ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA

VOL. LXII, 2008
SECTIO A
123-142

SI DUC QUANG and TRAN VAN TAN

Uniqueness problem of meromorphic mappings with few targets

Abstract

In this paper, using techniques of value distribution theory, we give some uniqueness theorems for meromorphic mappings of \mathbf{C}^{m} into $\mathbf{C} P^{n}$.

1. Introduction. Using the Second Main Theorem of Value Distribution Theory and Borel's lemma, R. Nevanlinna [11] proved that for two nonconstant meromorphic functions f and g on the complex plane \mathbf{C}, if they have the same inverse images for five distinct values, then $f \equiv g$, and that g is a special type of linear fractional transformation of f if they have the same inverse images, counted with multiplicities, for four distinct values.

In $1975, \mathrm{H}$. Fujimoto [5] generalized Nevanlinna's result to the case of meromorphic mappings of \mathbf{C} into $\mathbf{C} P^{n}$. He showed that for two linearly nondegenerate meromorphic mappings f and g of \mathbf{C} into $\mathbf{C} P^{n}$, if they have the same inverse images, counted with multiplicities for $(3 n+2)$ hyperplanes in $\mathbf{C} P^{n}$ located in general position, then $f \equiv g$, and there exists a projective linear transformation L of $\mathbf{C} P^{n}$ to itself such that $g=L \cdot f$ if they have the same inverse images counted with multiplicities for $(3 n+1)$ hyperplanes in $\mathbf{C} P^{n}$ located in general position. Since that time, this problem has been studied intensively for the case of hyperplanes by H. Fujimoto ([7], [8]),

[^0]W. Stoll [17], L. Smiley [14], S. Ji [9], M. Ru [13], Z. Ye [20], G. DethloffT. V. Tan ([2], [3], [4]), D. D. Thai-S. D. Quang [15] and others.

Let f be a linearly nondegenerate meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$. For each hyperplane H , we denote by $\nu_{(f, H)}$ the map of \mathbf{C}^{m} into \mathbf{N}_{0} whose value $\nu_{(f, H)}(a)\left(a \in \mathbf{C}^{m}\right)$ is the intersection multiplicity of the image of f and H at $f(a)$.

Take q hyperplanes H_{1}, \ldots, H_{q} in $\mathbf{C} P^{n}$ located in general position with a) $\operatorname{dim}\left(f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)\right) \leq m-2$ for all $1 \leq i<j \leq q$.

For each positive integer (or $+\infty$) M, denote by $\mathcal{G}\left(\left\{H_{j}\right\}_{j=1}^{q}, f, M\right)$ the set of all linearly nondegenerate meromorphic mappings g of \mathbf{C}^{m} into $\mathbf{C} P^{n}$ such that
b) $\min \left\{\nu_{\left(g, H_{j}\right)}, M\right\}=\min \left\{\nu_{\left(f, H_{j}\right)}, M\right\}, j \in\{1, \ldots, q\}$ and
c) $g=f$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$.

In 1983, L. Smiley [14] showed that:
Theorem A. If $q \geq 3 n+2$ then $g_{1}=g_{2}$ for any $g_{1}, g_{2} \in \mathcal{G}\left(\left\{H_{j}\right\}_{j=1}^{q}, f, 1\right)$.
In 1998, H. Fujimoto [7] obtained the following theorem:
Theorem B. If $q \geq 3 n+1$ then $\mathcal{G}\left(\left\{H_{j}\right\}_{j=1}^{q}, f, 2\right)$ contains at most two mappings.

He also gave the open question: Does his result remain valid if the number of hyperplanes is replaced by a smaller one? In 2006, G. Dethloff and T. V. Tan [4] showed that the above result of Fujimoto remains valid if $q \geq 3 n-1$, $n \geq 7$. In this paper, by a different approach, we extend Theorem B to the case of

$$
q>\max \left\{\frac{7(n+1)}{4}, \frac{\sqrt{17 n^{2}+16 n}+3 n+4}{4}\right\} .
$$

In 1980, W. Stoll [19] obtained the following theorem:
Theorem C. Let $f_{1}, \ldots, f_{k}(k \geq 2)$ be linearly nondegenerate holomorphic mappings of \mathbf{C} into $\mathbf{C} P^{n}$. Let $H_{1}, \ldots, H_{q}(q \geq(k+1) n+2)$ be hyperplanes in $\mathbf{C} P^{n}$ located in general position. Assume that
i) $f_{1}^{-1}\left(H_{j}\right)=\cdots=f_{k}^{-1}\left(H_{j}\right)$ for all $j \in\{1, \ldots, q\}$,
ii) $f_{1}^{-1}\left(H_{i}\right) \cap f_{1}^{-1}\left(H_{j}\right)=\emptyset$ for all $1 \leq i<j \leq q$ and
iii) $f_{1} \wedge \cdots \wedge f_{k}=0$ on $\bigcup_{j=1}^{q} f_{1}^{-1}\left(H_{j}\right)$.

Then $f_{1} \wedge \cdots \wedge f_{k} \equiv 0$.
In 2001, M. Ru [13] generalized the above result to the case of moving hyperplanes. In the last part of this paper, we extend Theorem C to the case of moving hypersurfaces.

Acknowledgements. The authors would like to thank Professors D. D. Thai, G. Dethloff, J. Nugochi for constant help and encouragement.
2. Preliminaries. For $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbf{C}^{m}$, we set

$$
\|z\|=\left(\sum_{j=1}^{m}\left|z_{j}\right|^{2}\right)^{1 / 2}
$$

and define

$$
\begin{gathered}
B(r)=\left\{z \in \mathbf{C}^{m}:\|z\|<r\right\}, \quad S(r)=\left\{z \in \mathbf{C}^{m}:\|z\|=r\right\} \\
d^{c}=\frac{\sqrt{-1}}{4 \pi}(\bar{\partial}-\partial), \quad \mathcal{V}=\left(d d^{c}\|z\|^{2}\right)^{m-1}, \sigma=d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|\right)^{m-1}
\end{gathered}
$$

Let F be a nonzero holomorphic function on \mathbf{C}^{m}. For a set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of nonnegative integers, we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$ and $\mathcal{D}^{\alpha} F=\frac{\mathcal{D}^{|\alpha|} F}{\partial^{\alpha} 1 z_{1} \ldots \partial^{\alpha m} z_{m}}$. We define the map $\nu_{F}: \mathbf{C}^{m} \rightarrow \mathbf{N}_{0}$ by

$$
\nu_{F}(a)=\max \left\{p: \mathcal{D}^{\alpha} F(a)=0 \text { for all } \alpha \text { with }|\alpha|<p\right\}
$$

Let φ be a nonzero meromorphic function on \mathbf{C}^{m}. For each $a \in \mathbf{C}^{m}$, we choose nonzero holomorphic functions F and G on a neighborhood U of a such that $\varphi=\frac{F}{G}$ on U and $\operatorname{dim}\left(F^{-1}(0) \cap G^{-1}(0)\right) \leq m-2$ and we define the $\operatorname{map} \nu_{\varphi}: \mathbf{C}^{m} \longrightarrow \mathbf{N}_{0}$ by $\nu_{\varphi}(a)=\nu_{F}(a)$. Set

$$
\left|\nu_{\varphi}\right|=\overline{\left\{z: \nu_{\varphi}(z) \neq 0\right\}}
$$

Let k be positive integer or $+\infty$. Set $\nu_{\varphi}^{(k)}(z)=\min \left\{\nu_{\varphi}(z), k\right\}$, and

$$
N_{\varphi}^{(k)}(r):=\int_{1}^{r} \frac{n^{(k)}(t)}{t^{2 m-1}} d t \quad(1<r<+\infty)
$$

where

$$
n^{(k)}(t)=\int_{\left|\nu_{\varphi}\right| \cap B(t)} \nu_{\varphi}^{(k)} \cdot \mathcal{V} \text { for } m \geq 2
$$

and

$$
n^{(k)}(t)=\sum_{|z| \leq t} \nu_{\varphi}^{(k)}(z) \text { for } m=1
$$

We simply write $N_{\varphi}(r)$ for $N_{\varphi}^{(+\infty)}(r)$. We have the following Jensen's formula:

$$
N_{\varphi}(r)-N_{\frac{1}{\varphi}}(r)=\int_{S(r)} \log |\varphi| \sigma-\int_{S(1)} \log |\varphi| \sigma
$$

Let f be a meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$. For arbitrary fixed homogeneous coordinates $\left(w_{0}: \cdots: w_{n}\right)$ of $\mathbf{C} P^{n}$, we take a reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$ which means that each f_{i} is holomorphic function on \mathbf{C}^{m} and $f(z)=\left(f_{0}(z): \cdots: f_{n}(z)\right)$ outside the analytic $I(f):=\left\{z: f_{0}(z)=\cdots=f_{n}(z)=0\right\}$ of codimension ≥ 2. Set $\|f\|=\max \left\{\left|f_{0}\right|, \ldots,\left|f_{n}\right|\right\}$.

The characteristic function of f is defined by

$$
T_{f}(r):=\int_{S(r)} \log \|f\| \sigma-\int_{S(1)} \log \|f\| \sigma, \quad 1<r<+\infty .
$$

For a meromorphic function φ on \mathbf{C}^{m}, the characteristic function $T_{\varphi}(r)$ of φ is defined as φ is a meromorphic map of \mathbf{C}^{m} into $\mathbf{C} P^{1}$. The proximity function $m(r, \varphi)$ is defined by

$$
m(r, \varphi)=\int_{S(r)} \log ^{+}|\varphi| \sigma,
$$

where $\log ^{+} x=\max \{\log x, 0\}$ for $x \geq 0$.
Then

$$
T_{\varphi}(r)=N_{\frac{1}{\varphi}}(r)+m(r, \varphi)+O(1)
$$

We state the First and the Second Main Theorems of Value Distribution Theory:

Let f be a nonconstant meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$. We say that a meromorphic function φ on \mathbf{C}^{m} is "small" with respect to f if $T_{\varphi}(r)=o\left(T_{f}(r)\right)$ as $r \rightarrow \infty$ (outside a set of finite Lebesgues measure). Denote by \mathcal{R}_{f} the field of all "small" (with respect to f) meromorphic functions on \mathbf{C}^{m}.
Theorem D (First Main Theorem). Let f be a nonconstant meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$ and Q be a homogeneous polynomial of degree d in $\mathcal{R}_{f}\left[x_{0}, \ldots, x_{n}\right]$ such that $Q(f) \not \equiv 0$ then

$$
N_{Q(f)}(r) \leq d \cdot T_{f}(r)+o\left(T_{f}(r)\right) \quad \text { for all } r>1
$$

For a hyperplane $H: a_{0} w_{0}+\cdots+a_{n} w_{n}=0$ in $\mathbf{C} P^{n}$ with $\operatorname{im} f \nsubseteq H$, we denote $(f, H):=a_{0} f_{0}+\cdots+a_{n} f_{n}$, where $\left(f_{0}: \cdots: f_{n}\right)$ again is a reduced representation of f.

As usual, by the notation "\| P " we mean the assertion P holds for all $r \in(1,+\infty)$ excluding a subset E of $(1,+\infty)$ of finite Lebesgue measure.
Theorem E (Second Main Theorem). Let f be a linearly nondegenerate meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$ and $H_{1}, \ldots, H_{q}(q \geq n+1)$ hyperplanes in $\mathbf{C} P^{n}$ located in general position, then

$$
\|(q-n-1) T_{f}(r) \leq \sum_{j=1}^{q} N_{\left(f, H_{j}\right)}^{(n)}(r)+o\left(T_{f}(r)\right) .
$$

3. Uniqueness problem for hyperplanes. First of all, we give the following lemma, which is an extension of uniqueness theorem to the case of few hyperplanes.
Lemma 1. Let $f, g: \mathbf{C}^{m} \rightarrow \mathbf{C} P^{n}$ be two linearly nondegenerate meromorphic mappings with reduced representations $f=\left(f_{0}: \cdots: f_{n}\right), g=$ $\left(g_{0}: \cdots: g_{n}\right)$. Let $\left\{H_{i}\right\}_{i=1}^{q}$ be q hyperplanes located in general position with $\operatorname{dim}\left(f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)\right) \leq m-2$ for all $1 \leq i<j \leq q$. Assume that

$$
q>\frac{\sqrt{17 n^{2}+16 n}+3 n+4}{4}
$$

and
(i) $\min \left\{\nu_{\left(f, H_{i}\right)}(z), n\right\}=\min \left\{\nu_{\left(g, H_{i}\right)}(z), n\right\}$, for all $i \in\{1, \ldots, q\}$,
(ii) $\operatorname{Zero}\left(f_{j}\right) \cap f^{-1}\left(H_{i}\right)=\operatorname{Zero}\left(g_{j}\right) \cap f^{-1}\left(H_{i}\right)$, for all $1 \leq i \leq q, 0 \leq j \leq$ n,
(iii) $\mathcal{D}^{\alpha}\left(\frac{f_{k}}{f_{s}}\right)=\mathcal{D}^{\alpha}\left(\frac{g_{k}}{g_{s}}\right)$ on $\left(\bigcup_{i=1}^{q} f^{-1}\left(H_{i}\right)\right) \backslash\left(\operatorname{Zero}\left(f_{s}\right)\right)$, for all $|\alpha| \leq 1$, $0 \leq k \neq s \leq n$.
Then $f \equiv g$.
Proof. Assume that $f \not \equiv g$. We write $H_{i}: \sum_{j=0}^{n} a_{i j} \omega_{j}=0$.
For any fixed index i, $(1 \leq i \leq q)$, it is easy to see that there exists $j \in\{1, \ldots, q\} \backslash\{i\}$ (depending on i) such that

$$
P_{i j}:=\frac{\left(f, H_{i}\right)}{\left(f, H_{j}\right)}-\frac{\left(g, H_{i}\right)}{\left(g, H_{j}\right)} \not \equiv 0
$$

Set

$$
I:=I(f) \cup I(g) \cup \bigcup_{1 \leq k<s \leq q}\left\{z \in \mathbf{C}^{m}: \nu_{\left(f, H_{k}\right)}(z)>0 \text { and } \nu_{\left(f, H_{s}\right)}(z)>0\right\}
$$

Then I is an analytic subset of codimension ≥ 2.
Case 1. $n \geq 2$.
Let t be an arbitrary index in $\{1, \ldots, q\} \backslash\{i, j\}$. For any fixed point $z_{0} \notin I$ satisfying $\nu_{\left(f, H_{t}\right)}\left(z_{0}\right)>0$, there exists $l \in\{0, \ldots, n\}$ such that $f_{l}\left(z_{0}\right) g_{l}\left(z_{0}\right) \neq$ 0 . It follows that

$$
\begin{aligned}
\mathcal{D}^{\alpha} P_{i j}\left(z_{0}\right) & =\mathcal{D}^{\alpha}\left(\frac{\left(f, H_{i}\right)}{\left(f, H_{j}\right)}-\frac{\left(g, H_{i}\right)}{\left(g, H_{j}\right)}\right)\left(z_{0}\right) \\
& =\mathcal{D}^{\alpha}\left(\frac{\sum_{v=0}^{n} \frac{f_{v}}{f_{l}} a_{i v}}{\sum_{v=0}^{n} \frac{f_{v}}{f_{l}} a_{j v}}-\frac{\sum_{v=0}^{n} \frac{g_{v}}{g_{l}} a_{i v}}{\sum_{v=0}^{n} \frac{g_{v}}{g_{l}} a_{j v}}\right)\left(z_{0}\right)=0
\end{aligned}
$$

for all α with $|\alpha|<2$. So

$$
\begin{equation*}
\nu_{P_{i j}}\left(z_{0}\right) \geq 2 \tag{3.1}
\end{equation*}
$$

For any fixed point $z_{1} \notin I$ satisfying $\nu_{\left(f, H_{i}\right)}\left(z_{1}\right)>0$, we have

$$
\begin{equation*}
\nu_{P_{i j}}\left(z_{1}\right) \geq \min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{1}\right), \nu_{\left(g, H_{i}\right)}\left(z_{1}\right)\right\} \geq \min \left\{\nu_{\left(f, H_{i}\right)}\left(z_{1}\right), n\right\} \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2), we have

$$
\nu_{P_{i j}} \geq \min \left\{n, \nu_{\left(f, H_{i}\right)}\right\}+\sum_{t \in\{1, \ldots, q\} \backslash\{i, j\}} 2 \min \left\{1, \nu_{\left(f, H_{t}\right)}\right\},
$$

(outside an analytic subset of codimension two).
It yields that

$$
\begin{equation*}
N_{P_{i j}}(r) \geq N_{\left(f, H_{i}\right)}^{(n)}(r)+\sum_{t \in\{1, \ldots, q\} \backslash\{i, j\}} 2 N_{\left(f, H_{t}\right)}^{(1)}(r) \tag{3.3}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
N_{\frac{1}{P_{i j}}}(r) \leq N\left(r, \nu_{j}\right), \tag{3.4}
\end{equation*}
$$

where $\nu_{j}(z):=\max \left\{\nu_{\left(f, H_{j}\right)}(z), \nu_{\left(g, H_{j}\right)}(z)\right\}$.
We have

$$
\begin{aligned}
m\left(r, \frac{\left(f, H_{i}\right)}{\left(f, H_{j}\right)}\right) & =T_{\frac{\left(f, H_{j}\right)}{\left(f f H_{j}\right)}}(r)-N_{\left(f, H_{j}\right)}(r)+O(1) \\
& \leq T_{f}(r)-N_{\left(f, H_{j}\right)}(r)+O(1),
\end{aligned}
$$

and

$$
m\left(r, \frac{\left(g, H_{i}\right)}{\left(g, H_{j}\right)}\right) \leq T_{g}(r)-N_{\left(g, H_{j}\right)}(r)+O(1)
$$

This implies that

$$
\begin{aligned}
m\left(r, P_{i j}\right) & \leq m\left(r, \frac{\left(f, H_{i}\right)}{\left(f, H_{j}\right)}\right)+m\left(r, \frac{\left(g, H_{i}\right)}{\left(g, H_{j}\right)}\right)+O(1) \\
& =T_{f}(r)+T_{g}(r)-N_{\left(f, H_{j}\right)}(r)-N_{\left(g, H_{j}\right)}(r)+O(1)
\end{aligned}
$$

Combining with (3.3) and (3.4) we get

$$
\begin{aligned}
N_{\left(f, H_{i}\right)}^{(n)}(r)+\sum_{t \in\{1, \ldots, q\} \backslash\{i, j\}} 2 N_{\left(f, H_{t}\right)}^{(1)}(r) \leq & N_{P_{i j}}(r) \leq T_{P_{i j}}(r)+O(1) \\
= & N_{\frac{1}{P_{i j}}}(r)+m\left(r, P_{i j}\right)+O(1) \\
\leq & T_{f}(r)+T_{g}(r)+N\left(r, \nu_{j}\right)-N_{\left(f, H_{j}\right)}(r) \\
& -N_{\left(g, H_{j}\right)}(r)+o\left(T_{f}(r)+T_{g}(r)\right) .
\end{aligned}
$$

This gives

$$
\begin{aligned}
N_{\left(f, H_{j}\right)}(r)+N_{\left(g, H_{j}\right)}(r)-N\left(r, \nu_{j}\right) & +N_{\left(f, H_{i}\right)}^{(n)}(r)+\sum_{t \in\{1, \ldots, q\} \backslash\{i, j\}} 2 N_{\left(f, H_{t}\right)}^{(1)}(r) \\
& \leq T_{f}(r)+T_{g}(r)+o\left(T_{f}(r)+T_{g}(r)\right) .
\end{aligned}
$$

On the other hand, since

$$
\nu_{j}(z)-\nu_{\left(f, H_{j}\right)}-\nu_{\left(g, H_{j}\right)}+\min \left\{n, \nu_{\left(f, H_{j}\right)}\right\} \leq 0
$$

(outside an analytic subset of codimension two), we have

$$
N\left(r, \nu_{j}\right)-N_{\left(f, H_{j}\right)}(r)-N_{\left(g, H_{j}\right)}(r)+N_{\left(f, H_{j}\right)}^{(n)}(r) \leq 0
$$

Hence

$$
\begin{aligned}
N_{\left(f, H_{i}\right)}^{(n)}(r)+N_{\left(f, H_{j}\right)}^{(n)}(r) & +\sum_{t \in\{1, \ldots, q\} \backslash\{i, j\}} 2 N_{\left(f, H_{t}\right)}^{(1)}(r) \\
& \leq T_{f}(r)+T_{g}(r)+o\left(T_{f}(r)+T_{g}(r)\right) .
\end{aligned}
$$

It implies that

$$
\begin{align*}
N_{\left(f, H_{i}\right)}^{(n)}(r)+\frac{2}{n} & \sum_{t \in\{1, \ldots, q\} \backslash\{i\}} N_{\left(f, H_{t}\right)}^{(n)}(r) \tag{3.5}\\
& \leq T_{f}(r)+T_{g}(r)+o\left(T_{f}(r)+T_{g}(r)\right),
\end{align*}
$$

(note that $n \geq 2$).
Taking summing-up of both sides of (3.5) over all $i \in\{1, \ldots, q\}$, we obtain

$$
\begin{align*}
\left(1+\frac{2(q-1)}{n}\right) & \sum_{i=1}^{q} N_{\left(f, H_{i}\right)}^{(n)}(r) \tag{3.6}\\
& \leq q\left(T_{f}(r)+T_{g}(r)\right)+o\left(T_{f} f(r)+T_{g}(r)\right)
\end{align*}
$$

On the other hand, by Theorem E we have

$$
\begin{equation*}
\|(q-n-1)\left(T_{f}(r)+T_{g}(r)\right) \leq 2 \sum_{i=1}^{q} N_{\left(f, H_{i}\right)}^{(n)}(r)+o\left(T_{f}(r)+T_{g}(r)\right) \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), letting $r \longrightarrow \infty$ we have

$$
1+\frac{2(q-1)}{n} \leq \frac{2 q}{q-n-1}
$$

This contradicts to

$$
q>\frac{\sqrt{17 n^{2}+16 n}+3 n+4}{4}
$$

Thus $f \equiv g$.
Case 2. $n=1$. We have $q \geq 4$. If $\frac{\left(f, H_{1}\right)}{\left(f, H_{4}\right)} \equiv \frac{\left(g, H_{1}\right)}{\left(g, H_{4}\right)}$, then $f \equiv g$.
We now assume that

$$
P_{14}:=\frac{\left(f, H_{1}\right)}{\left(f, H_{4}\right)}-\frac{\left(g, H_{1}\right)}{\left(g, H_{4}\right)} \not \equiv 0 .
$$

Let t be an arbitrary index in $\{1,2,3\}$. For any fixed point $z_{0} \notin I$ satisfying $\nu_{\left(f, H_{t}\right)}\left(z_{0}\right)>0$, there exists $l \in\{0,1\}$ such that $f_{l}\left(z_{0}\right) g_{l}\left(z_{0}\right) \neq 0$. It follows
that

$$
\begin{aligned}
\mathcal{D}^{\alpha} P_{14}\left(z_{0}\right) & =\mathcal{D}^{\alpha}\left(\frac{\left(f, H_{1}\right)}{\left(f, H_{4}\right)}-\frac{\left(g, H_{1}\right)}{\left(g, H_{4}\right)}\right)\left(z_{0}\right) \\
& =\mathcal{D}^{\alpha}\left(\frac{a_{10} \frac{f_{0}}{f_{l}}+a_{11} \frac{f_{1}}{f_{l}}}{a_{40} \frac{f_{0}}{f_{l}}+a_{41} \frac{f_{1}}{f_{l}}}-\frac{a_{10} \frac{g_{0}}{g_{l}}+a_{11} \frac{g_{1}}{g_{l}}}{a_{40} \frac{g_{0}}{g_{l}}+a_{41} \frac{g_{1}}{g_{l}}}\right)\left(z_{0}\right)=0
\end{aligned}
$$

for all α with $|\alpha|<2$. It implies that $\nu_{P_{14}}\left(z_{0}\right) \geq 2$. Hence, we have

$$
\nu_{P_{14}} \geq 2\left(\min \left\{1, \nu_{\left(f, H_{1}\right)}\right\}+\min \left\{1, \nu_{\left(f, H_{2}\right)}\right\}+\min \left\{1, \nu_{\left(f, H_{3}\right)}\right\}\right)
$$

(outside an analytic subset of codimension two). It implies that

$$
\begin{equation*}
N_{P_{14}}(r) \geq 2\left(N_{\left(f, H_{1}\right)}^{(1)}(r)+N_{\left(f, H_{2}\right)}^{(1)}(r)+N_{\left(f, H_{3}\right)}^{(1)}(r)\right) \tag{3.8}
\end{equation*}
$$

Let z_{1} be an arbitrary pole of P_{14} such that $z_{1} \notin I$. Then z_{1} is a zero of $\left(f, H_{4}\right)$ and there exists $l \in\{0,1\}$ such that $f_{l}\left(z_{1}\right) g_{l}\left(z_{1}\right) \neq 0$. Then

$$
\begin{aligned}
\mathcal{D}^{\alpha}(& \left(a_{10} \frac{f_{0}}{f_{l}}+a_{11} \frac{f_{1}}{f_{l}}\right)\left(a_{40} \frac{g_{0}}{g_{l}}+a_{41} \frac{g_{1}}{g_{l}}\right) \\
& \left.-\left(a_{40} \frac{f_{0}}{f_{l}}+a_{41} \frac{f_{1}}{f_{l}}\right)\left(a_{10} \frac{g_{0}}{g_{l}}+a_{11} \frac{g_{1}}{g_{l}}\right)\right)\left(z_{1}\right)=0
\end{aligned}
$$

for all α with $|\alpha|<2$. This implies that

$$
\nu_{\left(\left(f, H_{1}\right)\left(g, H_{4}\right)-\left(f, H_{4}\right)\left(g, H_{1}\right)\right)}\left(z_{1}\right) \geq 2
$$

Then, we have

$$
\nu_{\frac{1}{P_{14}}}\left(z_{1}\right) \leq \nu_{\left(f, H_{4}\right)}\left(z_{1}\right)+\nu_{\left(g, H_{4}\right)}\left(z_{1}\right)-2
$$

Hence we see

$$
\nu_{\frac{1}{P_{14}}} \leq \nu_{\left(f, H_{4}\right)}+\nu_{\left(g, H_{4}\right)}-2 \min \left\{1, \nu_{\left(f, H_{4}\right)}\right\}
$$

(outside an analytic subset of codimension two). This implies that

$$
N_{\frac{1}{P_{14}}}(r) \leq N_{\left(f, H_{4}\right)}(r)+N_{\left(g, H_{4}\right)}(r)-2 N_{\left(f, H_{4}\right)}^{(1)}(r)
$$

Combining with (3.8) we have

$$
\begin{aligned}
2\left(N_{\left(f, H_{1}\right)}^{(1)}(r)+\right. & \left.N_{\left(f, H_{2}\right)}^{(1)}(r)+N_{\left(f, H_{3}\right)}^{(1)}(r)\right) \leq N_{P_{14}}(r) \leq T_{P_{14}}(r)+O(1) \\
= & m\left(r, P_{14}\right)+N_{\frac{1}{P_{14}}}(r)+O(1) \\
\leq & m\left(r, \frac{\left(f, H_{1}\right)}{\left(f, H_{4}\right)}\right)+m\left(r, \frac{\left(g, H_{1}\right)}{\left(g, H_{4}\right)}\right) \\
& +N_{\left(f, H_{4}\right)}(r)+N_{\left(g, H_{4}\right)}(r)-2 N_{\left(f, H_{4}\right)}^{(1)}(r)+O(1) \\
= & T_{\frac{\left(f, H_{1}\right)}{\left(f, H_{4}\right)}(r)+T_{\frac{\left(g, H_{1}\right)}{\left(g, H_{4}\right)}(r)-2 N_{\left(f, H_{4}\right)}^{(1)}(r)+O(1)}^{\leq \leq}} T_{f}(r)+T_{g}(r)-2 N_{\left(f, H_{4}\right)}^{(1)}(r)+o\left(T_{f}(r)+T_{g}(r)\right) .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
2\left(N_{\left(f, H_{1}\right)}^{(1)}(r)+N_{\left(f, H_{2}\right)}^{(1)}(r)\right. & \left.+N_{\left(f, H_{3}\right)}^{(1)}(r)+N_{\left(f, H_{4}\right)}^{(1)}(r)\right) \\
& \leq T_{f}(r)+T_{g}(r)+o\left(T_{f}(r)+T_{g}(r)\right)
\end{aligned}
$$

On the other hand, by Theorem E, we also have

$$
\| 2 T_{f}(r) \leq N_{\left(f, H_{1}\right)}^{(1)}(r)+N_{\left(f, H_{2}\right)}^{(1)}(r)+N_{\left(f, H_{3}\right)}^{(1)}(r)+N_{\left(f, H_{4}\right)}^{(1)}(r)+o\left(T_{f}(r)\right)
$$

and

$$
\begin{aligned}
\| 2 T_{g}(r) & \leq N_{\left(g, H_{1}\right)}^{(1)}(r)+N_{\left(g, H_{2}\right)}^{(1)}(r)+N_{\left(g, H_{3}\right)}^{(1)}(r)+N_{\left(g, H_{4}\right)}^{(1)}(r)+o\left(T_{g}(r)\right) \\
& =N_{\left(f, H_{1}\right)}^{(1)}(r)+N_{\left(f, H_{2}\right)}^{(1)}(r)+N_{\left(f, H_{3}\right)}^{(1)}(r)+N_{\left(f, H_{4}\right)}^{(1)}(r)+o\left(T_{g}(r)\right)
\end{aligned}
$$

Hence, we have

$$
\| 2\left(T_{f}(r)+T_{g}(r)\right) \leq T_{f}(r)+T_{g}(r)+o\left(T_{f}(r)+T_{g}(r)\right)
$$

Letting $r \longrightarrow \infty$, we have $2 \leq 1$. This is a contradiction, hence $f \equiv g$. We have completed the proof of Lemma 1.

Let f be a linearly nondegenerate meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$ with reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$. Let d be a positive integer and let H_{1}, \ldots, H_{q} be q hyperplanes in $\mathbf{C} P^{n}$ located in general position with

$$
\operatorname{dim}\left\{z \in \mathbf{C}^{m}: \nu_{\left(f, H_{i}\right)}(z)>0 \text { and } \nu_{\left(f, H_{j}\right)}(z)>0\right\} \leq m-2
$$

$(1 \leq i<j \leq q)$.
Consider the set $\mathcal{F}\left(f,\left\{H_{j}\right\}_{j=1}^{q}, d\right)$ of all linearly nondegenerate meromorphic mappings $g: \mathbf{C}^{m} \rightarrow \mathbf{C} P^{n}$ with reduced representation $g=\left(g_{0}: \cdots\right.$: $\left.g_{n}\right)$ satisfying the conditions:
(a) $\min \left(\nu_{\left(f, H_{i}\right)}, d\right)=\min \left(\nu_{\left(g, H_{i}\right)}, d\right)(1 \leq i \leq q)$,
(b) $\operatorname{Zero}\left(f_{j}\right) \cap f^{-1}\left(H_{i}\right)=\operatorname{Zero}\left(g_{j}\right) \cap f^{-1}\left(H_{i}\right)$, for all $1 \leq i \leq q, 0 \leq j \leq$ n,
(c) $\mathcal{D}^{\alpha}\left(\frac{f_{k}}{f_{s}}\right)=\mathcal{D}^{\alpha}\left(\frac{g_{k}}{g_{s}}\right)$ on $\left(\bigcup_{i=1}^{q} f^{-1}\left(H_{i}\right)\right) \backslash\left(\operatorname{Zero}\left(f_{s}\right)\right)$, for all $|\alpha|<d$, $0 \leq k \neq s \leq n$.
Take $M+1$ maps $f^{0}, \ldots, f^{M} \in \mathcal{F}\left(f,\left\{H_{j}\right\}_{j=1}^{q}, d\right)$ with reduced representations

$$
f^{k}:=\left(f_{0}^{k}: \cdots: f_{n}^{k}\right)
$$

and set $T(r):=\sum_{k=0}^{M} T_{f^{k}}(r)$. For each $c=\left(c_{0}, \ldots, c_{n}\right) \in \mathbf{C}^{n+1} \backslash\{0\}$ we put

$$
\left(f^{k}, c\right):=\sum_{i=0}^{n} c_{i} f_{i}^{k} \quad(0 \leq k \leq M)
$$

Denote by \mathcal{C} the set of all $c \in \mathbf{C}^{n+1} \backslash\{0\}$ such that

$$
\operatorname{dim}\left\{z \in \mathbf{C}^{m}:\left(f^{k}, H_{j}\right)(z)=\left(f^{k}, c\right)(z)=0\right\} \leq m-2
$$

$(1 \leq j \leq q, 0 \leq k \leq M)$.
Lemma A ([9], Lemma 5.1). \mathcal{C} is dense in \mathbf{C}^{n+1}.
Lemma B $([7])$. For each $c \in \mathcal{C}$, we put $F_{c}^{j k}=\frac{\left(f^{k}, H_{j}\right)}{\left(f^{k}, c\right)}$. Then $T_{F_{c}^{j k}}(r) \leq$ $T_{f^{k}}(r)+o(T(r))$.
Definition 1. Let F_{0}, \ldots, F_{M} be meromorphic functions on \mathbf{C}^{m}, where $M \geq 1$. Take a set $\alpha:=\left(\alpha^{0}, \ldots, \alpha^{M-1}\right)$ whose components α^{k} are composed of n nonnegative integers, and set $|\alpha|=\left|\alpha^{0}\right|+\cdots+\left|\alpha^{M-1}\right|$. We define Cartan's auxiliary function by

$$
\begin{aligned}
& \Phi^{\alpha}\left(F_{0}, \ldots, F_{M}\right):=F_{0} \cdot F_{1} \cdots F_{M} \\
& \quad \times\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\mathcal{D}^{\alpha^{0}}\left(\frac{1}{F_{0}}\right) & \mathcal{D}^{\alpha^{0}}\left(\frac{1}{F_{1}}\right) & \cdots & \mathcal{D}^{\alpha^{0}}\left(\frac{1}{F_{M}}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\mathcal{D}^{\alpha^{M-1}}\left(\frac{1}{F_{0}}\right) & \mathcal{D}^{\alpha^{M-1}}\left(\frac{1}{F_{1}}\right) & \cdots & \mathcal{D}^{\alpha^{M-1}}\left(\frac{1}{F_{M}}\right)
\end{array}\right| .
\end{aligned}
$$

Lemma C ([7], Proposition 3.4). If $\Phi^{\alpha}(F, G, H)=0$ and $\Phi^{\alpha}\left(\frac{1}{F}, \frac{1}{G}, \frac{1}{H}\right)=0$ for all α with $|\alpha| \leq 1$, then one of the following conditions holds:
i) $F=G$ or $G=H$ or $H=F$.
ii) $\frac{F}{G}, \frac{G}{H}$ and $\frac{H}{F}$ are all constant.

Lemma 2. Assume that there exists $\Phi^{\alpha}:=\Phi^{\alpha}\left(F_{c}^{j_{0} 0}, \ldots, F_{c}^{j_{0} M}\right) \not \equiv 0$ for some $c \in \mathcal{C},|\alpha| \leq \frac{M(M-1)}{2}, d \geq|\alpha|$. Then, for each $0 \leq i \leq M$, the following holds:

$$
\| N_{\left(f^{i}, H_{j_{0}}\right)}^{(d-|\alpha|)}(r)+M d \sum_{j \neq j_{0}} N_{\left(f^{i}, H_{j}\right)}^{(1)}(r) \leq N_{\Phi^{\alpha}}(r) \leq T(r)+o(T(r)) .
$$

Proof. Denote by \mathbf{P} the set of all β with $|\beta| \leq \frac{M(M-1)}{2}, d \geq|\beta|$ such that $\Phi^{\beta}=\Phi^{\beta}\left(F_{c}^{j_{0} 0}, \ldots, F_{c}^{j_{0} M}\right) \not \equiv 0$ for some $c \in \mathcal{C}$. Let α be the minimal multi-index in \mathbf{P} (in the lexicographic order). Set

$$
\begin{aligned}
I:=\bigcup_{t=0}^{M} I\left(f^{t}\right) & \cup \bigcup_{1 \leq t<j \leq q}\left(\left(f, H_{t}\right)^{-1}\{0\} \cap\left(f, H_{j}\right)^{-1}\{0\}\right) \\
& \cup \bigcup_{t=1}^{q}\left(\left(f, H_{t}\right)^{-1}\{0\} \cap(f, c)^{-1}\{0\}\right) .
\end{aligned}
$$

Then I is an analytic subset of codimension ≥ 2.
Assume that a is a zero of some $\left(f^{i}, H_{j}\right), j \neq j_{0}$ such that $a \notin I$. Let Γ be an irreducible component of the zero-divisor of the function $\left(f^{i}, H_{j}\right)$ which contains a. We take a holomorphic function h on C^{m} satisfying: $\nu_{\left.h\right|_{\Gamma}}=1$ and $\nu_{\left.h\right|_{\left(C^{n} \backslash \Gamma\right)}}=0$.

By the condition (c), we have that $\varphi_{i}:=\left(\frac{1}{h^{d} F^{j_{0} i}}-\frac{1}{h^{d} F^{j_{0} M}}\right)$ is a holomorphic function on a neighborhood U of a for all $i \in\{0, \ldots, M-1\}$. Since $\alpha:=\min \mathbf{P}$, we have

$$
\Phi^{\alpha}:=h^{M d} F^{j_{0} 0} \cdots F^{j_{0} M} \times\left|\begin{array}{ccc}
\mathcal{D}^{\alpha^{0}} \varphi_{0} & \cdots & \mathcal{D}^{\alpha^{0}} \varphi_{M-1} \\
\vdots & \vdots & \vdots \\
\mathcal{D}^{\alpha^{M-1}} \varphi_{0} & \cdots & \mathcal{D}^{\alpha^{M-1}} \varphi_{M-1}
\end{array}\right|
$$

It implies that

$$
\begin{equation*}
\nu_{\Phi^{\alpha}}(a) \geq M d \tag{3.9}
\end{equation*}
$$

Assume that b is a zero of $\left(f^{i}, H_{j_{0}}\right)$ such that $b \notin I$. If $\nu_{\left(f^{i}, H_{j_{0}}\right)}(b) \geq d$, we write

$$
\begin{aligned}
\Phi^{\alpha}=\sum_{\sigma \in S_{M+1}} \operatorname{sign}(\sigma) & F^{j_{0} 0} \cdots F^{j_{0} M} \\
& \times \mathcal{D}^{\alpha^{0}}\left(\frac{1}{F^{j_{0}(\sigma(2)-1)}}\right) \cdots D^{\alpha^{M-1}}\left(\frac{1}{F_{0}(\sigma(M+1)-1)}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\nu_{\Phi^{\alpha}}(b) \geq d-|\alpha| . \tag{3.10}
\end{equation*}
$$

If $\nu_{\left(f^{i}, H_{j_{0}}\right)}(b)<d$, then $\nu_{\left(f^{0}, H_{j_{0}}\right)}(b)=\cdots=\nu_{\left(f^{M}, H_{\left.j_{0}\right)}\right)}(b)<d$. There exists a holomorphic function h on an open neighborhood U of b such that $\nu_{h}=\nu_{\left(f^{i}, H_{j_{0}}\right)_{U}}$.

We write

$$
\begin{aligned}
& \Phi^{\alpha}=h^{-M} F_{c}^{j_{0} 0} \cdots F_{c}^{j_{0} M} \\
& \times\left|\begin{array}{ccc}
\left(\mathcal{D}^{\alpha^{0}}\left(\frac{h}{F_{c}^{j_{0} 0}}\right)-D^{\alpha^{0}}\left(\frac{h}{F_{c}^{j_{0}^{M}}}\right)\right) & \cdots & \left(\mathcal{D}^{\alpha^{0}}\left(\frac{h}{F F_{c}^{j_{0}(M-1)}}\right)-D^{\alpha^{0}}\left(\frac{h}{F_{c}^{j_{0} M}}\right)\right) \\
\vdots & \vdots & \vdots \\
\left(\mathcal{D}^{\alpha^{M-1}}\left(\frac{h}{F_{c}^{j_{0} 0}}\right)-D^{\alpha^{M-1}}\left(\frac{h}{F_{c}^{j_{0} M}}\right)\right) & \cdots\left(\mathcal{D}^{\alpha^{M-1}}\left(\frac{h}{F_{c}^{j_{0}(M-1)}}\right)-D^{\alpha^{M-1}}\left(\frac{h}{F_{c}^{j_{0} M}}\right)\right)
\end{array}\right| .
\end{aligned}
$$

Then

$$
\begin{equation*}
\nu_{\Phi^{\alpha}}(b) \geq \nu_{\left(f^{i}, H_{j_{0}}\right)}(b) . \tag{3.11}
\end{equation*}
$$

From (3.9), (3.10) and (3.11), we have

$$
\min \left\{d-|\alpha|, \nu_{\left(f^{i}, H_{j_{0}}\right)}\right\}+\underset{j \in\{1, \ldots, q\} \backslash\left\{j_{0}\right\}}{M d} \sum_{\left.i, \nu_{\left(f^{i}, H_{j}\right)}\right\} \leq \nu_{\Phi^{\alpha}},} \min ,
$$

(outside an analytic subset of codimension two). It immediately follows the first inequality in the lemma.

It is easy to see that a pole of Φ^{α} is a zero or a pole of some $F_{c}^{j_{0} k}$. By (3.9), (3.10) and (3.11) we have that Φ^{α} is holomorphic at all zeros of $F_{c}^{j_{0} i}$, $(0 \leq i \leq M)$. Then

$$
N_{\frac{1}{\Phi^{\alpha}}}(r) \leq \sum_{i=0}^{M} N_{\frac{1}{F_{c}^{j_{0}} 2}}(r)
$$

On the other hand, it is easy to see that

$$
\begin{aligned}
m\left(r, \Phi^{\alpha}\right) & \leq \sum_{i=0}^{M} m\left(r, F_{c}^{j_{0} i}\right)+O\left(\sum m\left(r, \frac{\mathcal{D}^{\alpha^{i}}\left(\varphi_{c}^{j_{0} k}\right)}{\varphi_{c}^{j_{0} k}}\right)\right)+O(1) \\
& \leq \sum_{i=0}^{M} m\left(r, F_{c}^{j_{0} i}\right)+o(T(r))
\end{aligned}
$$

where $\varphi_{c}^{j_{0} k}=1 / F_{c}^{j_{0} k}$. Hence, we have

$$
\begin{aligned}
N_{\Phi^{\alpha}}(r) & \leq T_{\Phi^{\alpha}}(r)+O(1) \leq m\left(r, \Phi^{\alpha}\right)+N_{\bar{\Phi}^{\alpha}}(r)+O(1) \\
& \leq \sum_{i=0}^{M}\left(N_{\frac{1}{F_{c}^{j_{0}^{i}}}}(r)+m\left(r, F_{c}^{j 0}\right)\right)+o(T(r)) \\
& =\sum_{i=0}^{M} T_{F_{c}^{j_{0} i}}(r)+o(T(r)) \leq T(r)+o(T(r)) .
\end{aligned}
$$

Theorem 1. If

$$
q>\max \left\{\frac{7(n+1)}{4}, \frac{\sqrt{17 n^{2}+16 n}+3 n+4}{4}\right\}
$$

then $\mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 2\right)$ contains at most two mappings.
Proof. If $n=1$, by Lemma 1 we have $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)=1$.
We prove the theorem for the case of $n \geq 2$. Assume that there exist three distinct mappings $f^{0}, f^{1}, f^{2} \in \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 2\right)$.

Denote by \mathcal{Q} the set of all indices $j \in\{1,2, \ldots, q\}$ satisfying the following: There exist $c \in \mathcal{C}$ and $\alpha \in \mathbf{Z}_{+}^{n}$ with $|\alpha| \leq 1$ such that $\Phi^{\alpha}\left(F_{c}^{j 0}, F_{c}^{j 1}, F_{c}^{j 2}\right) \not \equiv 0$.

Set $T(r)=T_{f^{0}}(r)+T_{f^{1}}(r)+T_{f^{2}}(r)$.
We now prove that $\mathcal{Q}=\emptyset$. Suppose that there exists $j_{0} \in \mathcal{Q}$. By Lemma 2, we have

$$
\begin{align*}
& \| N_{\left(f^{i}, H_{j_{0}}\right)}^{(1)}(r)+4 \sum_{j \in\{1, \ldots, q\} \backslash\left\{j_{j}\right\}} N_{j}^{(1)} H_{j)}^{(1)}(r) \tag{3.12}\\
& \quad \leq N\left(r, \nu_{\Phi^{\alpha}}\right) \leq T(r)+o(T(r)) .
\end{align*}
$$

($0 \leq i \leq 2$).
By Theorem E, we have

$$
\| \sum_{j \neq j_{0}} N_{\left(f^{i}, H_{j}\right)}^{(1)}(r) \geq \frac{q-n-2}{3 n} T(r)+o(T(r))
$$

and

$$
\sum_{j=0}^{q} N_{\left(f^{i}, H_{j}\right)}^{(1)}(r) \geq \frac{q-n-1}{3 n} T(r)+o(T(r)) .
$$

This implies that

$$
\begin{align*}
& \| N_{\left(f^{i}, H_{j_{0}}\right)}^{(1)}(r)+4 \sum_{j \in\{1, \ldots, q\} \backslash\left\{j_{0}\right\}} N_{\left(f^{i}, H_{j}\right)}^{(1)}(r) \tag{3.13}\\
& \quad \geq \frac{4(q-n-2)+1}{3 n} T(r)+o(T(r)) .
\end{align*}
$$

From (3.12) and (3.13), letting $r \rightarrow \infty$ we get

$$
4(q-n-2)+1 \leq 3 n \Leftrightarrow q \leq \frac{7(n+1)}{4} .
$$

This is a contradiction. Hence $\mathcal{Q}=\emptyset$. Then for each $1 \leq j \leq q, c \in \mathcal{C}$, $\alpha \in \mathbf{Z}_{+}^{n},|\alpha|<2$ we have $\Phi^{\alpha}\left(F_{c}^{j 0}, F_{c}^{j 1}, F_{c}^{j 2}\right) \equiv 0$. Since \mathcal{C} is dense in \mathbf{C}^{n+1}, we have that

$$
\Phi^{\alpha}\left(F_{i}^{j 0}, F_{i}^{j 1}, F_{i}^{j 2}\right) \equiv 0(1 \leq i, j \leq q), \text { for all }|\alpha|<2,
$$

where $F_{i}^{j t}:=\frac{\left(f^{t}, H_{j}\right)}{\left(f^{t}, H_{i}\right)}, 0 \leq t \leq 2$. By Lemma C, for each $1 \leq i, j \leq q$, there exists a nonzero constant $\chi_{i j}$ such that $F_{i}^{j 0}=\chi_{i j} F_{i}^{j 1}, F_{i}^{j 1}=\chi_{i j} F_{i}^{j 2}$ or $F_{i}^{j 2}=$
$\chi_{i j} F_{i}^{j 0}$. We now show that $\chi_{i j}=1$. Indeed, if $\chi_{i j} \neq 1$, without loss of generality we may assume that $F_{i}^{j 0}=\chi_{i j} F_{i}^{j 1}$. Then $\bigcup_{t \in\{1, \ldots, q\} \backslash\{i, j\}} f^{-1}\left(H_{t}\right)=\emptyset$. Thus, by Theorem E, we have

$$
\|(q-n-3) T_{f}(r) \leq \sum_{t \in\{1, \ldots, q\} \backslash\{i, j\}} N_{\left(f, H_{t}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)=o\left(T_{f}(r)\right) .
$$

Letting $r \longrightarrow+\infty$, we obtain $q-n-3 \leq 0$. This contradicts to $n \geq 2$. Thus,

$$
\chi_{i j}=1 \quad(1 \leq i, j \leq q) .
$$

We take an arbitrary element $k \in\{0,1,2\}$ and an index $i \in\{1, \ldots, q\}$. We will show that $\nu_{\left(f^{k}, H_{i}\right)}=\nu_{\left(f^{l}, H_{i}\right)}$ or $\nu_{\left(f^{k}, H_{i}\right)}=\nu_{\left(f^{t}, H_{i}\right)}$, where $\{l, t\}:=$ $\{0,1,2\} \backslash\{k\}$. In fact, if there is no index $j \neq i$ such that $F_{i}^{j k}=F_{i}^{j l}$ or $F_{i}^{j k}=F_{i}^{j t}$, then since $\chi_{i j}=1$ we have $F_{i}^{j l}=F_{i}^{j t}$ for all $j \neq i$. This implies that $f^{k} \equiv f^{l}$. This is a contradiction. Hence there exists $j \neq i$ such that $F_{i}^{j k}=F_{i}^{j l}$ or $F_{i}^{j k}=F_{i}^{j t}$. This yields that

$$
\begin{equation*}
\nu_{\left(f^{k}, H_{i}\right)}=\nu_{\left(f^{l}, H_{i}\right)} \text { or } \nu_{\left(f^{k}, H_{i}\right)}=\nu_{\left(f^{t}, H_{i}\right)} \tag{3.14}
\end{equation*}
$$

for all $k \in\{0,1,2\}, i \in\{1, \ldots, q\}$. For any fixed index $i \in\{1, \ldots, q\}$, by (3.14) (with $k=0$) we may assume that $\nu_{\left(f^{0}, H_{i}\right)}=\nu_{\left(f^{1}, H_{i}\right)}$. By (3.14) (with $k=2)$ we obtain $\nu_{\left(f^{2}, H_{i}\right)}=\nu_{\left(f^{0}, H_{i}\right)}$ or $\nu_{\left(f^{2}, H_{i}\right)}=\nu_{\left(f^{1}, H_{i}\right)}$. This implies that $\nu_{\left(f^{0}, H_{i}\right)}=\nu_{\left(f^{1}, H_{i}\right)}=\nu_{\left(f^{2}, H_{i}\right)}$ for all $i \in\{1, \ldots, q\}$. By Lemma 1, we have $f^{0} \equiv f^{1} \equiv f^{2}$. This is a contradiction.

Thus, $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 2\right) \leq 2$ if

$$
q>\max \left\{\frac{7(N+1)}{4}, \frac{\sqrt{17 N^{2}+16 N}+3 N+4}{4}\right\} .
$$

4. Uniqueness problem for hypersurfaces. Let f be a nonconstant meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$. We say that a meromorphic function φ on \mathbf{C}^{m} is "small" with respect to f if $T_{\varphi}(r)=o\left(T_{f}(r)\right)$ as $r \rightarrow \infty$ (outside a set of finite Lebesgues measure). Denote by \mathcal{R}_{f} the field of all "small" (with respect to f) meromorphic functions on \mathbf{C}^{m}.

Take a reduced representation $\left(f_{0}: \cdots: f_{n}\right)$ of f. We say that f is algebraically nondegenerate over \mathcal{R}_{f} if there is no nonzero homogeneous polynomial $Q \in \mathcal{R}_{f}\left[x_{0}, \ldots, x_{n}\right]$ such that $Q(f):=Q\left(f_{0}, \ldots, f_{n}\right) \equiv 0$.

For a homogeneous polynomial $Q \in \mathcal{R}_{f}\left[x_{0}, \ldots, x_{n}\right]$, denote by $Q(z)$ the homogeneous polynomial over \mathbf{C} obtained by substituting a specific point $z \in \mathbf{C}^{m}$ into the coefficients of Q.

We say that a set $\left\{Q_{j}\right\}_{j=0}^{n}$ of homogeneous polynomials of the same degree in $\mathcal{R}_{f}\left[x_{0}, \ldots, x_{n}\right]$ is admissible if there exists $z \in \mathbf{C}^{m}$ such that the system
of equations

$$
\left\{\begin{array}{c}
Q_{j}(z)\left(w_{0}, \ldots, w_{n}\right)=0 \\
0 \leq j \leq n
\end{array}\right.
$$

has only the trivial solution $w=(0, \ldots, 0)$ in \mathbf{C}^{n+1}.
First of all, we give the following lemma:
Lemma 3. Let f be a nonconstant meromorphic mapping of \mathbf{C}^{m} into $\mathbf{C} P^{n}$ and $\left\{Q_{j}\right\}_{j=0}^{n}$ be an admissible set of homogeneous polynomials of degree d in $\mathcal{R}_{f}\left[x_{0}, \ldots, x_{n}\right]$. Let $\gamma_{0}, \ldots, \gamma_{n}$ be $(n+1)$ nonzero meromorphic functions in \mathcal{R}_{f}.

Put $P=\gamma_{0} Q_{0}^{p}+\cdots+\gamma_{n} Q_{n}^{p}$, where p is a positive integer, $p>n(n+1)$.
Assume that f is algebraically nondegenerate over \mathcal{R}_{f}. Then

$$
\| d(p-n(n+1)) T_{f}(r) \leq N_{P(f)}^{(n)}(r)+o\left(T_{f}(r)\right) .
$$

Proof. Set $\mathcal{T}_{d}:=\left\{I:=\left(i_{0}, \ldots, i_{n}\right) \in \mathbf{N}_{0}^{n+1}: i_{0}+\cdots+i_{n}=d\right\}$.
Assume that

$$
Q_{j}=\sum_{I \in \mathcal{T}_{d}} a_{j I} x^{I} \quad(j=0, \ldots, n)
$$

where $a_{j I} \in \mathcal{R}_{f}, x^{I}=x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}$.
Set

$$
F=\left(\gamma_{0} Q_{0}^{p}(f): \cdots: \gamma_{n} Q_{n}^{p}(f)\right): \mathbf{C}^{m} \longrightarrow \mathbf{C} P^{n} .
$$

Since f is algebraically nondegenerate over \mathcal{R}_{f} we have that F is linearly nondegenerate (over C).

Assume that $\left(\frac{\gamma_{0} Q_{0}^{p}(f)}{h}: \cdots: \frac{\gamma_{n} Q_{h}^{p}(f)}{h}\right)$ is a reduced representation of F, where h is a meromorphic function on \mathbf{C}^{m}. Put $F_{i}=\frac{\gamma_{i} Q_{i}^{p}(f)}{h}, i \in\{0, \ldots, n\}$.

We have

$$
\begin{equation*}
\max _{0 \leq j \leq n}\left|Q_{j}^{p}(f)\right| \leq|h| \cdot\left(\sum_{i=0}^{n}\left|\frac{1}{\gamma_{i}}\right|\right) \cdot \max _{1 \leq i \leq n+1}\left|F_{i}\right| . \tag{4.1}
\end{equation*}
$$

Let $t=\left(\ldots, t_{k I}, \ldots\right)$ be a family of variables, $\left(k \in\{0, \ldots, n\}, I \in \mathcal{T}_{d}\right)$.
Set

$$
\widetilde{Q}_{j}=\sum_{I \in \mathcal{T}_{d}} t_{j I} x^{I} \in \mathbf{Z}[t, x], \quad j=0, \ldots, n
$$

Let $\widetilde{R} \in \mathbf{Z}[t]$ be the resultant of $\widetilde{Q}_{0}, \ldots, \widetilde{Q}_{n}$.
Since $\left\{Q_{j}\right\}_{j=0}^{n}$ is an admissible set, $R:=\widetilde{R}\left(\ldots, a_{k I}, \ldots\right) \not \equiv 0$. It is clear that $R \in \mathcal{R}_{f}$ since $a_{k I} \in \mathcal{R}_{f}$.

By Theorems 3.4 and 3.5 in [10], there exists a positive integer $s>d$ and polynomials $\left\{\widetilde{R}_{i j}\right\}_{0 \leq i, j \leq n}$ in $\mathbf{Z}[t, x]$ which are zero or homogeneous in x of
degree $s-d$ such that

$$
x_{i}^{s} \cdot \widetilde{R}=\sum_{j=0}^{n} \widetilde{R}_{i j} \cdot \widetilde{Q}_{j} \quad \text { for all } i \in\{0, \ldots, n\}
$$

Set

$$
R_{i j}=\widetilde{R}_{i j}\left(\left(\ldots, a_{k I}, \ldots\right),\left(f_{0}, \ldots, f_{n}\right)\right), \quad 0 \leq i, j \leq n
$$

Then,

$$
\begin{equation*}
f_{i}^{s} \cdot R=\sum_{j=0}^{n} R_{i j} \cdot Q_{j}\left(f_{0}, \ldots, f_{n}\right) \quad \text { for all } i \in\{0, \ldots, n\} \tag{4.2}
\end{equation*}
$$

So,

$$
\begin{align*}
\left|f_{i}^{s} \cdot R\right| & =\left|\sum_{j=0}^{n} R_{i j} \cdot Q_{j}\left(f_{0}, \ldots, f_{n}\right)\right| \\
& \leq \sum_{j=0}^{n}\left|R_{i j}\right| \cdot \max _{k \in\{0, \ldots, n\}}\left|Q_{k}\left(f_{0}, \ldots, f_{n}\right)\right| \tag{4.3}
\end{align*}
$$

for all $i \in\{0, \ldots, n\}$.
We write,

$$
R_{i j}=\sum_{I \in \mathcal{T}_{s-d}} \beta_{I}^{i j} f^{I}, \quad \beta_{I}^{i j} \in \mathcal{R}_{f}
$$

By (4.3), we have

$$
\left|f_{i}^{s} \cdot R\right| \leq\left(\sum_{\substack{0 \leq j \leq n \\ I \in \mathcal{T}_{s-d}}}\left|\beta_{I}^{i j}\right| \cdot\|f\|^{s-d}\right) \cdot \max _{k \in\{0, \ldots, n\}}\left|Q_{k}\left(f_{0}, \ldots, f_{n}\right)\right|
$$

$i \in\{0, \ldots, n\}$. So,

$$
\frac{\left|f_{i}\right|^{s}}{\|f\|^{s-d}} \leq\left(\sum_{\substack{0 \leq j \leq n \\ I \in \mathcal{T}_{s-d}}}\left|\frac{\beta_{I}^{i j}}{R}\right|\right) \cdot \max _{k \in\{0, \ldots, n\}}\left|Q_{k}\left(f_{0}, \ldots, f_{n}\right)\right|
$$

for all $i \in\{0, \ldots, n\}$.
Thus

$$
\begin{equation*}
\|f\|^{d} \leq\left(\sum_{\substack{0 \leq i, j \leq n \\ I \in \mathcal{T}_{s-d}}}\left|\frac{\beta_{I}^{i j}}{R}\right|\right) \max _{k \in\{0, \ldots, n\}}\left|Q_{k}\left(f_{0}, \ldots, f_{n}\right)\right| . \tag{4.4}
\end{equation*}
$$

By (4.1) and (4.4) we have

$$
\begin{equation*}
\|f\|^{d p} \leq\left(\sum_{\substack{0 \leq i, j \leq n \\ I \in \mathcal{T}_{s-d}}}\left|\frac{\beta_{I}^{i j}}{R}\right|\right)^{p} \cdot|h| \cdot\left(\sum_{i=0}^{n}\left|\frac{1}{\gamma_{i}}\right|\right) \cdot\|F\| \tag{4.5}
\end{equation*}
$$

By (4.2) and since $\left(\frac{\gamma_{0} Q_{0}^{p}(f)}{h}: \cdots: \frac{\gamma_{n} Q_{n}^{p}(f)}{h}\right)$ is a reduced representation of F, we have

$$
N_{h}(r) \leq p N_{R}(r)+\sum_{i=0}^{n} N_{\gamma_{i}}(r)=o\left(T_{f}(r)\right)
$$

and

$$
N_{\frac{1}{h}}(r) \leq \sum_{\substack{0 \leq j \leq n \\ \bar{I} \in \overline{\mathcal{T}}_{d}}} N_{\frac{1}{a_{j I}}}(r)+\sum_{i=0}^{n} N_{\frac{1}{\gamma_{i}}}=o\left(T_{f}(r)\right)
$$

By (4.5), we have

$$
\begin{align*}
d p \cdot T_{f}(r)= & p d \int_{S(r)} \log \|f\| \sigma+O(1) \\
\leq & \int_{S(r)} \log \left(\sum_{\substack{0 \leq i, j \leq n \\
I \in \mathcal{T}_{s-d}}}\left|\frac{\beta_{I}^{i j}}{R}\right|\right)^{p}|h|\left(\sum_{i=0}^{n}\left|\frac{1}{\gamma_{i}}\right|\right) \sigma+T_{F}(r)+O(1) \\
\leq & p \int_{S(r)} \log ^{+}\left(\sum_{\substack{0 \leq i, j \leq n \\
I \in \mathcal{T}_{s}-d}}\left|\frac{\beta_{I}^{i j}}{R}\right|\right) \sigma+\int_{S(r)} \log ^{+}\left(\sum_{i=0}^{n}\left|\frac{1}{\gamma_{i}}\right|\right) \sigma \tag{4.6}\\
& +\int_{S(r)} \log |h| \sigma+T_{F}(r)+O(1) \\
\leq & p \sum_{\substack{0 \leq i, j \leq n \\
I \in \mathcal{T}_{s-d}}} m\left(r, \frac{\beta_{I}^{i j}}{R}\right)+\sum_{i=0}^{n} m\left(r, \frac{1}{\gamma_{i}}\right) \\
& +N_{h}(r)-N_{\frac{1}{h}}(r)+T_{F}(r)+O(1) \\
= & T_{F}(r)+o\left(T_{f}(r)\right)
\end{align*}
$$

By (4.6) and Theorem E, we have

$$
\begin{aligned}
\| & d p \cdot T_{f}(r) \leq T_{F}(r)+o\left(T_{f}(r)\right) \\
& \leq \sum_{i=0}^{n} N_{\frac{\gamma_{i} Q_{i}^{p}(f)}{h}}^{(n)}(r)+N_{\sum_{i=0}^{(n)}}^{n} \frac{\gamma_{i} Q_{i}^{p}(f)}{h} \\
& \leq \sum_{i=0}^{n} N_{\frac{\gamma_{i} Q_{i}^{p}(f)}{h}}^{(n)}(r)+o\left(T_{f}(r)\right) \\
& \leq \sum_{i=0}^{n} n N_{Q_{i}(f)}^{h}(r)+o\left(T_{f}^{p}(r)\right) \\
& \leq \sum_{i=0}^{n} n N_{Q_{i}(f)}^{(n)}(r)+\sum_{i=0}^{n} N_{\gamma_{i}}^{(n)}(r)+(n+2) N_{\frac{1}{h}}^{(n)}(r)+N_{P(f)}^{(n)}(r)+o\left(T_{f}(r)\right) \\
& \leq d(n+1) n T_{f}(r)+N_{P(f)}^{(n)}(r)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

This implies that

$$
\| d(p-(n+1) n) T_{f}(r) \leq N_{P(f)}^{(n)}(r)+o\left(T_{f}(r)\right)
$$

This has completed the proof of the lemma.
Theorem 2. Let $f_{1}, \ldots, f_{k}(k \geq 2)$ be nonconstant meromorphic mappings of \mathbf{C}^{m} into $\mathbf{C} P^{n}$ and $\left\{Q_{j}\right\}_{j=0}^{n}$ be an admissible set of homogeneous polynomials of degree d in $\mathcal{R}_{f_{1}}\left[x_{0}, \ldots, x_{n}\right]$. Let $\gamma_{0}, \ldots, \gamma_{n}$ be $(n+1)$ nonzero meromorphic functions in $\mathcal{R}_{f_{1}}$.

Put $P=\gamma_{0} Q_{0}^{p}+\cdots+\gamma_{n} Q_{n}^{p}$, where p is a positive integer, $p>\frac{n(d(n+1)+k)}{d}$. Assume that f_{i} is algebraically nondegenerate over $\mathcal{R}_{f_{i}}$ for all $i \in\{1, \ldots, k\}$, and
i) $\operatorname{Zero}\left(P\left(f_{i}\right)\right)=\operatorname{Zero}\left(P\left(f_{1}\right)\right)$, for all $i \in\{2, \ldots, k\}$, and
ii) $f_{1} \wedge \cdots \wedge f_{k}=0$ on $\operatorname{Zero}\left(P\left(f_{1}\right)\right)$.

Then $f_{1} \wedge \cdots \wedge f_{k} \equiv 0$.
Proof. Assume that $f_{1} \wedge \cdots \wedge f_{k} \not \equiv 0$. We denote by $\mu_{f_{1} \wedge \cdots \wedge f_{k}}$ the divisor associated with $f_{1} \wedge \cdots \wedge f_{k}$. Denote $N_{\mu_{f_{1} \wedge \cdots \wedge f_{k}}}(r)$ the counting function associated with the divisor $\mu_{f_{1} \wedge \cdots \wedge f_{k}}$. It is easy to see that

$$
N_{\mu_{f_{1} \wedge \cdots \wedge f_{k}}}(r) \leq \sum_{i=1}^{k} T_{f_{i}}(r)+O(1) .
$$

Since $\operatorname{Zero}\left(P\left(f_{i}\right)\right)=\operatorname{Zero}\left(P\left(f_{1}\right)\right)$, for all $i \in\{2, \ldots, k\}$, we have,

$$
N_{P\left(f_{1}\right)}^{(1)}(r) \leq N_{\mu_{f_{1} \wedge \cdots \wedge f_{k}}}(r) \leq \sum_{i=1}^{k} T_{f_{i}}(r)+O(1) \leq \sum_{i=1}^{k} T_{f_{i}}(r)+O(1) .
$$

Thus, since $\operatorname{Zero}\left(P\left(f_{i}\right)\right)=\operatorname{Zero}\left(P\left(f_{1}\right)\right)$, for all $i \in\{2, \ldots, k\}$, we have

$$
\begin{equation*}
\sum_{i=1}^{k} N_{P\left(f_{i}\right)}^{(n)}(r) \leq n k N_{P\left(f_{1}\right)}^{(1)}(r) \leq n k \sum_{i=1}^{k} T_{f_{i}}(r)+O(1) \tag{4.7}
\end{equation*}
$$

By Lemma 3 we have

$$
\begin{aligned}
d(p-n(n+1)) T_{f_{1}}(r) & \leq N_{P\left(f_{1}\right)}^{(n)}(r)+o\left(T_{f_{1}}(r)\right) \\
& \leq n N_{P\left(f_{i}\right)}^{(1)}(r)+o\left(T_{f_{1}}(r)\right) \\
& \leq n d p T_{f_{i}}(r)+o\left(T_{f_{1}}(r)\right) \quad(1 \leq i \leq k) .
\end{aligned}
$$

This implies that $\mathcal{R}_{f_{1}} \subset \mathcal{R}_{f_{i}}$ for all $2 \leq i \leq k$. Thus, by Lemma 3 we have

$$
d(p-n(n+1)) T_{f_{i}}(r) \leq N_{P\left(f_{i}\right)}^{(n)}(r)+o\left(T_{f_{i}}(r)\right) \quad(1 \leq i \leq k) .
$$

Combining with (4.7) we have

$$
d(p-n(n+1)) \sum_{i=1}^{k} T_{f_{i}}(r) \leq n k \sum_{i=1}^{k} T_{f_{i}}(r)+o\left(\sum_{i=1}^{k} T_{f_{i}}(r)\right) .
$$

This contradicts to $p>\frac{n(d(n+1)+k)}{d}$. Thus, $f_{1} \wedge \cdots \wedge f_{k} \equiv 0$.

References

[1] Aihara, Y., Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61.
[2] Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, Nagoya Math. J. 181 (2006), 75-101.
[3] Dethloff, G., Tan, T. V., Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), 217-242.
[4] Dethloff, G., Tan, T. V., An extension of uniqueness theorems for meromorphic mappings, Vietnam J. Math. 34 (2006), 71-94.
[5] Fujimoto, H., The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23.
[6] Fujimoto, H., Nonintegrated defect relation for meromorphic maps of complete Kähler manifolds into $\mathbf{P}^{N_{1}}(\mathbf{C}) \times \cdots \times \mathbf{P}^{N_{k}}(\mathbf{C})$, Japan. J. Math. (N. S.) 11 (1985), 233-264.
[7] Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152.
[8] Fujimoto, H., Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161-188.
[9] Ji, S., Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348.
[10] Lang, S., Algebra, Third Edition, Addison-Wesley, 1993.
[11] Nevanlinna, R., Einige Eideutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391.
[12] Noguchi, J., Ochiai, T., Introduction to Geometric Function Theory in Several Complex Variables, Trans. Math. Monogr. 80, Amer. Math. Soc., Providence, Rhode Island, 1990.
[13] Ru, M., A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707.
[14] Smiley, L., Geometric conditions for unicity of holomorphic curves, Contemp. Math. 25 (1983), 149-154.
[15] Thai, D. D., Quang, S. D., Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, Internat. J. Math. 17 (2006), 12231257.
[16] Thai, D. D., Tan, T. V., Uniqueness problem of meromorphic mappings for moving hypersurfaces, preprint.
[17] Stoll, W., Introduction to value distribution theory of meromorphic maps, Complex analysis (Trieste, 1980), Lecture Notes in Math., 950, Springer, Berlin-New York, 1982, 210-359.
[18] Stoll, W., Value distribution theory for meromorphic maps, Aspects of Mathematics, E 7 Friedr. Vieweg \& Sohn, Braunschweig, 1985.
[19] Stoll, W., On the propagation of dependences, Pacific J. of Math., 139 (1989), 311337.
[20] Ye, Z., A unicity theorem for meromorphic mappings, Houston J. Math. 24 (1998), 519-531.

Si Duc Quang
Department of Mathematics
Hanoi National University of Education
136-Xuan Thuy street, Cau Giay, Hanoi
Vietnam
e-mail: quangdhsp@yahoo.com

Tran Van Tan
Department of Mathematics
Hanoi National University of Education
136-Xuan Thuy street, Cau Giay, Hanoi
Vietnam
e-mail: tranvantanhn@yahoo.com

Received February 24, 2008

[^0]: 2000 Mathematics Subject Classification. 32H30, 32H04.
 Key words and phrases. Meromorphic mappings, value distribution theory, uniqueness problem.

