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Parallelograms inscribed in a curve
having a circle as π

2 -isoptic

Abstract. Jean-Marc Richard observed in [7] that maximal perimeter of a
parallelogram inscribed in a given ellipse can be realized by a parallelogram
with one vertex at any prescribed point of ellipse. Alain Connes and Don
Zagier gave in [4] probably the most elementary proof of this property of
ellipse. Another proof can be found in [1]. In this note we prove that closed,
convex curves having circles as π

2
-isoptics have the similar property.

1. Introduction. Let C be a closed and strictly convex curve. We fix
an interior point of C as an origin of a coordinate system. Denote eit =
(cos t, sin t), ieit = (− sin t, cos t). The function p : R → R

p(t) = sup
z∈C

〈
z, eit

〉
is called the support function of C. For a strictly convex curve p is differ-
entiable. We assume that the function p is of class C2 and the curvature of
C is positive. We have the following equation of C in terms of its support
function

(1.1) z(t) = p(t)eit + ṗ(t)ieit.

Then ‖z‖ =
√

p2(t) + ṗ2(t) and R(t) = p(t) + p̈(t) is a radius of curvature
of C at t.
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The α-isoptic of C consists of those points in the plane from which the
curve is seen under the fixed angle α (for the geometric properties of isoptics
see [2], [3], [5], [6], [8]). Suppose that π

2 -isoptic of C is a circle of radius r
with the center in the origin of a coordinate system. Then

(1.2) p2(t) + p2
(
t +

π

2

)
= r2,

and

(1.3) p2(t + π) + p2
(
t +

π

2

)
= r2,

so p(t) = p(t + π) and the center of the circle is a center of symmetry of
C. The curve (1.1) has a circle with the center in the origin of a coordinate
system as an π

2 -isoptic if and only if (1.2) holds good.

Example 1.1. Let C be an ellipse x2

a2 + y2

b2
= 1. Then

p(t) =
√

a2 cos2 t + b2 sin2 t,

z(t) = (x(t), y(t)) =
√

a2 cos2 t + b2 sin2 teit +
sin t cos t(b2 − a2)√
a2 cos2 t + b2 sin2 t

ieit

is its equation in terms of a support function and p2(t)+p2
(
t + π

2

)
= a2+b2.

2. Extremal property of the perimeter of inscribed parallelograms.
Assume that a curve C given by (1.1) has a circle with a center in an origin
of a coordinate system as an π

2 -isoptic. Then we have (1.2) and

(2.1) p(t)ṗ(t) + p
(
t +

π

2

)
ṗ
(
t +

π

2

)
= 0.

Fix t and consider inscribed parallelogram with z(t) as one of the vertices.
There exists α such that z(t+α), −z(t), −z(t+α) are its remaining vertices
and

(2.2) dt(α) = |z(t + α)− z(t)|+ |z(t + α) + z(t)|
is a half of a perimeter of parallelogram.

Theorem 2.1. Let C be a strictly convex curve having a circle with a center
in an origin of a coordinate system as an π

2 -isoptic and let dt(α) be the
function given by (2.2). Then
(i) d′t

(
π
2

)
= 0, where prime denotes the derivative with respect to α,

(ii) d
(

π
2

)
= dt

(
π
2

)
does not depend on t.

Proof. We have

ei(t+α) = cos αeit + sin αieit,

iei(t+α) = − sinαeit + cos αieit,

z(t + α) = (p(t + α) cos α− ṗ(t + α) sinα)eit

+ (p(t + α) sinα + ṗ(t + α) cos α)ieit.
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Let

A = p(t + α) cos α− ṗ(t + α) sinα− p(t),

B = p(t + α) sinα + ṗ(t + α) cos α− ṗ(t),

C = p(t + α) cos α− ṗ(t + α) sinα + p(t),

D = p(t + α) sinα + ṗ(t + α) cos α + ṗ(t).

Then
dt(α) =

√
A2 + B2 +

√
C2 + D2

and

d′t(α) = (p(t + α) + p̈(t + α))

×
(

ṗ(t + α) + p(t) sinα− ṗ(t) cos α√
A2 + B2

+
ṗ(t + α)− p(t) sinα + ṗ(t) cos α√

C2 + D2

)
.

Putting α = π
2 , we get

d′t

(π

2

)
= R

(
t +

π

2

) ṗ(t + π
2 ) + p(t)√(

p(t) + ṗ(t + π
2 )
)2 +

(
p(t + π

2 )− ṗ(t)
)2

+
ṗ(t + π

2 )− p(t)√(
p(t)− ṗ(t + π

2 )
)2 +

(
p(t + π

2 ) + ṗ(t)
)2
 .

From (2.1) we have

ṗ
(
t +

π

2

)
= − p(t)ṗ(t)

p(t + π
2 )

,

and since(
p
(
t +

π

2

)
− ṗ(t)

)(
p
(
t +

π

2

)
+ ṗ(t)

)
= p2

(
t +

π

2

)
− ṗ2(t) = r2 − (p2(t) + ṗ2(t))

= r2 − ‖z(t)‖2 > 0,

we obtain

sgn
(
p
(
t +

π

2

)
− ṗ(t)

)
= sgn

(
p
(
t +

π

2

)
+ ṗ(t)

)
.

Hence
ṗ(t + π

2 ) + p(t)√(
p(t) + ṗ(t + π

2 )
)2 +

(
p(t + π

2 )− ṗ(t)
)2

+
ṗ(t + π

2 )− p(t)√(
p(t)− ṗ(t + π

2 )
)2 +

(
p(t + π

2 ) + ṗ(t)
)2
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=
−p(t)ṗ(t)

p(t+π
2
) + p(t)√(

p(t)− p(t)ṗ(t)
p(t+π

2
)

)2
+
(
p(t + π

2 )− ṗ(t)
)2

+
−p(t)ṗ(t)

p(t+π
2
) − p(t)√(

p(t) + p(t)ṗ(t)
p(t+π

2
)

)2
+
(
p(t + π

2 ) + ṗ(t)
)2

=
p(t)

p(t + π
2 )

(
(p(t + π

2 )− ṗ(t))p(t + π
2 )

|p(t + π
2 )− ṗ(t)|

√
p2(t) + p2(t + π

2 )

−
(p(t + π

2 ) + ṗ(t))p(t + π
2 )

|p(t + π
2 ) + ṗ(t)|

√
p2(t) + p2(t + π

2 )

)
= 0,

which proves the first part of Theorem 2.1.
Let

h(t) = dt

(π

2

)
=

√(
p (t) + ṗ

(
t +

π

2

))2
+
(
ṗ(t)− p

(
t +

π

2

))2

+

√(
p(t)− ṗ

(
t +

π

2

))2
+
(
ṗ(t) + p

(
t +

π

2

))2
.

Then

ḣ(t) =
R(t)(ṗ(t)− p(t + π

2 )) + R(t + π
2 )(p(t) + ṗ(t + π

2 ))√(
p(t) + ṗ(t + π

2 )
)2 +

(
ṗ(t)− p(t + π

2 )
)2

+
R(t + π

2 )(ṗ(t + π
2 )− p(t)) + R(t)(ṗ(t) + p(t + π

2 ))√(
p(t)− ṗ(t + π

2 )
)2 +

(
ṗ(t) + p(t + π

2 )
)2

= R
(
t +

π

2

) p(t) + ṗ(t + π
2 )√(

p(t) + ṗ(t + π
2 )
)2 +

(
ṗ(t)− p(t + π

2 )
)2

−
p(t)− ṗ(t + π

2 )√(
p(t)− ṗ(t + π

2 )
)2 +

(
ṗ(t) + p(t + π

2 )
)2


+ R(t)

 ṗ(t)− p(t + π
2 )√(

p(t) + ṗ(t + π
2 )
)2 +

(
ṗ(t)− p(t + π

2 )
)2

+
ṗ(t) + p(t + π

2 )√(
p(t)− ṗ(t + π

2 )
)2 +

(
ṗ(t) + p(t + π

2 )
)2
 .
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Since the first summand is equal to zero for each t and the second summand
is equal to the first at t + π

2 , they are equal to zero. �

3. The converse theorem. In this section we shall prove the converse of
Theorem 2.1. For this purpose we define the function d(t) = dt(π

2 ).

Theorem 3.1. Let C be a closed and strictly convex curve of class C2 with
positive curvature having a center of symmetry. Suppose that an origin of
a coordinate system is in the center of C and d′t(

π
2 ) = 0. Then ḋ(t) = 0 and

π
2 -isoptic of C is a circle.

Proof. The equality d′t(
π
2 ) = 0 is equivalent to

(3.1)

ṗ(t + π
2 ) + p(t)√(

p(t) + ṗ(t + π
2 )
)2 +

(
p(t + π

2 )− ṗ(t)
)2

=
p(t)− ṗ(t + π

2 )√(
p(t)− ṗ(t + π

2 )
)2 +

(
p(t + π

2 ) + ṗ(t)
)2 .

The equality (3.1) for t + π
2 gives

(3.2)

ṗ(t) + p(t + π
2 )√(

p(t + π
2 ) + ṗ(t)

)2 +
(
p(t)− ṗ(t + π

2 )
)2

=
p(t + π

2 )− ṗ(t)√(
p(t + π

2 )− ṗ(t)
)2 +

(
p(t) + ṗ(t + π

2 )
)2 .

From (3.1) and (3.2) we get

ṗ(t + π
2 ) + p(t)

p(t + π
2 )− ṗ(t)

=
p(t)− ṗ(t + π

2 )
ṗ(t) + p(t + π

2 )
,

or equivalently

p(t)ṗ(t) + p
(
t +

π

2

)
+ p

(
t +

π

2

)
ṗ
(
t +

π

2

)
= 0,

which gives

p2(t) + p2
(
t +

π

2

)
= const. �

Example 3.1 ([5]). Let p(t) = cos(π
4 + k sin(2t)). For k sufficiently small

p(t) is a support function of a closed and strictly convex curve having a
circle as π

2 -isoptic and different from an ellipse.

Example 3.2. Let p(t) =
√

a sin2 3t + b cos2 9t + c, for positive a, b, c. For
c sufficiently big p(t) + p̈(t) > 0 for each t and p2(t) + p2(t + π

2 ) = a + b + 2c
so p(t) is a support function of a closed and strictly convex curve having a
circle as π

2 -isoptic. This curve cannot be an ellipse because an origin of a
coordinate system is its center of symmetry and p(t) is a periodic function
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with a period π
3 . Hence its curvature function is also periodic with the same

period and this curve has more then four vertices. More generally we can
take p(t) =

√
a sin2 mt + b cos2 mnt + c, where m and m are odd integers

and a, b, c are positive.

Remark 3.1. Let C be an ellipse. We fix a diameter PP ′ and consider an
ellipse C ′ with focuses at P and P ′ which is tangent to C. Then points Q
and Q′ of tangency give a diameter such that a perimeter of parallelogram
PQP ′Q′ is maximal. The common tangent of C and C ′ at Q (resp. Q′)
makes equal angels with the sides PQ and P ′Q (resp. PQ′ and P ′Q′). This
means that for parallelogram of maximal perimeter a tangent at any vertex
makes equal angles with adjoining sides. This is a part of a more general fact.
Let C be any closed and convex curve given in an arbitrary parametrization
z = z(t) of class C1. Fix the points z(t1) and z(t2). Let z(t0) be such a
point that the perimeter of the triangle z(t1)z(t2)z(t0) is maximal. Then
the tangent at t0 makes equal angels with the sides z(t0)z(t1) and z(t0)z(t2).
Indeed,

d

dt
(|z(t)− z(t1)|+ |z(t)− z(t2)|)

=
〈z(t)− z(t1), ż(t)〉
|z(t)− z(t1)|

+
〈z(t)− z(t2), ż(t)〉
|z(t)− z(t2)|

=
|z(t)− z(t1)||ż(t)| cos ](z(t)− z(t1), ż(t))

|z(t)− z(t1)|

+
|z(t)− z(t2)||ż(t)| cos ](z(t)− z(t2), ż(t))

|z(t)− z(t2)|
= |ż(t)|(cos ](z(t)− z(t1), ż(t)) + cos ](z(t)− z(t2), ż(t))).

For t = t0 we obtain

cos ](z(t0)− z(t1), ż(t0)) + cos ](z(t0)− z(t2), ż(t0))) = 0.
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