Natural affinors on the r-th order adapted frame bundle over fibered-fibered manifolds

Abstract

We describe all $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural affinors on the r-th order adapted frame bundle $P_{A}^{r} Y$ over $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$-dimensional fiberedfibered manifolds Y.

Manifolds and maps are assumed to be of class \mathbf{C}^{∞}. Manifolds are assumed to be finite dimension and without boundaries.

A fibered-fibered manifold (or a fibered square) is a commutative diagram

where all maps π, π_{0}, p, q are surjective submersions and the induced map $Y \rightarrow X \times_{M} N, y \mapsto(\pi(y), q(y))$ is a surjective submersion, [3], [5]. A fibered-fibered manifold (or fibered square) (1) is denoted by Y for short.

A fibered-fibered manifold (1) has dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$, if $\operatorname{dim} Y=$ $m_{1}+m_{2}+n_{1}+n_{2}, \operatorname{dim} X=m_{1}+m_{2}, \operatorname{dim} N=m_{1}+n_{1}, \operatorname{dim} M=m_{1}$. Recall that for two ($m_{1}, m_{2}, n_{1}, n_{2}$)-dimensional fibered-fibered manifolds Y, Y_{1}, a local isomorphism $f: Y \rightarrow Y_{1}$ is a quadruple of local diffeomorphisms $f: Y \rightarrow Y_{1}, f_{1}: X \rightarrow X_{1}, f_{2}: N \rightarrow N_{1}, f_{0}: M \rightarrow M_{1}$ such that all squares

[^0]of corresponding cube are commutative. All fibered-fibered manifolds of dimension ($m_{1}, m_{2}, n_{1}, n_{2}$) and their local isomorphisms form a category which we will denote by $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$.

Every $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y is locally isomorphic to the standard fibered-fibered manifold

which we will denote by $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$, where arrows are projections.
For any fibered-fibered manifold Y of dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$ we define the r-th order adapted frame bundle

$$
\begin{align*}
P_{A}^{r} Y=\left\{j_{(0,0,0,0)}^{r} \varphi \mid \varphi\right. & : \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow Y \text { is } \tag{2}\\
& \left.\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \text {-morphism }\right\}
\end{align*}
$$

over Y with jet target projection $\beta: P_{A}^{r} Y \rightarrow Y, \beta\left(j_{(0,0,0,0)}^{r} \varphi\right)=\varphi(0,0,0,0)$. Every $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map $\psi: Y \rightarrow Y_{1}$ induces a map $P_{A}^{r} \psi: P_{A}^{r} Y \rightarrow P_{A}^{r} Y_{1}$ given by $P_{A}^{r} \psi\left(j_{(0,0,0,0)}^{r} \varphi\right)=j_{(0,0,0,0)}^{r}(\psi \circ \varphi),[1]$.
Definition 1. A $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural affinor \mathbf{A} on P_{A}^{r} is a family of $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-invariant affinors $\mathbf{A}=\left\{\mathbf{A}_{Y}\right\}$ (tensor fields of type (1,1)):

$$
\begin{equation*}
\mathbf{A}_{Y}: T P_{A}^{r} Y \rightarrow T P_{A}^{r} Y, \tag{3}
\end{equation*}
$$

on $P_{A}^{r} Y$ for any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y, [4].
The invariance means that

$$
\mathbf{A}_{Y_{1}} \circ T P_{A}^{r} \psi=T P_{A}^{r} \psi \circ \mathbf{A}_{Y}
$$

for any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map $\psi: Y \rightarrow Y_{1}$.
In this article we describe all $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural affinors on P_{A}^{r}. All $\mathcal{M} f_{m}$-natural affinors on P^{r} were described by Kurek and Mikulski in [4]. We have the following examples of $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural affinors on P_{A}^{r}.
Example 1. The identity $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural affinor $I d$ on P_{A}^{r} such that Id: $T P_{A}^{r} Y \rightarrow T P_{A}^{r} Y$ is the identity map for any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ object Y.

Remark 1. A vector field W on a fibered-fibered manifold Y is projectableprojectable on $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y, (1), if there exist vector fields W_{1} on X and W_{2} on N and W_{0} on M such that W, W_{1} are π-related and W, W_{2} are q-related and W_{2}, W_{0} are π_{0}-related and W_{1}, W_{0} are p-related.

Clearly, a vector field W on a fibered-fibered manifold Y is projectableprojectable on $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y, (1), if and only if the flow $\left\{\Phi_{t}\right\}$ of the vector field W is formed by local $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-maps, [5].

We write $\mathcal{X}_{\text {proj-proj }}(Y)$ for the space of all projectable-projectable vector fields on $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y. It is a Lie subalgebra of the Lie algebra $\mathcal{X}(Y)$ of all vector fields on Y.

For a projectable-projectable vector field $W \in \mathcal{X}_{\text {proj-proj }}(Y)$ its flow lifting $\mathcal{P}_{A}^{r} W$ is a vector field on $P_{A}^{r}(Y)$ such that if $\left\{\Phi_{t}\right\}$ is the flow of W, then $P_{A}^{r}\left(\Phi_{t}\right)$ is the flow of $\mathcal{P}_{A}^{r} W$.

To give another example of a natural affinor on P_{A}^{r} we will use the following lemma, [2].
Lemma 1. Assume that Y is a fibered-fibered manifold (1) of dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$. Then any vector $w \in T_{v} P_{A}^{r}(Y)$, where $v \in\left(P_{A}^{r}(Y)\right)_{y}$, $y \in Y$, is of the form $w=\mathcal{P}_{A}^{r} W_{v}$ for some $W \in \mathcal{X}_{\text {proj-proj }}(Y)$ and $j_{y}^{r} W$ is uniquely determined, where $\mathcal{P}_{A}^{r} W$ is the flow lifting of W to $P_{A}^{r}(Y)$.
Proof. Clearly, we can assume that $Y=\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ and $y=(0,0,0,0) \in$ $\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$. Since $P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ is obviously a principal subbundle of the r-th order frame bundle $P^{r}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ then by the wellknown manifold version of Lemma 1 , we find $W \in \mathcal{X}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ such that $w=\mathcal{P}^{r} W_{v}$ and $j_{(0,0,0,0)}^{r} W$ is uniquely determined, where $\mathcal{P}^{r} W$ is a vector field on $P^{r}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ being a flow lifting of vector field W and $v \in P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$. For a projectable-projectable vector field $\widetilde{W} \in$ $\mathcal{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ the vector $\mathcal{P}^{r} \widetilde{W}_{v} \in T_{v} P^{r}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ is tangent to $P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ at the point v. On the other hand, the dimension of the space $P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ and the dimension of the space of r-jets $j_{(0,0,0,0)}^{r} \widetilde{W}$ of projectable-projectable vector fields $\widetilde{W} \in \mathcal{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ are equal. Then Lemma 1 follows from the dimension equality, since the flow operator is linear.
Example 2. Let

$$
B: J_{(0,0,0,0)}^{r-1} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow\left(J_{(0,0,0,0)}^{r} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{0}
$$

be a linear map, where

$$
J_{(0,0,0,0)}^{r-1} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}=\left\{j_{(0,0,0,0)}^{r-1} V \mid V \in \mathcal{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)\right\}
$$

and

$$
\begin{aligned}
& \left(J_{(0,0,0,0)}^{r} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{0} \\
& \quad=\left\{j_{(0,0,0,0)}^{r} V \mid V \in \mathcal{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right), V_{(0,0,0,0)}=0\right\}
\end{aligned}
$$

are vector spaces and $\mathcal{X}_{\text {proj-proj }}(Y)$ is the vector space of all projectableprojectable vector fields on Y. Given a $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y we define a vertical affinor $\mathbf{A}_{Y}^{B}: T P_{A}^{r} Y \rightarrow V P_{A}^{r} Y \subset T P_{A}^{r} Y$ by

$$
\begin{equation*}
\mathbf{A}_{Y}^{B}(v)=V P_{A}^{r} \varphi\left(\left(\mathcal{P}_{A}^{r} \tilde{v}\right)_{\theta}\right), \quad v \in T_{j_{(0,0,0,0)}^{r}}^{r} P_{A}^{r} Y, \quad j_{(0,0,0,0)}^{r} \varphi \in P_{A}^{r} Y, \tag{4}
\end{equation*}
$$

where $v=\left(\mathcal{P}_{A}^{r} \bar{v}\right)_{j_{(0,0,0,0)}^{r}} \varphi, \tilde{v} \in \mathcal{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ is a projectable-projectable vector field on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ with $j_{(0,0,0,0)}^{r}(\tilde{v})=B\left(j_{(0,0,0,0)}^{r-1}\left(\varphi_{\star}^{-1} \bar{v}\right)\right)$ and $\theta=j_{(0,0,0,0)}^{r}\left(i d_{\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}}\right) \in P_{A}^{r} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$. Here $\mathcal{P}_{A}^{r} V \in \mathcal{X}\left(P_{A}^{r} Y\right)$ denotes the flow lifting of a projectable-projectable vector field V on Y to $P_{A}^{r} Y$. We can show that $\mathbf{A}^{B}(v)$ is well defined. Precisely $j_{\varphi(0,0,0,0)}^{r} \bar{v}$ is determined uniquely by v (see Lemma 1).

Then $j_{(0,0,0,0)}^{r-1}\left(\varphi_{\star}^{-1} \bar{v}\right) \in J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ is determined uniquely by v and $j_{(0,0,0,0)}^{r}(\tilde{v}) \in\left(J_{(0,0,0,0)}^{r} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{0}$ is determined by v. Then $\left(\mathcal{P}^{r} \tilde{v}\right)_{\theta}$ is determined by v and it is a vertical vector. Thus $\mathbf{A}_{Y}^{B}(v)$ is determined by v and it is a vertical vector. Using the linearity of the flow operator we obtain that $\mathbf{A}_{Y}^{B}: T P_{A}^{r} Y \rightarrow V P_{A}^{r} Y \subset T P_{A}^{r} Y$ is a vertical affinor.

It is easy to see that the family $\mathbf{A}^{B}=\left\{\mathbf{A}_{Y}^{B}\right\}$ of affinors $\mathbf{A}_{Y}^{B}: T P_{A}^{r} Y \rightarrow$ $T P_{A}^{r} Y$ for any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y is a $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$ on P_{A}^{r}.

The main result of the present note is the following classification theorem:
Theorem 1. Any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural affinor \boldsymbol{A} on P_{A}^{r} is of the form

$$
\begin{equation*}
\boldsymbol{A}=\lambda I d+\boldsymbol{A}^{B} \tag{5}
\end{equation*}
$$

for a (uniquely determined by \boldsymbol{A}) real number λ and a (uniquely determined by \boldsymbol{A}) linear map

$$
\begin{equation*}
B: J_{(0,0,0,0)}^{r-1} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow\left(J_{(0,0,0,0)}^{r} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{0} \tag{6}
\end{equation*}
$$

In the proof of Theorem 1 we use the following fact.
Lemma 2. Let $W_{1}, W_{2} \in \mathcal{X}_{\text {proj-proj }}(Y)$ be projectable-projectable vector
 $j_{y}^{r-1} W_{1}=j_{y}^{r-1} W_{2}$ and $W_{1}(y)$ is not vertical with respect to the composition of the projections $\pi: Y \rightarrow X$ and $p: X \rightarrow M$. Then there exists a local $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphism $\Phi: Y \rightarrow Y$ such that $j_{y}^{r}(\Phi)=j_{y}^{r}\left(i d_{Y}\right)$ and $\Phi_{\star} W_{1}=W_{2}$ near y.

Proof. The proof is a simple modification of the proof of Lemma 42.4 in [2].

Proof of Theorem 1. Let $\theta=j_{(0,0,0,0)}^{r}\left(i d_{\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}}\right) \in P_{A}^{r} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$. Suppose that $\mathbf{A}\left(\left(\mathcal{P}_{A}^{r} V\right)_{\theta}\right)=\left(\mathcal{P}_{A}^{r} \tilde{V}\right)_{\theta}$ and $V(0,0,0,0) \neq \mu \tilde{V}(0,0,0,0)$ for all μ and $\tilde{V}(0,0,0,0) \neq 0$. Then there exists an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}-\operatorname{map} \psi$: $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ preserving θ with $J^{r} T \psi\left(j_{(0,0,0,0)}^{r} V\right)=j_{(0,0,0,0)}^{r} V$ and $J^{r} T \psi\left(j_{(0,0,0,0)}^{r} \tilde{V}\right) \neq j_{(0,0,0,0)}^{r} \tilde{V}$. Then

$$
\begin{equation*}
\mathbf{A}\left(\left(\mathcal{P}_{A}^{r} V\right)_{\theta}\right)=\left(\mathcal{P}_{A}^{r}\left(\psi_{\star} \tilde{V}\right)\right)_{\theta} \neq\left(\mathcal{P}_{A}^{r} \tilde{V}\right)_{\theta}=\mathbf{A}\left(\left(\mathcal{P}_{A}^{r} V\right)_{\theta}\right) \tag{7}
\end{equation*}
$$

and it is a contradiction. Then

$$
\begin{equation*}
T \beta^{r} \circ \mathbf{A}\left(\left(\mathcal{P}_{A}^{r} V\right)_{\theta}\right)=\lambda\left(j_{(0,0,0,0)}^{r} V\right) V_{(0,0,0,0)}, \tag{8}
\end{equation*}
$$

for some (not necessarily unique and necessarily smooth) function

$$
\lambda: J_{(0,0,0,0)}^{r} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbb{R}
$$

where $\beta^{r}: P_{A}^{r} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$ is the usual projection.
We prove that λ can be chosen from smooth functions. Let λ be such that (8) holds. Since the left side of (8) depends smoothly on $j_{(0,0,0,0)}^{r} V$ then the function $\Phi: J_{(0,0,0,0)}^{r}\left(T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\Phi\left(j_{(0,0,0,0)}^{r} V\right)=\lambda\left(j_{(0,0,0,0)}^{r} V\right) V^{1}(0), \quad 0 \in \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \tag{9}
\end{equation*}
$$

is smooth and $\Phi\left(j_{(0,0,0,0)}^{r} V\right)=0$ if $V^{1}(0)=0$ where

$$
\begin{equation*}
V_{(0,0,0,0)}=\left.\sum_{i=1}^{m_{1}} V^{i}(0) \frac{\partial}{\partial x^{i}}\right|_{(0,0,0,0)}+\ldots . \tag{10}
\end{equation*}
$$

Then (it is the well-known fact from mathematical analysis) there is a smooth map $\psi: J_{(0,0,0,0)}^{r}\left(T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\Phi\left(j_{(0,0,0,0)}^{r} V\right)=\psi\left(j_{(0,0,0,0)}^{r} V\right) V^{1}(0) . \tag{11}
\end{equation*}
$$

Then we can put $\lambda=\psi$ and (8) holds.
Since the left hand side of (8) depends linearly on $j_{(0,0,0,0)}^{r} V$ we have $\lambda=$ const. Replacing \mathbf{A} by $\mathbf{A}-\lambda I d$ we see that $\mathbf{A}(v)$ is vertical for any $v \in T_{\theta} P_{A}^{r} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$.

We define a linear map

$$
\begin{equation*}
B: J_{(0,0,0,0)}^{r-1} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow\left(J_{(0,0,0,0)}^{r} T_{\text {proj-proj }} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{0} \tag{12}
\end{equation*}
$$

by

$$
\begin{equation*}
B\left(j_{(0,0,0,0)}^{r-1} V\right)=j_{(0,0,0,0)}^{r} \tilde{V}, \tag{13}
\end{equation*}
$$

where \bar{V} is a unique projectable-projectable vector field on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ with coefficients being polynomials of degree $\leq r-1$ (with respect to the canonical basis of vector field on $\left.\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ such that $j_{(0,0,0,0,)}^{r-1} \bar{V}=j_{(0,0,0,0)}^{r-1} V$, and $\mathcal{P}_{A}^{r}(\tilde{V})_{\theta}=\mathbf{A}\left(\left(\mathcal{P}_{A}^{r} \bar{V}\right)_{\theta}\right)$.

We will show that $\mathbf{A}=\mathbf{A}^{B}$. Clearly B is well defined. (For, $j_{(0,0,0,0)}^{r} \tilde{V}$ is determined by $\left(\mathcal{P}_{A}^{r} \tilde{V}\right)_{\theta}=\mathbf{A}\left(\left(\mathcal{P}_{A}^{r} \bar{V}\right)_{\theta}\right)$ and $\mathcal{P}_{A}^{r}(\bar{V})_{\theta}$ is determined by $j_{(0,0,0,0)}^{r} \bar{V}$ (see Lemma 1) and $j_{(0,0,0,0)}^{r} \bar{V}$ is determined by $j_{(0,0,0,0)}^{r-1} V$ (by the definition of $\bar{V})$). Moreover, since \mathbf{A} is of vertical type then $\tilde{V}(0,0,0,0)=0$. That is why B is well defined. Then (by the definition of B) we see that $\mathbf{A}\left(\left(\mathcal{P}_{A}^{r} V\right)_{\theta}\right)=\mathbf{A}^{B}\left(\left(\mathcal{P}_{A}^{r} V\right)_{\theta}\right)$ for all projectable-projectable vector fields V on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ with coefficients being polynomials of degree $\leq r-1$ (with
respect to the canonical basis of vector fields on $\left.\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$. But (by Lemma 2) any projectable-projectable vector fields W on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ with non-vanishing projection on $\mathbb{R}^{m_{1}}$ is ψ-related (near $(0,0,0,0)$) to some projectable-projectable vector field V with coefficients being polynomials of degree $\leq r-1$ for some θ-preserving $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map $\psi: \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow$ $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$. Consequently $\mathbf{A}(v)=\mathbf{A}^{B}(v)$ for any $v \in T_{\theta} P_{A}^{r} \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$. Then $\mathbf{A}=\mathbf{A}^{B}$ because of the $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-invariance of \mathbf{A} and \mathbf{A}^{B} and the fact that $P_{A}^{r} Y$ is the $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-orbit of θ.

If $\mathbf{A}^{B}=\mathbf{A}^{B^{\prime}}$ then $B=B^{\prime}$. If λ^{\prime} i B^{\prime} are such that $\mathbf{A}=\lambda^{\prime} I d+\mathbf{A}^{B^{\prime}}$, then $\lambda=T \beta^{r} \circ \mathbf{A}\left(\left(\mathcal{P}_{A}^{r} \frac{\partial}{\partial x^{1}}\right)_{\theta}\right)=\lambda^{\prime}$ and $B=B^{\prime}$.
Remark 2. Natural affinors on $P_{A}^{r} Y$ can be used to define a generalized torsion of connections on $P_{A}^{r} Y$. Any natural affinor $\mathbf{A}: T P_{A}^{r} Y \rightarrow T P_{A}^{r} Y$ defines a torsion $\tau^{A}(\Gamma):=[\mathbf{A}, \Gamma]$ of a principal r-th order connection Γ : $T P_{A}^{r} Y \rightarrow T P_{A}^{r} Y$ on fibered-fibered manifold Y, where the bracket means the Frölicher-Nijenhuis bracket.

A principal r-th order connection Γ on $P_{A}^{r} Y \rightarrow Y$ is a right invariant section $\Gamma: P_{A}^{r} Y \rightarrow J^{1} P_{A}^{r} Y$ of the first jet prolongation $J^{1} P_{A}^{r} Y \rightarrow P_{A}^{r} Y$ of $P_{A}^{r} Y \rightarrow Y$. Equivalently, Γ can be treated as the corresponding lifting map $\Gamma: T Y \times_{Y} P_{A}^{r} Y \rightarrow T P_{A}^{r} Y,[2]$.

References

[1] Doupovec, M., Mikulski, W. M., Gauge natural constructions on higher order principal prolongations, Ann. Polon. Math. 92 (2007), no. 1, 87-97.
[2] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[3] Kolář, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 67-76.
[4] Kurek, J., Mikulski, W. M., The natural affinors on the r-th order frame bundle, Demonstratio Math. 41 (2008), 701-704.
[5] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3-4) (2001), 441-458.

Agnieszka Czarnota
Institute of Mathematics
M. Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: czarnota.agnieszka@interia.pl
Received June 12, 2008

[^0]: 2000 Mathematics Subject Classification. 58A20.
 Key words and phrases. Fibered-fibered manifold, r-th order adapted frame bundle, natural affinor.

