DOI: 10.2478/v10062-008-0006-2

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL IVIL 2002		FF CO
VOL. LAII, 2008	SECTIO A	00-00

AGNIESZKA CZARNOTA

Natural affinors on the *r*-th order adapted frame bundle over fibered-fibered manifolds

ABSTRACT. We describe all $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinors on the *r*-th order adapted frame bundle $P_A^r Y$ over (m_1, m_2, n_1, n_2) -dimensional fibered-fibered manifolds Y.

Manifolds and maps are assumed to be of class \mathbf{C}^{∞} . Manifolds are assumed to be finite dimension and without boundaries.

A fibered-fibered manifold (or a fibered square) is a commutative diagram

(1)
$$\begin{array}{ccc} Y & \xrightarrow{\pi} & X \\ q \downarrow & & \downarrow p \\ N & \xrightarrow{\pi_0} & M \end{array}$$

where all maps π , π_0 , p, q are surjective submersions and the induced map $Y \to X \times_M N$, $y \mapsto (\pi(y), q(y))$ is a surjective submersion, [3], [5]. A fibered-fibered manifold (or fibered square) (1) is denoted by Y for short.

A fibered-fibered manifold (1) has dimension (m_1, m_2, n_1, n_2) , if dim $Y = m_1 + m_2 + n_1 + n_2$, dim $X = m_1 + m_2$, dim $N = m_1 + n_1$, dim $M = m_1$. Recall that for two (m_1, m_2, n_1, n_2) -dimensional fibered-fibered manifolds Y, Y_1 , a local isomorphism $f: Y \to Y_1$ is a quadruple of local diffeomorphisms $f: Y \to Y_1$, $f_1: X \to X_1$, $f_2: N \to N_1$, $f_0: M \to M_1$ such that all squares

²⁰⁰⁰ Mathematics Subject Classification. 58A20.

 $Key\ words\ and\ phrases.$ Fibered-fibered manifold, r-th order adapted frame bundle, natural affinor.

of corresponding cube are commutative. All fibered-fibered manifolds of dimension (m_1, m_2, n_1, n_2) and their local isomorphisms form a category which we will denote by $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$.

Every $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y is locally isomorphic to the standard fibered-fibered manifold

which we will denote by $\mathbb{R}^{m_1,m_2,n_1,n_2}$, where arrows are projections.

For any fibered-fibered manifold Y of dimension (m_1, m_2, n_1, n_2) we define the r-th order adapted frame bundle

(2)
$$P_A^r Y = \{ j_{(0,0,0,0)}^r \varphi \mid \varphi : \mathbb{R}^{m_1, m_2, n_1, n_2} \to Y \text{ is} \\ \mathcal{F}^2 \mathcal{M}_{m_1, m_2, n_1, n_2} \text{-morphism} \}$$

over Y with jet target projection β : $P_A^r Y \to Y$, $\beta(j_{(0,0,0,0)}^r \varphi) = \varphi(0,0,0,0)$. Every $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -map $\psi: Y \to Y_1$ induces a map $P_A^r \psi: P_A^r Y \to P_A^r Y_1$ given by $P_A^r \psi(j_{(0,0,0,0)}^r \varphi) = j_{(0,0,0,0)}^r(\psi \circ \varphi)$, [1].

Definition 1. A $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinor **A** on P_A^r is a family of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariant affinors $\mathbf{A} = {\mathbf{A}_Y}$ (tensor fields of type (1,1)):

(3)
$$\mathbf{A}_Y: \ TP_A^r Y \to TP_A^r Y$$

on $P_A^r Y$ for any $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y, [4].

The invariance means that

$$\mathbf{A}_{Y_1} \circ TP_A^r \psi = TP_A^r \psi \circ \mathbf{A}_Y$$

for any $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -map $\psi: Y \to Y_1$.

In this article we describe all $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinors on P_A^r . All $\mathcal{M}f_m$ -natural affinors on P^r were described by Kurek and Mikulski in [4]. We have the following examples of $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinors on P_A^r .

Example 1. The identity $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinor Id on P_A^r such that $Id : TP_A^r Y \to TP_A^r Y$ is the identity map for any $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y.

Remark 1. A vector field W on a fibered-fibered manifold Y is projectableprojectable on $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y, (1), if there exist vector fields W_1 on X and W_2 on N and W_0 on M such that W, W_1 are π -related and W, W_2 are q-related and W_2 , W_0 are π_0 -related and W_1 , W_0 are p-related.

Clearly, a vector field W on a fibered-fibered manifold Y is projectableprojectable on $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y, (1), if and only if the flow $\{\Phi_t\}$ of the vector field W is formed by local $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -maps, [5]. We write $\mathcal{X}_{proj-proj}(Y)$ for the space of all projectable-projectable vector fields on $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y. It is a Lie subalgebra of the Lie algebra $\mathcal{X}(Y)$ of all vector fields on Y.

For a projectable-projectable vector field $W \in \mathcal{X}_{proj-proj}(Y)$ its flow lifting $\mathcal{P}_A^r W$ is a vector field on $P_A^r(Y)$ such that if $\{\Phi_t\}$ is the flow of W, then $P_A^r(\Phi_t)$ is the flow of $\mathcal{P}_A^r W$.

To give another example of a natural affinor on P_A^r we will use the following lemma, [2].

Lemma 1. Assume that Y is a fibered-fibered manifold (1) of dimension (m_1, m_2, n_1, n_2) . Then any vector $w \in T_v P_A^r(Y)$, where $v \in (P_A^r(Y))_y$, $y \in Y$, is of the form $w = \mathcal{P}_A^r W_v$ for some $W \in \mathcal{X}_{proj-proj}(Y)$ and $j_y^r W$ is uniquely determined, where $\mathcal{P}_A^r W$ is the flow lifting of W to $P_A^r(Y)$.

Proof. Clearly, we can assume that $Y = \mathbb{R}^{m_1, m_2, n_1, n_2}$ and $y = (0, 0, 0, 0) \in \mathbb{R}^{m_1 + m_2 + n_1 + n_2}$. Since $P_A^r(\mathbb{R}^{m_1, m_2, n_1, n_2})$ is obviously a principal subbundle of the *r*-th order frame bundle $P^r(\mathbb{R}^{m_1 + m_2 + n_1 + n_2})$ then by the well-known manifold version of Lemma 1, we find $W \in \mathcal{X}(\mathbb{R}^{m_1 + m_2 + n_1 + n_2})$ such that $w = \mathcal{P}^r W_v$ and $j_{(0,0,0,0)}^r W$ is uniquely determined, where $\mathcal{P}^r W$ is a vector field on $P^r(\mathbb{R}^{m_1 + m_2 + n_1 + n_2})$ being a flow lifting of vector field W and $v \in P_A^r(\mathbb{R}^{m_1, m_2, n_1, n_2})$. For a projectable-projectable vector field $\widetilde{W} \in \mathcal{X}_{proj-proj}(\mathbb{R}^{m_1, m_2, n_1, n_2})$ the vector $\mathcal{P}^r \widetilde{W}_v \in T_v P^r(\mathbb{R}^{m_1 + m_2 + n_1 + n_2})$ is tangent to $P_A^r(\mathbb{R}^{m_1, m_2, n_1, n_2})$ and the dimension of the space of *r*-jets $j_{(0,0,0,0)}^r \widetilde{W}$ of projectable-projectable vector fields $\widetilde{W} \in \mathcal{X}_{proj-proj}(\mathbb{R}^{m_1, m_2, n_1, n_2})$ and the dimension equality, since the flow operator is linear.

Example 2. Let

$$B: J_{(0,0,0,0)}^{r-1}T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2} \to \left(J_{(0,0,0,0)}^r T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2}\right)_0$$

be a linear map, where

$$J_{(0,0,0,0)}^{r-1}T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2} = \left\{ j_{(0,0,0,0)}^{r-1}V \mid V \in \mathcal{X}_{proj-proj} \left(\mathbb{R}^{m_1,m_2,n_1,n_2}\right) \right\}$$

and

$$\begin{pmatrix} J_{(0,0,0,0)}^r T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2} \end{pmatrix}_0 = \left\{ j_{(0,0,0,0)}^r V \mid V \in \mathcal{X}_{proj-proj} (\mathbb{R}^{m_1,m_2,n_1,n_2}), V_{(0,0,0,0)} = 0 \right\}$$

are vector spaces and $\mathcal{X}_{proj-proj}(Y)$ is the vector space of all projectableprojectable vector fields on Y. Given a $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y we define a vertical affinor $\mathbf{A}_Y^B: TP_A^r Y \to VP_A^r Y \subset TP_A^r Y$ by

(4)
$$\mathbf{A}_{Y}^{B}(v) = V P_{A}^{r} \varphi((\mathcal{P}_{A}^{r} \tilde{v})_{\theta}), \quad v \in T_{j_{(0,0,0,0)}^{r}} \varphi P_{A}^{r} Y, \quad j_{(0,0,0,0)}^{r} \varphi \in P_{A}^{r} Y,$$

A. Czarnota

where $v = (\mathcal{P}_A^r \bar{v})_{j_{(0,0,0)}^r \varphi}, \tilde{v} \in \mathcal{X}_{proj-proj}(\mathbb{R}^{m_1,m_2,n_1,n_2})$ is a projectable-projectable vector field on $\mathbb{R}^{m_1,m_2,n_1,n_2}$ with $j_{(0,0,0,0)}^r(\tilde{v}) = B(j_{(0,0,0)}^{r-1}(\varphi_{\star}^{-1}\bar{v}))$ and $\theta = j_{(0,0,0,0)}^r(id_{\mathbb{R}^{m_1+m_2+n_1+n_2}}) \in P_A^r \mathbb{R}^{m_1,m_2,n_1,n_2}$. Here $\mathcal{P}_A^r V \in \mathcal{X}(P_A^r Y)$ denotes the flow lifting of a projectable-projectable vector field V on Y to $P_A^r Y$. We can show that $\mathbf{A}^B(v)$ is well defined. Precisely $j_{\varphi(0,0,0,0)}^r \bar{v}$ is determined uniquely by v (see Lemma 1).

Then $j_{(0,0,0,0)}^{r-1}(\varphi_{\star}^{-1}\bar{v}) \in J_{(0,0,0,0)}^{r-1}(T_{proj-proj}\mathbb{R}^{m_1,m_2,n_1,n_2})$ is determined uniquely by v and $j_{(0,0,0,0)}^r(\tilde{v}) \in (J_{(0,0,0,0)}^rT_{proj-proj}\mathbb{R}^{m_1,m_2,n_1,n_2})_0$ is determined by v. Then $(\mathcal{P}^r\tilde{v})_{\theta}$ is determined by v and it is a vertical vector. Thus $\mathbf{A}_Y^B(v)$ is determined by v and it is a vertical vector. Using the linearity of the flow operator we obtain that $\mathbf{A}_Y^B: TP_A^rY \to VP_A^rY \subset TP_A^rY$ is a vertical affinor.

It is easy to see that the family $\mathbf{A}^B = {\mathbf{A}_Y^B}$ of affinors $\mathbf{A}_Y^B : TP_A^r Y \to TP_A^r Y$ for any $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y is a $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinor on P_A^r .

The main result of the present note is the following classification theorem:

Theorem 1. Any $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -natural affinor \boldsymbol{A} on P_A^r is of the form (5) $\boldsymbol{A} = \lambda I d + \boldsymbol{A}^B$,

for a (uniquely determined by A) real number λ and a (uniquely determined by A) linear map

(6)
$$B: J_{(0,0,0,0)}^{r-1} T_{proj-proj} \mathbb{R}^{m_1, m_2, n_1, n_2} \to \left(J_{(0,0,0,0)}^r T_{proj-proj} \mathbb{R}^{m_1, m_2, n_1, n_2} \right)_0.$$

In the proof of Theorem 1 we use the following fact.

Lemma 2. Let W_1 , $W_2 \in \mathcal{X}_{proj-proj}(Y)$ be projectable-projectable vector fields on an $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -object Y and let $y \in Y$. Let us assume that $j_y^{r-1}W_1 = j_y^{r-1}W_2$ and $W_1(y)$ is not vertical with respect to the composition of the projections $\pi : Y \to X$ and $p : X \to M$. Then there exists a local $\mathcal{F}^2\mathcal{M}_{m_1,m_2,n_1,n_2}$ -morphism $\Phi : Y \to Y$ such that $j_y^r(\Phi) = j_y^r(id_Y)$ and $\Phi_{\star}W_1 = W_2$ near y.

Proof. The proof is a simple modification of the proof of Lemma 42.4 in [2]. \Box

Proof of Theorem 1. Let $\theta = j_{(0,0,0,0)}^r (id_{\mathbb{R}^{m_1+m_2+n_1+n_2}}) \in P_A^r \mathbb{R}^{m_1,m_2,n_1,n_2}$. Suppose that $\mathbf{A}((\mathcal{P}_A^r V)_{\theta}) = (\mathcal{P}_A^r \tilde{V})_{\theta}$ and $V(0,0,0,0) \neq \mu \tilde{V}(0,0,0,0)$ for all μ and $\tilde{V}(0,0,0,0) \neq 0$. Then there exists an $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -map ψ : $\mathbb{R}^{m_1,m_2,n_1,n_2} \to \mathbb{R}^{m_1,m_2,n_1,n_2}$ preserving θ with $J^r T \psi(j_{(0,0,0,0)}^r V) = j_{(0,0,0,0)}^r V$

and $J^r T \psi(j^r_{(0,0,0,0)} \tilde{V}) \neq j^r_{(0,0,0,0)} \tilde{V}$. Then

(7)
$$\mathbf{A}((\mathcal{P}_{A}^{r}V)_{\theta}) = (\mathcal{P}_{A}^{r}(\psi_{\star}\tilde{V}))_{\theta} \neq (\mathcal{P}_{A}^{r}\tilde{V})_{\theta} = \mathbf{A}((\mathcal{P}_{A}^{r}V)_{\theta})$$

and it is a contradiction. Then

(8)
$$T\beta^{r} \circ \mathbf{A}((\mathcal{P}^{r}_{A}V)_{\theta}) = \lambda(j^{r}_{(0,0,0,0)}V)V_{(0,0,0,0)}$$

for some (not necessarily unique and necessarily smooth) function

$$\lambda: J^r_{(0,0,0,0)}T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2} \to \mathbb{R}$$

where $\beta^r : P_A^r \mathbb{R}^{m_1, m_2, n_1, n_2} \to \mathbb{R}^{m_1 + m_2 + n_1 + n_2}$ is the usual projection.

We prove that λ can be chosen from smooth functions. Let λ be such that (8) holds. Since the left side of (8) depends smoothly on $j_{(0,0,0,0)}^r V$ then the function $\Phi: J_{(0,0,0,0)}^r (T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2}) \to \mathbb{R}$ given by

(9)
$$\Phi(j_{(0,0,0,0)}^r V) = \lambda(j_{(0,0,0,0)}^r V) V^1(0) , \qquad 0 \in \mathbb{R}^{m_1, m_2, n_1, n_2}$$

is smooth and $\Phi(j^r_{(0,0,0,0)}V) = 0$ if $V^1(0) = 0$ where

(10)
$$V_{(0,0,0,0)} = \sum_{i=1}^{m_1} V^i(0) \frac{\partial}{\partial x^i}|_{(0,0,0,0)} + \dots$$

Then (it is the well-known fact from mathematical analysis) there is a smooth map $\psi: J^r_{(0,0,0,0)}(T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2}) \to \mathbb{R}$ such that

(11)
$$\Phi(j^r_{(0,0,0,0)}V) = \psi(j^r_{(0,0,0,0)}V)V^1(0).$$

Then we can put $\lambda = \psi$ and (8) holds.

Since the left hand side of (8) depends linearly on $j_{(0,0,0,0)}^r V$ we have $\lambda = const$. Replacing **A** by $\mathbf{A} - \lambda Id$ we see that $\mathbf{A}(v)$ is vertical for any $v \in T_{\theta} P_A^r \mathbb{R}^{m_1,m_2,n_1,n_2}$.

We define a linear map

(12)
$$B: J_{(0,0,0,0)}^{r-1} T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2} \to \left(J_{(0,0,0,0)}^r T_{proj-proj} \mathbb{R}^{m_1,m_2,n_1,n_2} \right)_0$$

by

(13)
$$B(j_{(0,0,0,0)}^{r-1}V) = j_{(0,0,0,0)}^r \tilde{V},$$

where \bar{V} is a unique projectable-projectable vector field on $\mathbb{R}^{m_1,m_2,n_1,n_2}$ with coefficients being polynomials of degree $\leq r-1$ (with respect to the canonical basis of vector field on $\mathbb{R}^{m_1,m_2,n_1,n_2}$) such that $j_{(0,0,0,0,1)}^{r-1}\bar{V} = j_{(0,0,0,0)}^{r-1}V$, and $\mathcal{P}_A^r(\tilde{V})_{\theta} = \mathbf{A}((\mathcal{P}_A^r\bar{V})_{\theta}).$

$$\begin{split} &\mathcal{P}_A^r(\tilde{V})_\theta = \mathbf{A}((\mathcal{P}_A^r\bar{V})_\theta). \\ & \text{We will show that } \mathbf{A} = \mathbf{A}^B. \text{ Clearly } B \text{ is well defined. (For, } j_{(0,0,0,0)}^r\tilde{V} \\ & \text{is determined by } (\mathcal{P}_A^r\tilde{V})_\theta = \mathbf{A}((\mathcal{P}_A^r\bar{V})_\theta) \text{ and } \mathcal{P}_A^r(\bar{V})_\theta \text{ is determined by } \\ & j_{(0,0,0)}^r\bar{V} \text{ (see Lemma 1) and } j_{(0,0,0)}^r\bar{V} \text{ is determined by } j_{(0,0,0,0)}^{r-1}V \text{ (by the definition of } \bar{V})). \\ & \text{Moreover, since } \mathbf{A} \text{ is of vertical type then } \tilde{V}(0,0,0,0) = 0. \\ & \text{That is why } B \text{ is well defined. Then (by the definition of } B) we see that \\ & \mathbf{A}((\mathcal{P}_A^rV)_\theta) = \mathbf{A}^B((\mathcal{P}_A^rV)_\theta) \text{ for all projectable-projectable vector fields } V \\ & \text{on } \mathbb{R}^{m_1,m_2,n_1,n_2} \text{ with coefficients being polynomials of degree } \leq r-1 \text{ (with } V \text{ otherwise } V \text{ otherwi$$

A. Czarnota

respect to the canonical basis of vector fields on $\mathbb{R}^{m_1+m_2+n_1+n_2}$). But (by Lemma 2) any projectable-projectable vector fields W on $\mathbb{R}^{m_1,m_2,n_1,n_2}$ with non-vanishing projection on \mathbb{R}^{m_1} is ψ -related (near (0,0,0,0)) to some projectable-projectable vector field V with coefficients being polynomials of degree $\leq r-1$ for some θ -preserving $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -map $\psi : \mathbb{R}^{m_1,m_2,n_1,n_2} \to$ $\mathbb{R}^{m_1,m_2,n_1,n_2}$. Consequently $\mathbf{A}(v) = \mathbf{A}^B(v)$ for any $v \in T_{\theta} P_A^r \mathbb{R}^{m_1,m_2,n_1,n_2}$. Then $\mathbf{A} = \mathbf{A}^B$ because of the $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -invariance of \mathbf{A} and \mathbf{A}^B and the fact that $P_A^r Y$ is the $\mathcal{F}^2 \mathcal{M}_{m_1,m_2,n_1,n_2}$ -orbit of θ .

If
$$\mathbf{A}^B = \mathbf{A}^{B'}$$
 then $B = B'$. If λ' i B' are such that $\mathbf{A} = \lambda' I d + \mathbf{A}^{B'}$, then $\lambda = T\beta^r \circ \mathbf{A}((\mathcal{P}^r_A \frac{\partial}{\partial r^1})_{\theta}) = \lambda'$ and $B = B'$.

Remark 2. Natural affinors on $P_A^r Y$ can be used to define a generalized torsion of connections on $P_A^r Y$. Any natural affinor $\mathbf{A} : TP_A^r Y \to TP_A^r Y$ defines a torsion $\tau^A(\Gamma) \coloneqq [\mathbf{A}, \Gamma]$ of a principal *r*-th order connection $\Gamma : TP_A^r Y \to TP_A^r Y$ on fibered-fibered manifold Y, where the bracket means the Frölicher–Nijenhuis bracket.

A principal r-th order connection Γ on $P_A^r Y \to Y$ is a right invariant section $\Gamma : P_A^r Y \to J^1 P_A^r Y$ of the first jet prolongation $J^1 P_A^r Y \to P_A^r Y$ of $P_A^r Y \to Y$. Equivalently, Γ can be treated as the corresponding lifting map $\Gamma : TY \times_Y P_A^r Y \to TP_A^r Y$, [2].

References

- Doupovec, M., Mikulski, W. M., Gauge natural constructions on higher order principal prolongations, Ann. Polon. Math. 92 (2007), no. 1, 87–97.
- [2] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
- [3] Kolář, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 67–76.
- [4] Kurek, J., Mikulski, W. M., The natural affinors on the r-th order frame bundle, Demonstratio Math. 41 (2008), 701–704.
- [5] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3-4) (2001), 441–458.

Agnieszka Czarnota Institute of Mathematics M. Curie-Skłodowska University pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: czarnota.agnieszka@interia.pl

Received June 12, 2008