f,H_4)}^{(1)}(r) + o(T_g(r))$$

Hence, we have

$$|| 2(T_f(r) + T_g(r)) \le T_f(r) + T_g(r) + o(T_f(r) + T_g(r)).$$

Letting $r \longrightarrow \infty$, we have $2 \le 1$. This is a contradiction, hence $f \equiv g$. We have completed the proof of Lemma 1.

Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$ with reduced representation $f = (f_0 : \cdots : f_n)$. Let d be a positive integer and let H_1, \ldots, H_q be q hyperplanes in $\mathbb{C}P^n$ located in general position with

$$\dim \{z \in \mathbf{C}^m : \nu_{(f,H_i)}(z) > 0 \text{ and } \nu_{(f,H_j)}(z) > 0\} \le m - 2$$

$$(1 \le i < j \le q).$$

Consider the set $\mathcal{F}(f, \{H_j\}_{j=1}^q, d)$ of all linearly nondegenerate meromorphic mappings $g: \mathbb{C}^m \to \mathbb{C}P^n$ with reduced representation $g = (g_0: \cdots: g_n)$ satisfying the conditions:

- (a) $\min(\nu_{(f,H_i)}, d) = \min(\nu_{(q,H_i)}, d) \ (1 \le i \le q),$
- (b) $Zero(f_j) \cap f^{-1}(H_i) = Zero(g_j) \cap f^{-1}(H_i)$, for all $1 \le i \le q, 0 \le j \le n$,

(c) $\mathcal{D}^{\alpha}\left(\frac{f_k}{f_s}\right) = \mathcal{D}^{\alpha}\left(\frac{g_k}{g_s}\right)$ on $\left(\bigcup_{i=1}^q f^{-1}(H_i)\right)\setminus \left(Zero\left(f_s\right)\right)$, for all $|\alpha| < d$, $0 \le k \ne s \le n$.

Take M+1 maps $f^0, \ldots, f^M \in \mathcal{F}(f, \{H_j\}_{j=1}^q, d)$ with reduced representations

$$f^k := (f_0^k : \dots : f_n^k)$$

and set $T(r) := \sum_{k=0}^{M} T_{f^k}(r)$. For each $c = (c_0, \dots, c_n) \in \mathbf{C}^{n+1} \setminus \{0\}$ we put

$$(f^k, c) := \sum_{i=0}^n c_i f_i^k \quad (0 \le k \le M).$$

Denote by \mathcal{C} the set of all $c \in \mathbb{C}^{n+1} \setminus \{0\}$ such that

$$\dim\{z \in \mathbf{C}^m : (f^k, H_j)(z) = (f^k, c)(z) = 0\} \le m - 2$$

 $(1 \le j \le q, \ 0 \le k \le M).$

Lemma A ([9], Lemma 5.1). C is dense in \mathbb{C}^{n+1} .

Lemma B ([7]). For each $c \in \mathcal{C}$, we put $F_c^{jk} = \frac{(f^k, H_j)}{(f^k, c)}$. Then $T_{F_c^{jk}}(r) \leq T_{f^k}(r) + o(T(r))$.

Definition 1. Let F_0, \ldots, F_M be meromorphic functions on \mathbb{C}^m , where $M \geq 1$. Take a set $\alpha := (\alpha^0, \ldots, \alpha^{M-1})$ whose components α^k are composed of n nonnegative integers, and set $|\alpha| = |\alpha^0| + \cdots + |\alpha^{M-1}|$. We define Cartan's auxiliary function by

$$\Phi^{\alpha}(F_0,\ldots,F_M) \coloneqq F_0 \cdot F_1 \cdots F_M$$

$$\times \left| \begin{array}{cccc} 1 & 1 & \cdots & 1 \\ \mathcal{D}^{\alpha^0}(\frac{1}{F_0}) & \mathcal{D}^{\alpha^0}(\frac{1}{F_1}) & \cdots & \mathcal{D}^{\alpha^0}(\frac{1}{F_M}) \\ \vdots & \vdots & \vdots & \vdots \\ \mathcal{D}^{\alpha^{M-1}}(\frac{1}{F_0}) & \mathcal{D}^{\alpha^{M-1}}(\frac{1}{F_1}) & \cdots & \mathcal{D}^{\alpha^{M-1}}(\frac{1}{F_M}) \end{array} \right|.$$

Lemma C ([7], Proposition 3.4). If $\Phi^{\alpha}(F, G, H) = 0$ and $\Phi^{\alpha}(\frac{1}{F}, \frac{1}{G}, \frac{1}{H}) = 0$ for all α with $|\alpha| \leq 1$, then one of the following conditions holds:

- i) F = G or G = H or H = F.
- ii) $\frac{F}{G}$, $\frac{G}{H}$ and $\frac{H}{F}$ are all constant.

Lemma 2. Assume that there exists $\Phi^{\alpha} := \Phi^{\alpha}(F_c^{j_00}, \dots, F_c^{j_0M}) \not\equiv 0$ for some $c \in \mathcal{C}$, $|\alpha| \leq \frac{M(M-1)}{2}$, $d \geq |\alpha|$. Then, for each $0 \leq i \leq M$, the following holds:

$$|| \ N_{(f^i,H_{j_0})}^{(d-|\alpha|)}(r) + Md \sum_{j \neq j_0} N_{(f^i,H_j)}^{(1)}(r) \le N_{\Phi^{\alpha}}(r) \le T(r) + o(T(r)).$$

Proof. Denote by **P** the set of all β with $|\beta| \leq \frac{M(M-1)}{2}$, $d \geq |\beta|$ such that $\Phi^{\beta} = \Phi^{\beta}(F_c^{j_00}, \dots, F_c^{j_0M}) \not\equiv 0$ for some $c \in \mathcal{C}$. Let α be the *minimal* multi-index in **P** (in the lexicographic order). Set

$$I := \bigcup_{t=0}^{M} I(f^{t}) \cup \bigcup_{1 \le t < j \le q} \left((f, H_{t})^{-1} \{0\} \cap (f, H_{j})^{-1} \{0\} \right)$$
$$\cup \bigcup_{t=1}^{q} \left((f, H_{t})^{-1} \{0\} \cap (f, c)^{-1} \{0\} \right).$$

Then I is an analytic subset of codimension ≥ 2 .

Assume that a is a zero of some (f^i, H_j) , $j \neq j_0$ such that $a \notin I$. Let Γ be an irreducible component of the zero-divisor of the function (f^i, H_j) which contains a. We take a holomorphic function h on C^m satisfying: $\nu_{h|_{\Gamma}} = 1$ and $\nu_{h|_{(C^n \setminus \Gamma)}} = 0$.

By the condition (c), we have that $\varphi_i := \left(\frac{1}{h^d F^{j_0 i}} - \frac{1}{h^d F^{j_0 M}}\right)$ is a holomorphic function on a neighborhood U of a for all $i \in \{0, \ldots, M-1\}$. Since $\alpha := \min \mathbf{P}$, we have

$$\Phi^{\alpha} \coloneqq h^{Md} F^{j_0 0} \cdots F^{j_0 M} \times \left| \begin{array}{ccc} \mathcal{D}^{\alpha^0} \varphi_0 & \cdots & \mathcal{D}^{\alpha^0} \varphi_{M-1} \\ \vdots & \vdots & \vdots \\ \mathcal{D}^{\alpha^{M-1}} \varphi_0 & \cdots & \mathcal{D}^{\alpha^{M-1}} \varphi_{M-1} \end{array} \right|.$$

It implies that

$$(3.9) \nu_{\Phi^{\alpha}}(a) \ge Md.$$

Assume that b is a zero of (f^i, H_{j_0}) such that $b \notin I$. If $\nu_{(f^i, H_{j_0})}(b) \geq d$, we write

$$\Phi^{\alpha} = \sum_{\sigma \in S_{M+1}} \operatorname{sign}(\sigma) F^{j_0 0} \cdots F^{j_0 M} \times \mathcal{D}^{\alpha^0} \left(\frac{1}{F^{j_0(\sigma(2)-1)}} \right) \cdots \mathcal{D}^{\alpha^{M-1}} \left(\frac{1}{F^{j_0(\sigma(M+1)-1)}} \right).$$

Then

$$(3.10) \nu_{\Phi^{\alpha}}(b) \ge d - |\alpha|.$$

If $\nu_{(f^i,H_{j_0})}(b) < d$, then $\nu_{(f^0,H_{j_0})}(b) = \cdots = \nu_{(f^M,H_{j_0})}(b) < d$. There exists a holomorphic function h on an open neighborhood U of b such that $\nu_h = \nu_{(f^i,H_{j_0})_{|_U}}$.

We write

$$\Phi^{\alpha} = h^{-M} F_c^{j_0 0} \cdots F_c^{j_0 M}$$

$$\times \left| \begin{array}{c} \left(\mathcal{D}^{\alpha^0} \left(\frac{h}{F_c^{j_0 0}} \right) - D^{\alpha^0} \left(\frac{h}{F_c^{j_0 M}} \right) \right) & \cdots & \left(\mathcal{D}^{\alpha^0} \left(\frac{h}{F_c^{j_0 (M-1)}} \right) - D^{\alpha^0} \left(\frac{h}{F_c^{j_0 M}} \right) \right) \\ & \vdots & \vdots & \vdots \\ \left(\mathcal{D}^{\alpha^{M-1}} \left(\frac{h}{F_c^{j_0 0}} \right) - D^{\alpha^{M-1}} \left(\frac{h}{F_c^{j_0 M}} \right) \right) \cdots \left(\mathcal{D}^{\alpha^{M-1}} \left(\frac{h}{F_c^{j_0 (M-1)}} \right) - D^{\alpha^{M-1}} \left(\frac{h}{F_c^{j_0 M}} \right) \right) \right|.$$

Then

(3.11)
$$\nu_{\Phi^{\alpha}}(b) \ge \nu_{(f^i, H_{i_0})}(b).$$

From (3.9), (3.10) and (3.11), we have

$$\min \{d - |\alpha|, \nu_{(f^i, H_{j_0})}\} + Md \sum_{j \in \{1, \dots, q\} \setminus \{j_0\}} \min \{1, \nu_{(f^i, H_j)}\} \le \nu_{\Phi^{\alpha}},$$

(outside an analytic subset of codimension two). It immediately follows the first inequality in the lemma.

It is easy to see that a *pole* of Φ^{α} is a *zero* or a *pole* of some $F_c^{j_0k}$. By (3.9), (3.10) and (3.11) we have that Φ^{α} is holomorphic at all *zeros* of $F_c^{j_0i}$, $(0 \le i \le M)$. Then

$$N_{\frac{1}{\Phi^{\alpha}}}(r) \le \sum_{i=0}^{M} N_{\frac{1}{F_c^{j_0i}}}(r).$$

On the other hand, it is easy to see that

$$m(r, \Phi^{\alpha}) \leq \sum_{i=0}^{M} m(r, F_c^{j_0 i}) + O\left(\sum_{i=0}^{M} m\left(r, \frac{\mathcal{D}^{\alpha^i}(\varphi_c^{j_0 k})}{\varphi_c^{j_0 k}}\right)\right) + O(1)$$

$$\leq \sum_{i=0}^{M} m(r, F_c^{j_0 i}) + o(T(r)),$$

where $\varphi_c^{j_0k} = 1/F_c^{j_0k}$. Hence, we have

$$\begin{split} N_{\Phi^{\alpha}}(r) &\leq T_{\Phi^{\alpha}}(r) + O(1) \leq m(r, \Phi^{\alpha}) + N_{\frac{1}{\Phi^{\alpha}}}(r) + O(1) \\ &\leq \sum_{i=0}^{M} \left(N_{\frac{1}{F_{c}^{j_{0}i}}}(r) + m(r, F_{c}^{j_{0}i}) \right) + o(T(r)) \\ &= \sum_{i=0}^{M} T_{F_{c}^{j_{0}i}}(r) + o(T(r)) \leq T(r) + o(T(r)). \end{split}$$

Theorem 1. If

$$q > \max \left\{ \frac{7(n+1)}{4}, \frac{\sqrt{17n^2 + 16n} + 3n + 4}{4} \right\}$$

then $\mathcal{F}(f, \{H_i\}_{i=1}^q, 2)$ contains at most two mappings.

Proof. If n=1, by Lemma 1 we have $\sharp \mathcal{F}(f, \{H_i\}_{i=1}^q, 1)=1$.

We prove the theorem for the case of $n \geq 2$. Assume that there exist

three distinct mappings $f^0, f^1, f^2 \in \mathcal{F}(f, \{H_i\}_{i=1}^q, 2)$. Denote by \mathcal{Q} the set of all indices $j \in \{1, 2, \dots, q\}$ satisfying the following: There exist $c \in \mathcal{C}$ and $\alpha \in \mathbf{Z}^n_+$ with $|\alpha| \leq 1$ such that $\Phi^{\alpha}(F_c^{j0}, F_c^{j1}, F_c^{j2}) \not\equiv 0$. Set $T(r) = T_{f^0}(r) + T_{f^1}(r) + T_{f^2}(r)$.

We now prove that $Q = \emptyset$. Suppose that there exists $j_0 \in Q$. By Lemma 2, we have

(3.12)
$$|| N_{(f^{i},H_{j_{0}})}^{(1)}(r) + 4 \sum_{j \in \{1,\dots,q\} \setminus \{j_{0}\}} N_{(f^{i},H_{j})}^{(1)}(r)$$

$$\leq N(r,\nu_{\Phi^{\alpha}}) \leq T(r) + o(T(r)).$$

 $(0 \le i \le 2).$

By Theorem E, we have

$$\|\sum_{i\neq j_0} N_{(f^i,H_j)}^{(1)}(r) \ge \frac{q-n-2}{3n} T(r) + o(T(r))$$

and

$$\sum_{i=0}^{q} N_{(f^i, H_j)}^{(1)}(r) \ge \frac{q-n-1}{3n} T(r) + o(T(r)).$$

This implies that

(3.13)
$$|| N_{(f^{i},H_{j_{0}})}^{(1)}(r) + 4 \sum_{j \in \{1,\dots,q\} \setminus \{j_{0}\}} N_{(f^{i},H_{j})}^{(1)}(r)$$

$$\geq \frac{4(q-n-2)+1}{3n} T(r) + o(T(r)).$$

From (3.12) and (3.13), letting $r \to \infty$ we get

$$4(q-n-2)+1 \leq 3n \Leftrightarrow q \leq \frac{7(n+1)}{4}.$$

This is a contradiction. Hence $\mathcal{Q} = \emptyset$. Then for each $1 \leq j \leq q$, $c \in \mathcal{C}$, $\alpha \in \mathbf{Z}^n_+$, $|\alpha| < 2$ we have $\Phi^{\alpha}(F_c^{j0}, F_c^{j1}, F_c^{j2}) \equiv 0$. Since \mathcal{C} is dense in \mathbf{C}^{n+1} , we have that

$$\Phi^{\alpha}(F_i^{j0}, F_i^{j1}, F_i^{j2}) \equiv 0 \ (1 \le i, j \le q), \text{ for all } |\alpha| < 2,$$

where $F_i^{jt} := \frac{(f^t, H_j)}{(f^t, H_i)}$, $0 \le t \le 2$. By Lemma C, for each $1 \le i, j \le q$, there exists a nonzero constant χ_{ij} such that $F_i^{j0} = \chi_{ij}F_i^{j1}$, $F_i^{j1} = \chi_{ij}F_i^{j2}$ or $F_i^{j2} = \chi_{ij}F_i^{j2}$ $\chi_{ij}F_i^{j0}$. We now show that $\chi_{ij}=1$. Indeed, if $\chi_{ij}\neq 1$, without loss of generality we may assume that $F_i^{j0}=\chi_{ij}F_i^{j1}$. Then $\bigcup_{t\in\{1,\dots,q\}\setminus\{i,j\}}f^{-1}(H_t)=\emptyset$. Thus, by Theorem E, we have

$$|| (q-n-3)T_f(r) \le \sum_{t \in \{1,\dots,q\} \setminus \{i,j\}} N_{(f,H_t)}^{(n)}(r) + o(T_f(r)) = o(T_f(r)).$$

Letting $r \longrightarrow +\infty$, we obtain $q - n - 3 \le 0$. This contradicts to $n \ge 2$. Thus,

$$\chi_{ij} = 1 \quad (1 \le i, j \le q).$$

We take an arbitrary element $k \in \{0, 1, 2\}$ and an index $i \in \{1, ..., q\}$. We will show that $\nu_{(f^k, H_i)} = \nu_{(f^l, H_i)}$ or $\nu_{(f^k, H_i)} = \nu_{(f^t, H_i)}$, where $\{l, t\} := \{0, 1, 2\} \setminus \{k\}$. In fact, if there is no index $j \neq i$ such that $F_i^{jk} = F_i^{jl}$ or $F_i^{jk} = F_i^{jt}$, then since $\chi_{ij} = 1$ we have $F_i^{jl} = F_i^{jt}$ for all $j \neq i$. This implies that $f^k \equiv f^l$. This is a contradiction. Hence there exists $j \neq i$ such that $F_i^{jk} = F_i^{jl}$ or $F_i^{jk} = F_i^{jt}$. This yields that

(3.14)
$$\nu_{(f^k,H_i)} = \nu_{(f^l,H_i)} \text{ or } \nu_{(f^k,H_i)} = \nu_{(f^t,H_i)}$$

for all $k \in \{0, 1, 2\}$, $i \in \{1, ..., q\}$. For any fixed index $i \in \{1, ..., q\}$, by (3.14) (with k = 0) we may assume that $\nu_{(f^0, H_i)} = \nu_{(f^1, H_i)}$. By (3.14) (with k = 2) we obtain $\nu_{(f^2, H_i)} = \nu_{(f^0, H_i)}$ or $\nu_{(f^2, H_i)} = \nu_{(f^1, H_i)}$. This implies that $\nu_{(f^0, H_i)} = \nu_{(f^1, H_i)} = \nu_{(f^2, H_i)}$ for all $i \in \{1, ..., q\}$. By Lemma 1, we have $f^0 \equiv f^1 \equiv f^2$. This is a contradiction.

Thus, $\sharp \mathcal{F}(f, \{H_i\}_{i=1}^q, 2) \le 2$ if

$$q > \max\left\{\frac{7(N+1)}{4}, \frac{\sqrt{17N^2 + 16N} + 3N + 4}{4}\right\}.$$

4. Uniqueness problem for hypersurfaces. Let f be a nonconstant meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$. We say that a meromorphic function φ on \mathbb{C}^m is "small" with respect to f if $T_{\varphi}(r) = o(T_f(r))$ as $r \to \infty$ (outside a set of finite Lebesgues measure). Denote by \mathcal{R}_f the field of all "small" (with respect to f) meromorphic functions on \mathbb{C}^m .

Take a reduced representation $(f_0 : \cdots : f_n)$ of f. We say that f is algebraically nondegenerate over \mathcal{R}_f if there is no nonzero homogeneous polynomial $Q \in \mathcal{R}_f[x_0, \ldots, x_n]$ such that $Q(f) := Q(f_0, \ldots, f_n) \equiv 0$.

For a homogeneous polynomial $Q \in \mathcal{R}_f[x_0, \dots, x_n]$, denote by Q(z) the homogeneous polynomial over \mathbf{C} obtained by substituting a specific point $z \in \mathbf{C}^m$ into the coefficients of Q.

We say that a set $\{Q_j\}_{j=0}^n$ of homogeneous polynomials of the same degree in $\mathcal{R}_f[x_0,\ldots,x_n]$ is admissible if there exists $z\in\mathbf{C}^m$ such that the system

of equations

$$\begin{cases} Q_j(z)(w_0, \dots, w_n) = 0\\ 0 \le j \le n \end{cases}$$

has only the trivial solution w = (0, ..., 0) in \mathbb{C}^{n+1} .

First of all, we give the following lemma:

Lemma 3. Let f be a nonconstant meromorphic mapping of \mathbb{C}^m into $\mathbb{C}P^n$ and $\{Q_j\}_{j=0}^n$ be an admissible set of homogeneous polynomials of degree d in $\mathcal{R}_f[x_0,\ldots,x_n]$. Let γ_0,\ldots,γ_n be (n+1) nonzero meromorphic functions in \mathcal{R}_f .

Put $P = \gamma_0 Q_0^p + \cdots + \gamma_n Q_n^p$, where p is a positive integer, p > n(n+1). Assume that f is algebraically nondegenerate over \mathcal{R}_f . Then

$$||d(p-n(n+1))T_f(r)| \le N_{P(f)}^{(n)}(r) + o(T_f(r)).$$

Proof. Set $\mathcal{T}_d := \{I := (i_0, \dots, i_n) \in \mathbf{N}_0^{n+1} : i_0 + \dots + i_n = d\}.$ Assume that

$$Q_j = \sum_{I \in \mathcal{I}_d} a_{jI} x^I \quad (j = 0, \dots, n).$$

where $a_{jI} \in \mathcal{R}_f$, $x^I = x_0^{i_0} \cdots x_n^{i_n}$. Set

$$F = (\gamma_0 Q_0^p(f) : \dots : \gamma_n Q_n^p(f)) : \mathbf{C}^m \longrightarrow \mathbf{C}P^n.$$

Since f is algebraically nondegenerate over \mathcal{R}_f we have that F is linearly nondegenerate (over \mathbf{C}).

Assume that $\left(\frac{\gamma_0 Q_0^p(f)}{h} : \cdots : \frac{\gamma_n Q_n^p(f)}{h}\right)$ is a reduced representation of F,

where h is a meromorphic function on \mathbb{C}^m . Put $F_i = \frac{\gamma_i Q_i^p(f)}{h}$, $i \in \{0, \dots, n\}$. We have

(4.1)
$$\max_{0 \le j \le n} |Q_j^p(f)| \le |h| \cdot \left(\sum_{i=0}^n \left| \frac{1}{\gamma_i} \right| \right) \cdot \max_{1 \le i \le n+1} |F_i|.$$

Let $t = (\dots, t_{kI}, \dots)$ be a family of variables, $(k \in \{0, \dots, n\}, I \in \mathcal{T}_d)$. Set

$$\widetilde{Q}_j = \sum_{I \in \mathcal{I}_d} t_{jI} x^I \in \mathbf{Z}[t, x], \quad j = 0, \dots, n.$$

Let $\widetilde{R} \in \mathbf{Z}[t]$ be the resultant of $\widetilde{Q}_0, \dots, \widetilde{Q}_n$.

Since $\{Q_j\}_{j=0}^n$ is an admissible set, $R := \widetilde{R}(\ldots, a_{kI}, \ldots) \not\equiv 0$. It is clear that $R \in \mathcal{R}_f$ since $a_{kI} \in \mathcal{R}_f$.

By Theorems 3.4 and 3.5 in [10], there exists a positive integer s > d and polynomials $\{\widetilde{R}_{ij}\}_{0 \le i,j \le n}$ in $\mathbf{Z}[t,x]$ which are zero or homogeneous in x of

degree s - d such that

$$x_i^s \cdot \widetilde{R} = \sum_{j=0}^n \widetilde{R}_{ij} \cdot \widetilde{Q}_j$$
 for all $i \in \{0, \dots, n\}$.

Set

$$R_{ij} = \widetilde{R}_{ij}((\ldots, a_{kI}, \ldots), (f_0, \ldots, f_n)), \quad 0 \le i, j \le n.$$

Then,

(4.2)
$$f_i^s \cdot R = \sum_{j=0}^n R_{ij} \cdot Q_j(f_0, \dots, f_n) \text{ for all } i \in \{0, \dots, n\}.$$

So,

(4.3)
$$|f_i^s \cdot R| = \left| \sum_{j=0}^n R_{ij} \cdot Q_j(f_0, \dots, f_n) \right| \\ \leq \sum_{j=0}^n |R_{ij}| \cdot \max_{k \in \{0, \dots, n\}} |Q_k(f_0, \dots, f_n)|$$

for all $i \in \{0, \dots, n\}$. We write,

$$R_{ij} = \sum_{I \in \mathcal{T}_{s-d}} \beta_I^{ij} f^I, \quad \beta_I^{ij} \in \mathcal{R}_f.$$

By (4.3), we have

$$|f_i^s \cdot R| \le \left(\sum_{\substack{0 \le j \le n \\ I \in \mathcal{T}}} |\beta_I^{ij}| \cdot ||f||^{s-d}\right) \cdot \max_{k \in \{0,\dots,n\}} |Q_k(f_0,\dots,f_n)|,$$

 $i \in \{0, \dots, n\}$. So,

$$\frac{|f_i|^s}{\|f\|^{s-d}} \le \left(\sum_{\substack{0 \le j \le n \\ I \in \mathcal{T}_{s-d}}} \left| \frac{\beta_I^{ij}}{R} \right| \right) \cdot \max_{k \in \{0, \dots, n\}} |Q_k(f_0, \dots, f_n)|$$

for all $i \in \{0, \dots, n\}$. Thus

(4.4)
$$||f||^d \le \left(\sum_{\substack{0 \le i,j \le n \\ I \in \mathcal{I}_{c-d}}} \left| \frac{\beta_I^{ij}}{R} \right| \right) \max_{k \in \{0,\dots,n\}} |Q_k(f_0,\dots,f_n)|.$$

By (4.1) and (4.4) we have

By (4.2) and since $\left(\frac{\gamma_0 Q_0^p(f)}{h} : \dots : \frac{\gamma_n Q_n^p(f)}{h}\right)$ is a reduced representation of F, we have

$$N_h(r) \le pN_R(r) + \sum_{i=0}^{n} N_{\gamma_i}(r) = o(T_f(r))$$

and

$$N_{\frac{1}{h}}(r) \le \sum_{\substack{0 \le j \le n \\ I \in \mathcal{I}_d}} N_{\frac{1}{a_{jI}}}(r) + \sum_{i=0}^n N_{\frac{1}{\gamma_i}} = o(T_f(r)).$$

By (4.5), we have

$$dp \cdot T_{f}(r) = pd \int_{S(r)} \log ||f|| \sigma + O(1)$$

$$\leq \int_{S(r)} \log \left(\sum_{\substack{0 \leq i, j \leq n \\ I \in T_{s-d}}} \left| \frac{\beta_{I}^{ij}}{R} \right| \right)^{p} |h| \left(\sum_{i=0}^{n} \left| \frac{1}{\gamma_{i}} \right| \right) \sigma + T_{F}(r) + O(1)$$

$$\leq p \int_{S(r)} \log^{+} \left(\sum_{\substack{0 \leq i, j \leq n \\ I \in T_{s-d}}} \left| \frac{\beta_{I}^{ij}}{R} \right| \right) \sigma + \int_{S(r)} \log^{+} \left(\sum_{i=0}^{n} \left| \frac{1}{\gamma_{i}} \right| \right) \sigma$$

$$+ \int_{S(r)} \log |h| \sigma + T_{F}(r) + O(1)$$

$$\leq p \sum_{\substack{0 \leq i, j \leq n \\ I \in T_{s-d}}} m \left(r, \frac{\beta_{I}^{ij}}{R} \right) + \sum_{i=0}^{n} m \left(r, \frac{1}{\gamma_{i}} \right)$$

$$+ N_{h}(r) - N_{\frac{1}{h}}(r) + T_{F}(r) + O(1)$$

$$= T_{F}(r) + o(T_{f}(r)).$$

By (4.6) and Theorem E, we have

$$|| dp \cdot T_{f}(r) \leq T_{F}(r) + o(T_{f}(r))$$

$$\leq \sum_{i=0}^{n} N_{\frac{\gamma_{i}Q_{i}^{p}(f)}{h}}^{(n)}(r) + N_{\sum_{i=0}^{n}}^{(n)} \frac{\gamma_{i}Q_{i}^{p}(f)}{h}}(r) + o(T_{f}(r))$$

$$\leq \sum_{i=0}^{n} N_{\frac{\gamma_{i}Q_{i}^{p}(f)}{h}}^{(n)}(r) + N_{\frac{P(f)}{h}}^{(n)}(r) + o(T_{f}(r))$$

$$\leq \sum_{i=0}^{n} N_{Q_{i}^{p}(f)}^{(n)}(r) + \sum_{i=0}^{n} N_{\gamma_{i}}^{(n)}(r) + (n+2)N_{\frac{1}{h}}(r) + N_{P(f)}^{(n)}(r) + o(T_{f}(r))$$

$$\leq \sum_{i=0}^{n} nN_{Q_{i}(f)}(r) + N_{P(f)}^{(n)}(r) + o(T_{f}(r))$$

$$\leq d(n+1)nT_{f}(r) + N_{P(f)}^{(n)}(r) + o(T_{f}(r)).$$

This implies that

$$||d(p-(n+1)n)T_f(r)| \le N_{P(f)}^{(n)}(r) + o(T_f(r)).$$

This has completed the proof of the lemma.

Theorem 2. Let f_1, \ldots, f_k $(k \ge 2)$ be nonconstant meromorphic mappings of \mathbb{C}^m into $\mathbb{C}P^n$ and $\{Q_j\}_{j=0}^n$ be an admissible set of homogeneous polynomials of degree d in $\mathcal{R}_{f_1}[x_0, \ldots, x_n]$. Let $\gamma_0, \ldots, \gamma_n$ be (n+1) nonzero meromorphic functions in \mathcal{R}_{f_1} .

Put $P = \gamma_0 Q_0^p + \dots + \gamma_n Q_n^p$, where p is a positive integer, $p > \frac{n(d(n+1)+k)}{d}$. Assume that f_i is algebraically nondegenerate over \mathcal{R}_{f_i} for all $i \in \{1, \dots, k\}$, and

- i) $Zero(P(f_i)) = Zero(P(f_1))$, for all $i \in \{2, ..., k\}$, and
- ii) $f_1 \wedge \cdots \wedge f_k = 0$ on $Zero(P(f_1))$.

Then $f_1 \wedge \cdots \wedge f_k \equiv 0$.

Proof. Assume that $f_1 \wedge \cdots \wedge f_k \not\equiv 0$. We denote by $\mu_{f_1 \wedge \cdots \wedge f_k}$ the divisor associated with $f_1 \wedge \cdots \wedge f_k$. Denote $N_{\mu_{f_1 \wedge \cdots \wedge f_k}}(r)$ the counting function associated with the divisor $\mu_{f_1 \wedge \cdots \wedge f_k}$. It is easy to see that

$$N_{\mu_{f_1 \wedge \dots \wedge f_k}}(r) \leq \sum_{i=1}^k T_{f_i}(r) + O(1).$$

Since $Zero(P(f_i)) = Zero(P(f_1))$, for all $i \in \{2, ..., k\}$, we have,

$$N_{P(f_1)}^{(1)}(r) \le N_{\mu_{f_1 \wedge \dots \wedge f_k}}(r) \le \sum_{i=1}^k T_{f_i}(r) + O(1) \le \sum_{i=1}^k T_{f_i}(r) + O(1).$$

Thus, since $Zero(P(f_i)) = Zero(P(f_1))$, for all $i \in \{2, ..., k\}$, we have

(4.7)
$$\sum_{i=1}^{k} N_{P(f_i)}^{(n)}(r) \le nk N_{P(f_1)}^{(1)}(r) \le nk \sum_{i=1}^{k} T_{f_i}(r) + O(1).$$

By Lemma 3 we have

$$d(p - n(n+1))T_{f_1}(r) \leq N_{P(f_1)}^{(n)}(r) + o(T_{f_1}(r))$$

$$\leq nN_{P(f_i)}^{(1)}(r) + o(T_{f_1}(r))$$

$$\leq ndpT_{f_i}(r) + o(T_{f_1}(r)) \quad (1 \leq i \leq k).$$

This implies that $\mathcal{R}_{f_1} \subset \mathcal{R}_{f_i}$ for all $2 \leq i \leq k$. Thus, by Lemma 3 we have

$$d(p - n(n+1))T_{f_i}(r) \le N_{P(f_i)}^{(n)}(r) + o(T_{f_i}(r)) \quad (1 \le i \le k).$$

Combining with (4.7) we have

$$d(p - n(n+1)) \sum_{i=1}^{k} T_{f_i}(r) \le nk \sum_{i=1}^{k} T_{f_i}(r) + o\left(\sum_{i=1}^{k} T_{f_i}(r)\right).$$

This contradicts to $p > \frac{n(d(n+1)+k)}{d}$. Thus, $f_1 \wedge \cdots \wedge f_k \equiv 0$.

References

- Aihara, Y., Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61
- [2] Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, Nagoya Math. J. 181 (2006), 75–101.
- [3] Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets, Ann. Fac. Sci. Toulouse Math. (6) **15** (2006), 217–242.
- [4] Dethloff, G., Tan, T. V., An extension of uniqueness theorems for meromorphic mappings, Vietnam J. Math. **34** (2006), 71–94.
- [5] Fujimoto, H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1–23.
- [6] Fujimoto, H., Nonintegrated defect relation for meromorphic maps of complete Kähler manifolds into $\mathbf{P}^{N_1}(\mathbf{C}) \times \cdots \times \mathbf{P}^{N_k}(\mathbf{C})$, Japan. J. Math. (N. S.) 11 (1985), 233–264.
- [7] Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131–152.
- [8] Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161–188.
- [9] Ji, S., Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323–348.
- [10] Lang, S., Algebra, Third Edition, Addison-Wesley, 1993.
- [11] Nevanlinna, R., Einige Eideutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367–391.
- [12] Noguchi, J., Ochiai, T., Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr. 80, Amer. Math. Soc., Providence, Rhode Island, 1990.

- [13] Ru, M., A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701–2707.
- [14] Smiley, L., Geometric conditions for unicity of holomorphic curves, Contemp. Math. 25 (1983), 149–154.
- [15] Thai, D. D., Quang, S. D., Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, Internat. J. Math. 17 (2006), 1223– 1257.
- [16] Thai, D. D., Tan, T. V., Uniqueness problem of meromorphic mappings for moving hypersurfaces, preprint.
- [17] Stoll, W., Introduction to value distribution theory of meromorphic maps, Complex analysis (Trieste, 1980), Lecture Notes in Math., 950, Springer, Berlin–New York, 1982, 210–359.
- [18] Stoll, W., Value distribution theory for meromorphic maps, Aspects of Mathematics, E 7 Friedr. Vieweg & Sohn, Braunschweig, 1985.
- [19] Stoll, W., On the propagation of dependences, Pacific J. of Math., 139 (1989), 311–337.
- [20] Ye, Z., A unicity theorem for meromorphic mappings, Houston J. Math. 24 (1998), 519–531.

Si Duc Quang Department of Mathematics Hanoi National University of Education 136-Xuan Thuy street, Cau Giay, Hanoi Vietnam

e-mail: quangdhsp@yahoo.com

Tran Van Tan Department of Mathematics Hanoi National University of Education 136-Xuan Thuy street, Cau Giay, Hanoi Vietnam

e-mail: tranvantanhn@yahoo.com

Received February 24, 2008