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Sufficient conditions
for quasiconformality of harmonic mappings

of the upper halfplane onto itself

Abstract. In this paper we introduce a class of increasing homeomorphic
self-mappings of R. We define a harmonic extension of such functions to the
upper halfplane by means of the Poisson integral. Our main results give some
sufficient conditions for quasiconformality of the extension.

1. Introduction. Let F be a complex-valued sense-preserving diffeomor-
phism of the upper halfplane C+ := {z ∈ C : Im z > 0} onto itself, where C
stands for the complex plane. Then the Jacobian

JF := |∂F |2 − |∂̄F |2(1.1)

is positive on C+ and so the function

C+ 3 z 7→ DF (z) :=
|∂F (z)|+ |∂̄F (z)|
|∂F (z)| − |∂̄F (z)|

(1.2)

is well defined. We recall that DF (z) is called the maximal dilatation of F at
z ∈ C+. Here and in the sequel ∂ := (∂x−i∂y)/2 and ∂̄ := (∂x+i∂y)/2 stands
for the formal derivatives operators. From the analytical characterization
of quasiconformal mappings (see [3]) it follows that for any K ≥ 1, F is
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K-quasiconformal if and only if

DF (z) ≤ K, z ∈ C+.(1.3)

Assume now that F is quasiconformal, i.e. F satisfies (1.3) for some K ≥ 1.
Then F has a unique homeomorphic extension F ∗ to the closure C+ :=
C+ ∪ R̂, R̂ := R∪ {∞} (see [3]). The famous result of Beurling and Ahlfors
(see [1]) says that a function f of R onto itself is the restriction of F ∗ if and
only if f is quasisymmetric, i.e. f is a strictly increasing homeomorphism,
such that

(1.4)
1
M

≤ f(x + t)− f(x)
f(x)− f(x− t)

≤ M

for some constant M ≥ 1 and for all x ∈ R and t > 0.
Assume additionally that F is a harmonic mapping, i.e. F satisfies the
Laplace equation ∂∂̄F = 0 on C+. Kalaj and Pavlović proved in [2] that an
increasing homeomorphism f of R onto itself is the restriction of F ∗ if and
only if it is biLipschitz and the Hilbert transformation of f ′ is bounded.
Following the idea of Beurling and Ahlfors we are going to find an effec-
tive extension of f to F ∗. For f ∈ F , where F is considered in Section 2,
we provide a construction of the harmonic extension H[f ] defined in Defini-
tion 3.1 by means of the Poisson integral. The main purpose of this paper is
to give sufficient conditions on f ∈ F , that guarantee quasiconformality of
H[f ]. In Section 3 we show that H[f ] is a homeomorphism of C+ onto itself
provided f ∈ F has the biLipschitz property (3.2), cf. Proposition 3.2. In
Section 4 we provide various auxiliary estimates dealing with partial deriva-
tives of H[f ]. Applying them we are able to estimate the maximal dilatation
DH[f ] of H[f ] in case f ∈ F satisfies the biLipschitz property (3.2) and f ′

is a Dini-continuous function with respect to spherical distance (4.3). This
is the main result of the paper and is stated in Theorem 5.2. In particu-
lar, if f ′ is Hölder-continuous with respect to spherical distance we obtain
estimate of DH[f ] given in Theorem 5.3.

2. Preliminary notes. Let Hom+(R) be the set of all increasing real line
homeomorphisms onto itself. For a ∈ R we define

Fa :=
{
f ∈ Hom+(R) : I(f, a) < +∞

}
,

where

I(f, a) :=
∫ +∞

−∞

|f(t)− at|
1 + t2

d t.

We define also

F :=
⋃
a>0

Fa.

The following properties hold.
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Proposition 2.1. If a < 0, then Fa = ∅.

Proof. Let f ∈ Hom+(R). There exists T > 0 such that f(t) ≥ 0 for t ≥ T .
Hence, if a < 0, then |f(t)− at| ≥ f(t) + |a|t for t ≥ T , which implies that

I(f, a) ≥
∫ +∞

T

f(t) + |a|t
1 + t2

d t.

Since the last integral is divergent, f /∈ Fa and we have a contradiction
which completes the proof. �

Proposition 2.2. If a 6= b, then Fa ∩ Fb = ∅.

Proof. Let f ∈ Fa ∩ Fb, a 6= b. Observe, that∫ +∞

−∞

|(a− b)t|
1 + t2

d t ≤
∫ +∞

−∞

|f(t)− at|
1 + t2

d t +
∫ +∞

−∞

|f(t)− bt|
1 + t2

d t < +∞.

But the first integral is divergent, thus we have a contradiction, which com-
pletes the proof. �

Remark 2.3. By Proposition 2.2, for every fixed f ∈ F there exists exactly
one constant a > 0, such that I(f, a) < +∞.

Proposition 2.4. If f ∈ Fa, then f̃ ∈ Fa, where f̃(t) := −f(−t), t ∈ R.

Proof. Consider I(f̃ , a). Substituting s := −t we have

I(f̃ , a) = −
∫ −∞

+∞

|f̃(−s) + as|
1 + s2

d s =
∫ +∞

−∞

| − f̃(−s)− as|
1 + s2

d s = I(f, a). �

Proposition 2.5. If f ∈ F , then lim inft→+∞ f(t)/t ≥ 0.

Proof. Assume that lim inft→+∞ f(t)/t < 0, then there exists a sequence
{tn} and T ∈ R such that tn → +∞ and f(tn) < 0 for n ≥ T . But
f ∈ Hom+(R), i.e. f is an increasing homeomorphism of R onto R, thus we
have a contradiction and the proof is completed. �

Proposition 2.6. If f ∈ F , then lim inft→−∞ f(t)/t ≥ 0.

Proof. Consider f̃(t) := −f(−t). By Proposition 2.4 we have f̃ ∈ Fa and
then by Proposition 2.5 we have

lim inf
t→+∞

f̃(t)/t ≥ 0.

This is equivalent to lim inft→−∞ f(t)/t ≥ 0, which completes the proof. �

Proposition 2.7. If f ∈ Fa, then a is an accumulation point of f(t)/t in
+∞.

Proof. Consider f ∈ Fa satisfying the condition

∀T>0∀δ>0∃t≥T

∣∣∣∣f(t)
t

− a

∣∣∣∣ < δ.



94 A. Michalski

If we put T := n and δ := 1/n, then we have

∀n>0∃t≥n

∣∣∣∣f(t)
t

− a

∣∣∣∣ < 1
n

.

This means that a is an accumulation point of f(t)/t in +∞.
Assume that a is not an accumulation point of f(t)/t in +∞. This implies
that

∃T>0∃δ>0∀t≥T

∣∣∣∣f(t)
t

− a

∣∣∣∣ ≥ δ.

Hence

I(f, a) ≥
∫ +∞

T

|f(t) + at|
1 + t2

d t ≥
∫ +∞

T

δt

1 + t2
d t.

Since the last integral is divergent, this contradicts the assumption f ∈ Fa,
which completes the proof. �

Proposition 2.8. If f ∈ Fa, then a is an accumulation point of f(t)/t in
−∞.
Proof. Consider f̃(t) := −f(−t). By Proposition 2.4 we have f̃ ∈ Fa and
by Proposition 2.7 we obtain that a is an accumulation point of f̃(t)/t in
+∞. This is equivalent to that a is an accumulation point of f(t)/t in −∞
and completes the proof. �

Theorem 2.9. If f ∈ Fa, then limt→+∞ f(t)/t = a.

Proof. Note, that by Proposition 2.7 a is the accumulation point of f(t)/t
in +∞. Assume that there exists b ∈ R, b 6= a which is an accumulation
point of f(t)/t in +∞, i.e. there exists a sequence {tn}, tn > 0, tn → +∞,
such that

∀ε>0∃ñ∀n≥ñ

∣∣∣∣f(tn)
tn

− b

∣∣∣∣ < ε.

Set ε := |a− b|/3 and denote

sn :=
2b + a

2a + b
tn.

In view of Proposition 2.5 we may restrict our consideration to a ≥ 0 and
b ≥ 0.
If b > a ≥ 0, then sn > tn and for t ∈ [tn, sn] we have the following
estimate

f(t)− at ≥ f(tn)− asn >

(
b− ε− a

2b + a

2a + b

)
tn =

(b− a)(2b + a)
3(2a + b)

tn > 0.

We chose from {tn} a subsequence {tnk
}, k = 1, 2, 3, . . . such that tn1 = tñ

and for all k holds

tnk+1
> snk

.
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Hence, for t ∈ [tn, sn] we have

I(f, a) ≥
∫ +∞

0

|f(t)− at|
1 + t2

d t =
∫ tn1

0

|f(t)− at|
1 + t2

d t +
∫ +∞

tn1

|f(t)− at|
1 + t2

d t

≥
+∞∑
n=1

∫ tnk+1

tnk

|f(t)− at|
1 + t2

d t ≥
+∞∑
n=1

∫ snk

tnk

|f(t)− at|
1 + t2

d t

≥
+∞∑
n=1

∫ snk

tnk

(b− a)(2b + a)tnk

3(2a + b)(1 + t2nk
)
d t

=
+∞∑
n=1

(b− a)(2b + a)(snk
− tnk

)tnk

3(2a + b)(1 + s2
nk

)

=
+∞∑
n=1

(b− a)2(2b + a)t2nk

3[(2a + b)2 + (2b + a)2t2nk
]
.

Observe, that

lim
n→+∞

(b− a)2(2b + a)t2nk

3[(2a + b)2 + (2b + a)2t2nk
]
=

(b− a)2

3(2b + a)
6= 0.(2.1)

If a > b ≥ 0, then sn < tn and for t ∈ [sn, tn] we have the following
estimate

f(t)− at ≤ f(tn)− asn <

(
b + ε− a

2b + a

2a + b

)
tn =

(b− a)(2b + a)
3(2a + b)

tn < 0.

We chose from {sn} a subsequence {snk
}, k = 1, 2, 3, . . . such that sn1 = sñ

and for all k holds

snk+1
> tnk

.

Hence, for t ∈ [sn, tn] we have

I(f, a) ≥
∫ +∞

0

|f(t)− at|
1 + t2

d t =
∫ sn1

0

|f(t)− at|
1 + t2

d t +
∫ +∞

sn1

|f(t)− at|
1 + t2

d t

≥
+∞∑
n=1

∫ snk+1

snk

|f(t)− at|
1 + t2

d t ≥
+∞∑
n=1

∫ tnk

snk

|f(t)− at|
1 + t2

d t

≥
+∞∑
n=1

∫ tnk

snk

(a− b)(2b + a)tnk

3(2a + b)(1 + t2nk
)
d t =

+∞∑
n=1

(a− b)(2b + a)(tnk
− snk

)tnk

3(2a + b)(1 + t2nk
)

=
+∞∑
n=1

(a− b)2(2b + a)t2nk

3(2a + b)2(1 + t2nk
)
.
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Observe, that

lim
n→+∞

(a− b)2(2b + a)t2nk

3(2a + b)2(1 + t2nk
)

=
(a− b)2(2b + a)

3(2a + b)2
6= 0.(2.2)

Finally, (2.1) and (2.2), together, imply that I(f, a) = +∞, which con-
tradicts the assumption f ∈ F . Hence

lim
t→+∞

f(t)/t = a,

which completes the proof. �

Theorem 2.10. If f ∈ Fa, then limt→−∞ f(t)/t = a.

Proof. Consider f̃(t) := −f(−t). By Proposition 2.4 we have f̃ ∈ Fa and
by Theorem 2.9 we obtain

lim
t→+∞

f̃(t)/t = a.

This is equivalent to

lim
t→−∞

f(t)/t = a

and completes the proof. �

Remark 2.11. Every function f ∈ Fa has the form

R 3 t 7→ f(t) = at + g(t),(2.3)

where g(t)/t → 0 as |t| → +∞.

3. The harmonic extension H[f ]. We introduce a harmonic extension
of f ∈ F from R to C+. By the definition of the class F the following
definition makes sense.

Definition 3.1. For f ∈ Fa we define H[f ] : C+ → C+ as follows

H[f ](z) := az + P [g](z),

where g is related to f by (2.3) and

P [g](z) :=
∫ +∞

−∞
Pz(t)g(t) d t(3.1)

is the Poisson integral for C+ and

Pz(t) :=
1
π

Im{z}
|z − t|2

is the Poisson kernel for C+.
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Note, that P [g](z) ∈ R for every z ∈ C+ and let us denote

U(z) := Re{H[f ](z)} = aRe{z}+ P [g](z)

and

V (z) := Im{H[f ](z)} = a Im{z}.

Throughout this paper U and V will always mean Re{H[f ]} and Im{H[f ]},
respectively.
Recall that the biLipschitz condition on f , i.e.

∃L1,L2>0∀t1,t2∈R L2|t2 − t1| ≤ |f(t2)− f(t1)| ≤ L1|t2 − t1|(3.2)

is the necessary condition for H[f ] to be quasiconformal (see [2]).

Proposition 3.2. If f ∈ Fa satisfies the biLipschitz condition (3.2), then
H[f ] is a homeomorphism of C+ onto itself.

Proof. Fix y > 0 and let z1 = x1 + iy, z2 = x2 + iy, where x1, x2 ∈ R.
Since Pz(t) > 0, t ∈ R and∫ +∞

−∞
Pz(t) d t = 1, z ∈ C+,

we can write

U(z1)− U(z2) = ax1 + P [g](z1)− ax2 − P [g](z2)

=
∫ +∞

−∞

1
π

y

(x1 − t)2 + y2
[ax1 + g(t)] d t

−
∫ +∞

−∞

1
π

y

(x2 − t)2 + y2
[ax2 + g(t)] d t

=
∫ +∞

−∞

1
π

y

s2 + y2
[a(x1 − s) + g(x1 − s)− a(x2 − s)− g(x2 − s)] d s

=
∫ +∞

−∞

1
π

y

s2 + y2
[f(x1 − s)− f(x2 − s)] d s.

Because f increases, then U(z1) > U(z2) for x1 > x2. Hence U is univalent
on every horizontal line. Since V (z) = a Im{z}, H[f ] is univalent.
To show that U maps every horizontal line in the upper halfplane onto

R, we fix y > 0 and observe that

U(x + iy)− U(iy) =
∫ +∞

−∞

1
π

y

s2 + y2
[f(x− s)− f(−s)] d s.

Let x > 0. Since f increases and by applying the biLipschitz condition
(3.2), we have

U(x + iy)− U(iy) ≥
∫ +∞

−∞

1
π

y

s2 + y2
L2|x|d s = L2x.
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Let x < 0. Analogically we obtain

U(x + iy)− U(iy) ≤ −
∫ +∞

−∞

1
π

y

s2 + y2
L2|x|d s = L2x.

Since V (z) = a Im{z}, H[f ](C+) = C+. �

The following example shows that not every function f ∈ F has the
extension H[f ] which is quasiconformal.

Example 3.3. Consider the function f : R → R defined as f(t) = t +
|t|1/2 sgn t. Obviously, f ∈ F1 ⊂ F since∫ +∞

−∞

|t|1/2

1 + t2
d t < +∞.

On the other hand, we have

|f(t1)− f(t2)| = |t1 − t2|
(

1 +
1√

t1 +
√

t2

)
,

where t1, t2 > 0. Hence, we see that

∀L>0∃t1,t2>0 1 +
1√

t1 +
√

t2
> L,

e.g. putting t2 := t1/4 := 1/(9L2). This means that f is not biLipschitz and
so it cannot have quasiconformal extension to the upper halfplane.

4. Estimates of partial derivatives ofH[f ]. Let f ∈ Fa and z = x+iy.
We compute partial derivatives of U and V .

∂U

∂x
(z) = a +

∂

∂x
(P [g](z)) = a +

∫ +∞

−∞

1
π

−2y(x− t)
[(x− t)2 + y2]2

g(t) d t

= a +
∫ +∞

0

1
π

2ys

(s2 + y2)2
[g(x + s)− g(x− s)] d s,

∂U

∂y
(z) =

∂

∂y
(P [g](z)) =

∫ +∞

−∞

1
π

(x− t)2 − y2

[(x− t)2 + y2]2
g(t) d t

=
∫ +∞

0

1
π

s2 − y2

(s2 + y2)2
[g(x + s) + g(x− s)] d s,

∂V

∂x
(z) = 0,

∂V

∂y
(z) = a.

(4.1)

First, we give the estimates on ∂U/∂x under assumption, that f ∈ F is
biLipschitz only.
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Theorem 4.1. If f ∈ Fa satisfies the biLipschitz condition (3.2), then

L2 ≤
∂U

∂x
(z) ≤ L1, z ∈ C+.(4.2)

Proof. Observe, that (3.2) implies

2(L2 − a)s ≤ g(x + s)− g(x− s) ≤ 2(L1 − a)s

for every s > 0. Let z = x + iy. Then

∂U

∂x
(z) = a +

∫ +∞

0

1
π

2ys

(s2 + y2)2
[g(x + s)− g(x− s)] d s

≤ a +
∫ +∞

0

1
π

4ys2

(s2 + y2)2
(L1 − a) d s = L1,

∂U

∂x
(z) = a +

∫ +∞

0

1
π

2ys

(s2 + y2)2
[g(x + s)− g(x− s)] d s

≥ a +
∫ +∞

0

1
π

4ys2

(s2 + y2)2
(L2 − a) d s = L2. �

As a corollary from the estimates of ∂U/∂x we obtain the estimates of
the Jacobian JH[f ] of H[f ] defined in (1.1).

Corollary 4.2. If f ∈ Fa satisfies the biLipschitz condition (3.2), then

aL2 ≤ JH[f ](z) ≤ aL1, z ∈ C+.

Proof. We can rewrite the Jacobian of H[f ] in the form

JH[f ] =
∂U

∂x

∂V

∂y
− ∂U

∂y

∂V

∂x
.

Since ∂V/∂x = 0 and ∂V/∂y = a, by applying the inequalities (4.2) the
proof is completed. �

Now, we give the estimate of ∂U/∂y under an additional assumption on
f , but first we formulate the following lemma.

Lemma 4.3. If f ∈ F is absolutely continuous function, then
∂U

∂y
(z) =

∫ +∞

0

1
π

s

s2 + y2
[f ′(x + s)− f ′(x− s)] d s.

Proof. Recall that
∂U

∂y
(z) =

∫ +∞

0

1
π

s2 − y2

(s2 + y2)2
[g(x + s) + g(x− s)] d s,

where z = x + iy. Since f is absolutely continuous, f ′ exists almost every-
where and for almost all t1, t2 ∈ R

f ′(t1)− f ′(t2) = g′(t1)− g′(t2).
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Hence, integrating by parts we have

∂U

∂y
(z) = − 1

π

s

s2 + y2
[g(x + s) + g(x− s)]

∣∣∣∣+∞
0

+
∫ +∞

0

1
π

s

s2 + y2
[g′(x + s)− g′(x− s)] d s.

Since, by Theorem 2.9,

lim
t→+∞

g(t)
t

= 0,

the proof is completed. �

Recall, that a continuous function ϕ is said to be Dini-continuous with
respect to spherical distance if it satisfies the following condition∫ ς

0

ω(t)
t

d t = Mς < +∞(4.3)

for some ς ∈ (0, 1], where ω : [0, 1] → [0, 1],

ω(t) := sup{ds(ϕ(t1), ϕ(t2)) : ds(t1, t2) < t}

is the modulus of continuity of ϕ with respect to spherical distance ds,

ds(t1, t2) :=
|t1 − t2|√

1 + t21
√

1 + t22
.

Obviously, ω is non-decreasing function and

ds(ϕ(t1), ϕ(t2)) ≤ ω(ds(t1, t2))(4.4)

holds for all t1, t2 ∈ R.

Remark 4.4. If f satisfies the biLipschitz condition (3.2) and f ′ is Dini-
continuous with respect to spherical distance a.e. in R, then f ′ exists every-
where in R̂ := R ∪ {∞} and L2 ≤ |f ′(t)| ≤ L1, t ∈ R̂. In particular, there
exists finite value of f ′ at the point ∞. If, additionally, f ∈ Fa, then by
Remark 2.11 f is of the form (2.3) and so we have

lim
t→+∞

f ′(t) = lim
t→−∞

f ′(t) = a.

Theorem 4.5. If f ∈ F satisfies the biLipschitz condition (3.2) and if f ′

is Dini-continuous with respect to spherical distance (4.3), then∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 2(1 + L2

1)
π

[
Mς√
1− δ2

+ log

(
1 +

√
1− δ2

δ

)]
,(4.5)

where δ := min{ς, 1/
√

1 + Mς} and ς, Mς satisfy (4.3).



Sufficient conditions for quasiconformality of harmonic mappings... 101

Proof. Since f is biLipschitz, f is absolutely continuous and by Lemma 4.3
we have ∣∣∣∣∂U

∂y
(z)
∣∣∣∣ = ∣∣∣∣ 1π

∫ +∞

0

s

s2 + y2
[g′(x + s)− g′(x− s)] d s

∣∣∣∣
≤ 1

π

∫ +∞

0

|g′(x + s)− g′(x− s)|
s

d s.

From the Dini-continuity condition with respect to spherical distance (4.3)
we have that (4.4) holds for f ′ and so we obtain∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 1

π

∫ +∞

0

[√
1 + [f ′(x + s)]2

√
1 + [f ′(x− s)]2

s

× ω

(
2s√

1 + (x + s)2
√

1 + (x− s)2

)]
d s.

Again, the biLipschitz condition for f gives∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ (1 + L2

1)
π

∫ +∞

0

1
s
ω

(
2s√

1 + (x + s)2
√

1 + (x− s)2

)
d s.

Setting

t :=
2s√

1 + (x + s)2
√

1 + (x− s)2
,(4.6)

we have

t′ =
−2s4 + 2(1 + x2)2

(
√

1 + (x + s)2
√

1 + (x− s)2)3
=

t3[−2s4 + 2(1 + x2)2]
4s3

.

Let

A := t2, B := [2t2(1− x2)− 4], C := t2(1 + x2)2,

∆ := B2 − 4AC = 16(1− t2)(1 + x2t2).

To apply the substitution (4.6) to the last integral we need to divide it into
two integrals from 0 to

√
1 + x2 and from

√
1 + x2 to +∞. Then we obtain∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 4(1 + L2

1)
π

∫ +∞

0

s2

(Bs2 + 2C)
ω(t)
t3

t′ d s

=
4(1 + L2

1)
π

[∫ √
1+x2

0

1
(B + 2C

s2 )
ω(t)
t3

t′ d s +
∫ +∞

√
1+x2

1
(B + 2C

s2 )
ω(t)
t3

t′ d s

]
.

From (4.6) we compute two solutions

s2 =
−B −

√
∆

2A
and s2 =

−B +
√

∆
2A
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for t ∈ (0, 1). Hence, we have∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 4(1 + L2

1)
π

∫ 1

0

1√
∆

ω(t)
t

d t +
4(1 + L2

1)
π

∫ 0

1

−1√
∆

ω(t)
t

d t

=
8(1 + L2

1)
π

∫ 1

0

1√
∆

ω(t)
t

d t ≤ 2(1 + L2
1)

π

∫ 1

0

1√
1− t2

ω(t)
t

d t.

Since, by definition, ω(t) ≤ 1 and ω satisfies (4.3),∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 2(1 + L2

1)
π

[∫ δ

0

1√
1− t2

ω(t)
t

d t +
∫ 1

δ

ω

t
√

1− t2
d t

]
≤ 2(1 + L2

1)
π

{
1√

1−ς2

∫ ς
0

ω(t)
t d t +

∫ 1
ς

1
t
√

1−t2
d t, δ ≥ ς,

1√
1−δ2

∫ δ
0

ω(t)
t d t +

∫ 1
δ

1
t
√

1−t2
d t, δ < ς

≤ 2(1 + L2
1)

π


Mς√
1−ς2

+ log
(

1+
√

1−ς2

ς

)
, δ ≥ ς,

Mς√
1−δ2

+ log
(

1+
√

1−δ2

δ

)
, δ < ς.

Simple calculation shows that the above estimate is the best when δ =
min{ς, 1/

√
1 + Mς} and the proof is completed. �

In particular, if ϕ is Hölder-continuous with respect to spherical distance
ds, i.e.

ds(ϕ(t1), ϕ(t2)) ≤ λds(t1, t2)α(4.7)

for all t1, t2 ∈ R and some constants λ > 0 and α ∈ (0, 1], then ϕ is also
Dini-continuous with respect to spherical distance.
We have the following corollary from the proof of Theorem 4.5.

Corollary 4.6. If f ∈ F satisfies the biLipschitz condition (3.2) and f ′ is
Hölder-continuous with respect to spherical distance (4.7), then

∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ λ(1 + L2

1)
π


B
(

α
2 , 1

2 ; 1
)
, λ ≤ 1,

B
(

α
2 , 1

2 ;λ−1/α
)

+ 2
λ log

(
λ1/α +

√
λ2/α − 1

)
, λ > 1.

(4.8)

where B denotes the incomplete beta function and λ, α satisfy (4.7).

Proof. From the proof of Theorem 4.5 we have∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 2(1 + L2

1)
π

∫ 1

0

ω(t)
t
√

1− t2
d t,

where ω is the modulus of continuity of f ′ with respect to spherical distance.
Since f ′ satisfies (4.7) and ω(t) ≤ 1, we have

ω(t) ≤ min{1, λtα}.
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Hence∣∣∣∣∂U

∂y
(z)
∣∣∣∣ ≤ 2(1 + L2

1)
π

{∫ 1
0

λtα

t
√

1−t2
d t, λ ≤ 1,∫ λ−1/α

0
λtα

t
√

1−t2
d t +

∫ 1
λ−1/α

1
t
√

1−t2
d t, λ > 1.

Finally, recall that for a > 0, b > 0 and c ∈ [0, 1] the incomplete beta
function is defined by the formula (see [4])

B(a, b; c) :=
∫ c

0
ta−1(1− t)b−1 d t.

Hence, the proof is completed. �

5. Quasiconformality of H[f ]. Using estimates on partial derivatives of
the extension H[f ] we are able to estimate its maximal dilatation DH[f ],
which is the main tool in studying quasiconformality of H[f ].

Theorem 5.1. If f ∈ Fa satisfies the biLipschitz condition (3.2) and
|∂U/∂y| ≤ A for some A > 0, then

DH[f ](z) ≤ L1

a
+

A2 + a2

aL2
, z ∈ C+.

Proof. We have

DH[f ](z) ≤ 2
|∂H(z)|2 + |∂H(z)|2

JH[f ](z)

=

(
∂U
∂x (z)

)2
+
(

∂U
∂y (z)

)2 +
(

∂V
∂x (z)

)2
+
(

∂V
∂y (z)

)2
∂U
∂x (z)∂V

∂y (z)− ∂U
∂y (z)∂V

∂x (z)
.

Combining this with (4.1) we obtain

DH[f ](z) ≤
∂U
∂x (z)

a
+

(
∂U
∂y (z)

)2 + a2

a∂U
∂x (z)

.

Applying (4.2) and the assumption |∂U/∂y| ≤ A the theorem follows. �

Theorem 5.2. If f ∈ Fa satisfies the biLipschitz condition (3.2) and if f ′

is Dini-continuous with respect to spherical distance (4.3), then

DH[f ](z) ≤ L1

a
+

4
π2

(
1 + L2

1

)2 [ Mς√
1−δ2

+ log
(

1+
√

1−δ2

δ

)]2
+ a2

aL2
, z ∈ C+,

where δ := min{ς, 1/
√

1 + Mς} and ς, Mς satisfy (4.3).

Proof. Theorem 4.5 gives the estimate (4.5) on |∂U/∂y|. Hence, the theo-
rem follows from Theorem 5.1. �
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Theorem 5.3. If f ∈ Fa satisfies the biLipschitz condition (3.2) and f ′ is
Hölder-continuous with respect to spherical distance (4.7), then

DH[f ](z) ≤ L1

a
+

A2 + a2

aL2
, z ∈ C+,

where

A =
λ(1 + L2

1)
π

{
B
(

α
2 , 1

2 ; 1
)
, λ ≤ 1,

B
(

α
2 , 1

2 ;λ−1/α
)

+ 2
λ log

(
λ1/α +

√
λ2/α − 1

)
, λ > 1

and B denotes the incomplete beta function and λ, α satisfy (4.7).

Proof. Corollary 4.6 gives the estimate (4.8) on |∂U/∂y|. Hence, the the-
orem follows from Theorem 5.1. �

References

[1] Ahlfors, L. V., Lectures on Quasiconformal Mappings, Van Nostrand Mathematical
Studies, D. Van Nostrand, Princeton, 1966.

[2] Kalaj, D., Pavlović, M., Boundary correspondence under quasiconformal harmonic
diffeomorphisms of a half-plane, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 30 (2005),
159–165.

[3] Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd ed.,
Grundlehren der matematischen Wissenschaften 126, Springer-Verlag, Berlin, 1973.

[4] Pearson, K., Tables of the Incomplete Beta-Function, Cambridge Univ. Press, Cam-
bridge, 1934.

Andrzej Michalski
Department of Complex Analysis
Faculty of Mathematics and Natural Sciences
The John Paul II Catholic University of Lublin
ul. Konstantynów 1H
20-950 Lublin, Poland
e-mail: amichal@kul.lublin.pl

Received September 10, 2007


	1. Introduction
	2. Preliminary notes
	3. The harmonic extension H[f]
	4. Estimates of partial derivatives of H[f]
	5. Quasiconformality of H[f]
	References

