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Darboux type properties of the paratingent

Abstract. In this paper we consider the Darboux type properties for the
paratingent. We review some of the standard facts on the multivalued func-
tions and the paratingent. We prove that the paratingent has always the
Darboux property but the property D∗ holds only when the paratingent is a
multivalued function.

1. Introduction. It is well known that any continuous real function f :
I → R, where I is an interval of R has the Darboux property. This means
that if t < s are points in I and ξ is a value between f(t) and f(s) then
there exists x ∈ [t, s] such that f(x) = ξ. Moreover, if a function f is
differentiable on I, then its derivative f ′ has the Darboux property. In [1]
J. Czarnowska, G. Kwiecińska consider a generalization of this property for
multivalued functions. They define two properties D and D∗. Both of them
are equivalent in the case of a single valued real function but they are not
in the case of a mulivalued function. If a function is non-differentiable we
can deal with a paratingent instead of a derivative. If a function is locally
Lipschitz then the paratingent is a multivalued function on I the values
of which are intervals contained in R. In this paper we study conditions
under which paratingent enjoys properties D and D∗. We prove that the
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paratingent always has the property D. The property D∗ is a necessary but
not a sufficient condition of continuity of the paratingent.

2. Notation and definitions. Let R be the set of all real numbers. Let
I ⊂ R be an interval. We denote by P (R) the family of all nonempty subsets
of R, C(R) the family of all nonempty and closed subsets of R and Conv R
the family of compact intervals of R.

Definition 2.1. A mapping F : A → P (R), where A is a nonempty subset
of R, is called a multivalued function.

For a multivalued function F : I → P (R) and any A ⊂ I and B ⊂ R, we
denote

F (A) =
⋃
{F (x) : x ∈ A},

F+(B) = {x ∈ I : F (x) ⊂ B},
F−(B) = {x ∈ I : F (x) ∩B 6= ∅}.

Definition 2.2. A multivalued function F : I → P (R) is lower semicontin-
uous if for every open set V ⊂ R the set F−(V ) is open in I.

Definition 2.3. A multivalued function F : I → P (R) is upper semicon-
tinuous if for every open set V ⊂ R the set F+(V ) is open in I.

Definition 2.4. A multivalued function F : I → P (R) is continuous if it is
both lower and upper semicontinuous.

In [2] we can find an equivalent condition of lower semicontinuity of mul-
tivalued functions.

Theorem 2.5. A multifunction F : I → P (R) is lower semicontinuous if
and only if

∀{tn}⊂I, tn→t∀x∈F (t)∃{xn}⊂R, xn→x∃n0∀n≥n0 xn ∈ F (tn)

(see [2, Remark 2, p. 10]).

The following theorem gives the condition which implies upper semicon-
tinuity:

Theorem 2.6. If a multifunction F : I → P (R) satisfies the condition:

∀{tn}⊂I, tn→t∀xn∈F (tn)∃{xnk
}⊂{xn} lim

k→∞
xnk

= x ∈ F (t)

then F is upper semicontinuous.

Proof. Assume that

∀{tn}⊂I, tn→t∀xn∈F (tn)∃{xnk
}⊂{xn} lim

k→∞
xnk

= x ∈ F (t)

and F is not upper semicontinuous. Then there exists open set G ⊂ R such
that F+(G) is not open in I. It follows that there is a ∈ F+(G), which is not
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an interior point of F+(G). Since F (a) ⊂ G, we have F (a) ∩ (R \ G) = ∅.
Because a is not an interior point of F+(G), K(a, 1

n) is not included in
F+(G) for all n ∈ N where K(a, ε) = {t ∈ I : |t−a| ≤ ε}. Thus there exists
a sequence {tn} ⊂ I such that tn ∈ K(a, 1

n) and tn /∈ F+(G). This implies
respectively that limn→∞ tn = a and F (tn) is not included in G. It follows
that there exists a sequence {xn} such that xn ∈ (F (tn)\G) ⊂ (R\G). The
set R \G is closed. Therefore the limit of every convergent subsequence of
{xn} belongs to R \ G so does not belong to G. This contradiction proves
that F is upper semicontinuous. �

Proposition 2.7. If F : I → P (R) has connected values and is upper
semicontinuous or lower semicontinuous, then for every connected C ⊆ I,
F (C) is connected.

The proof of this proposition can be found in [3, Prop. 2.24, p. 43–44].

Definition 2.8. A function ϕ : I → R is said to be locally Lipschitz at t0 if

∃L>0∃δ>0∀|t−t0|<δ, |s−t0|<δ |ϕ(t)− ϕ(s)| ≤ L|t− s|.

In [1] the following definitions of the Darboux properties for multivalued
functions were given:

Definition 2.9. A multivalued function F : I → P (R) has property D if
the image F (C) is connected for any connected set C ⊂ I.

Definition 2.10. A multivalued function F : I → P (R) has property D∗ if
for any points t1, t2 ∈ I, t1 < t2 and every x1 ∈ F (t1) there exists x2 ∈ F (t2)
such that (min{x1, x2},max{x1, x2}) ⊂ F ((t1, t2)).

As we know [1] both properties D and D∗ are equivalent to the Darboux
property in the case of a single valued function. However, the class of
multivalued functions with the propertyD is greater in the sense of inclusion
than the class of multivalued functions with connected values and property
D∗.
The following theorems are true:

Theorem 2.11. Let F : I → P (R) be a multivalued function such that F (t)
is a connected set for each t ∈ I. If F has property D∗ then it has property
D.

Theorem 2.12. If a mulivalued function F : I → C(R) is continuous then
F has property D∗.

The proofs of Theorem 2.11 and Theorem 2.12 can be found in [1]. Now
we introduce the following definition:
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Definition 2.13. Let ϕ : I → R be a continuous function and t ∈ I. The
set defined by

(Pϕ)(t) :=
{

x ∈ R : ∃{tn},{sn}⊂I (tn 6= sn, n = 1, 2, . . .

∧ lim
n→∞

tn = lim
n→∞

sn = t) ⇒
(

x = lim
n→∞

ϕ(tn)− ϕ(sn)
tn − sn

)}
is said to be the paratingent of ϕ at point t.

Remark 2.14. The paratingent (Pϕ)(t) at some t ∈ I can be empty,
bounded or unbounded set.

3. The paratingent of the function.

Definition 3.1. If for every t ∈ I the set (Pϕ)(t) is nonempty then the
multivalued function Pϕ : I → P (R) defined by

I 3 t → (Pϕ)(t) ∈ P (R)

is called the paratingent of function ϕ on I.

Remark 3.2. If a function ϕ : I → R is locally Lipschitz then (Pϕ)(t) 6= ∅,
t ∈ I. Indeed, quotients

∣∣∣ϕ(τ)−ϕ(σ)
τ−σ

∣∣∣ are equi-bounded for τ and σ sufficiently
close to t.

The following properties hold:

Proposition 3.3. The paratingent (Pϕ)(t) is a closed set for all t ∈ I.

Proof. Let t ∈ I, xn ∈ (Pϕ)(t), n = 1, 2, . . . and limn→∞ xn = x, x ∈ R.
We have

xn = lim
i→∞

ϕ(tni )− ϕ(sn
i )

tni − sn
i

where tni , sn
i ∈ I, tni 6= sn

i and limi→∞ tni = limi→∞ sn
i = t, n, i = 1, 2, . . ..

Then for every n there exists such in that

|tnin − t| < 1
n

, |sn
in − t| < 1

n
and

∣∣∣∣ϕ(tnin)− ϕ(sn
in

)
tnin − sn

in

− xn

∣∣∣∣ <
1
n

.

Hence

x = lim
n→∞

ϕ(tnin)− ϕ(sn
in

)
tnin − sn

in

where limn→∞ tnin = limn→∞ sn
in

= t. So x ∈ (Pϕ)(t). This means that
(Pϕ)(t) is a closed set. �

Lemma 3.4. Let x, y ∈ (Pϕ)(t), t ∈ I. If x < z < y then z ∈ (Pϕ)(t).
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Proof. Let x < z < y, x ∈ (Pϕ)(t) and y ∈ (Pϕ)(t), t ∈ I. Then

∃{tn},{sn}⊂I (tn 6= sn, n = 1, 2, . . . ∧ lim
n→∞

tn = lim
n→∞

sn = t)

⇒
(

x = lim
n→∞

ϕ(tn)− ϕ(sn)
tn − sn

)
and

∃{τn},{σn}⊂I (τn 6= σn, n = 1, 2, . . . ∧ lim
n→∞

τn = lim
n→∞

σn = t)

⇒
(

y = lim
n→∞

ϕ(τn)− ϕ(σn)
τn − σn

)
.

We can assume that tn < sn and τn < σn.
Let α ∈ [0, 1]. We define

uα
n = (1− α)tn + ατn, vα

n = (1− α)sn + ασn.

We see that limn→∞ uα
n = limn→∞ vα

n = t. Moreover,

min{tn, τn} ≤ uα
n ≤ max{tn, τn},

min{sn, σn} ≤ vα
n ≤ max{sn, σn}

(3.1)

and

uα
n < vα

n .

Let gn : I → R be given by

gn(α) =
ϕ(uα

n)− ϕ(vα
n)

uα
n − vα

n

.

Let

xn =
ϕ(tn)− ϕ(sn)

tn − sn
, yn =

ϕ(τn)− ϕ(σn)
τn − σn

.

We have gn(0) = xn and gn(1) = yn.
Let zn ∈ I be such that xn < zn < yn and limn→∞ zn = z. In view of
Darboux property for real function for every n ∈ N there exists αn such
that:

gn(αn) =
ϕ(uαn

n )− ϕ(vαn
n )

uαn
n − vαn

n
= zn.

Observe, that (3.1) implies limn→∞ uαn
n = limn→∞ vαn

n = t. Hence

z = lim
n→∞

zn =
ϕ(uαn

n )− ϕ(vαn
n )

uαn
n − vαn

n
∈ (Pϕ)(t), t ∈ I. �

Lemma 3.5. The subset A ⊂ R is connected if and only if the condition
(x ∈ A, y ∈ A, x < z < y ⇒ z ∈ A) holds.

For a proof see [4, Theorem 2.47]. The next proposition follows from
Lemma 3.4 and Lemma 3.5:
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Proposition 3.6. The paratingent (Pϕ)(t) is connected for all t ∈ I.

Proposition 3.7. Let ϕ : I → R be locally Lipschitz. Then the paratingent
Pϕ : I → P (R) is the upper semicontinuous multivalued function.

Proof. Let {an} ∈ I, a ∈ I and limn→∞ an = a. Moreover let {xn} ∈
(Pϕ)(an), n = 1, 2, . . . . Then

∃{tni },{sn
i }⊂I (tni 6= sn

i , n = 1, 2, . . . ∧ lim
i→∞

tni = lim
i→∞

sn
i = an)

⇒
(

xn = lim
i→∞

ϕ(tni )− ϕ(sn
i )

tni − sn
i

)
, i, n = 1, 2, . . . .

There exist L > 0 and δ > 0 such that the function ϕ satisfies the Lipschitz
condition with constant L in the interval (a− δ, a + δ) ∩ I. For every fixed
n ∈ N there exists an index mn such that |amn − a| < 1

n and

(α) lim
i→∞

tmn
i = amn ,

(β) lim
i→∞

smn
i = amn ,

(γ) lim
i→∞

ϕ(tmn
i )− ϕ(smn

i )
tmn
i − smn

i

= xmn

where tmn
i 6= smn

i , i = 1, 2, . . . . The conditions (α), (β) and (γ) imply

∃jn∈N ∀i≥jn |tmn
i − amn | <

δ

2n
,

∃kn∈N ∀i≥kn |smn
i − amn | <

δ

2n
,

∃ln∈N ∀i≥ln

∣∣∣∣ϕ(tmn
i )− ϕ(smn

i )
tmn
i − smn

i

− xmn

∣∣∣∣ <
1
n

.

Particularly for in = max(jn, kn, ln) we have

|tmn
in

− amn | <
δ

2n
,

|smn
in

− amn | <
δ

2n
,∣∣∣∣ϕ(tmn

in
)− ϕ(smn

in
)

tmn
in

− smn
in

− xmn

∣∣∣∣ <
1
n

.

Since absolute values of quotients
(
ϕ
(
tmn
in

)
−ϕ

(
smn
in

))
/(tmn

in
−smn

in
) are bound-

ed by L, we can choose a sequence (nk) such that

ϕ
(
t
mnk
ink

)
− ϕ

(
s
mnk
ink

)
t
mnk
ink

− s
mnk
ink
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is convergent to x ∈ R. Moreover from limk→∞ t
mnk
ink

= limk→∞ s
mnk
ink

= a

we obtain x ∈ (Pϕ)(a). Hence, the upper semicontinuity the paratingent
Pϕ follows from Theorem 2.6. �

The next theorem is an immediate consequence of Proposition 2.7.

Theorem 3.8. The paratingent Pϕ has property D.

Generally the paratingent does not have property D∗.

Example 3.9. Let ϕ(t) = |t|, t ∈ [−1, 1]. The paratingent of ϕ defined by

(Pϕ)(t) =


{−1}, −1 ≤ t < 0,

[−1, 1], t = 0,

{1}, 0 < t ≤ 1.

does not have property D∗.
Indeed, let t1 = −1, t2 = 0, x1 = −1. Then we have (Pϕ)(t1) = {−1},

(Pϕ)(t2) = [−1, 1] and for all x2 ∈ (Pϕ)(t2) the interval (x1, x2) is not
included in (Pϕ)((t1, t2)) = {−1}.

Remark 3.10. We see that if the paratingent Pϕ has property D∗ then
according to Theorem 2.11 it has property D as well.

The following theorem is an immediate consequence of Theorem 2.12.

Theorem 3.11. If a paratingent Pϕ : I → C(R) is continuous then Pϕ
has property D∗.

Remark 3.12. If F : I → Conv R is a continuous multivalued function
then there exists a function ϕ : I → R such that (Pϕ)(t) = F (t) (see [5]).

The converse of Theorem 3.11 is not true. For example let us consider
the function

ϕ(t) =

{
0, t = 0,

(−1)n
[
2n+1(t− 3

2n+2 )2 − 1
2n+3

]
, t ∈

(
1

2n+1 , 1
2n

]
, n = 0, 1, 2, . . . .

Then

(Pϕ)(t) =

{
[−1, 1], t = 0,

{ϕ′(t)}, t ∈ ( 1
2n+1 , 1

2n ], n = 0, 1, 2, . . . .

where ϕ′(t) = (−1)n(2n+2t− 3), t ∈
(

1
2n+1 , 1

2n

]
, n = 0, 1, 2, . . ..

The paratingent Pϕ has property D∗ but it is not lower semicontinuous.
To see this let us consider the sequence

tn =
3

2n+2
, n = 0, 1, 2, . . . .

Of course limn→∞ tn = 0 and (Pϕ)(tn) = {0}. Let x = 1 and let {xn} be
any sequence convergent to x. Then for n ≥ n we have xn > 0. Hence



74 M. Fedor and J. Szyszkowska

xn /∈ (Pϕ)(tn) = {0} for n ≥ n. This means that the paratingent is not
lower semicontinuous so it is not continuous.
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