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Continuity of the quenching time
in a semilinear parabolic equation

Abstract. In this paper, we consider the following initial-boundary value
problem 

ut = ∆u− u−p in Ω× (0, T ),
∂u
∂ν

= 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, ∆
is the Laplacian, ν is the exterior normal unit vector on ∂Ω. Under some
assumptions, we show that the solution of the above problem quenches in a
finite time and estimate its quenching time. We also prove the continuity of
the quenching time as a function of the initial data u0. Finally, we give some
numerical results to illustrate our analysis.

1. Introduction. Let Ω be a bounded domain in RN with smooth bound-
ary ∂Ω. Consider the following initial-boundary value problem

ut = ∆u− u−p in Ω× (0, T ),(1)

∂u

∂ν
= 0 on ∂Ω× (0, T ),(2)

u(x, 0) = u0(x) > 0 in Ω,(3)
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where p > 0, ∆ is the Laplacian, ν is the exterior normal unit vector on ∂Ω.
The initial data u0 ∈ C1(Ω) and satisfies the compatibility conditions. Here
(0, T ) is the maximal time interval of existence of the solution u. The time
T may be finite or infinite. When T is infinite, we say that the solution u
exists globally. When T is finite, the solution u develops a singularity in a
finite time, namely

lim
t→T

umin(t) = 0,

where umin(t) = minx∈Ω u(x, t). In this last case, we say that the solution u
quenches in a finite time and the time T is called the quenching time of the
solution u. Thus we have u(x, t) > 0 in Ω × [0, T ). Solutions of semilinear
parabolic equations which quench in a finite time have been the subject
of investigation of many authors (see [2]–[4], [6], [7], [10], [11], [13], [14],
[20], [24], [25], [27]–[29] and the references cited therein). In particular, in
[7], the problem (1)–(3) has been studied. The local in time existence of a
classical solution has been proved and this solution is unique (see [7]). It
is also shown that the solution of (1)–(3) quenches in a finite time and its
quenching time has been estimated (see [7]). In this paper, we are interested
in the continuity of the quenching time as a function of the initial data u0.
More precisely, we consider the following initial-boundary value problem

vt = ∆v − v−p in Ω× (0, Th),(4)

∂v

∂ν
= 0 on ∂Ω× (0, Th),(5)

v(x, 0) = v0(x) > 0 in Ω,(6)

where v0(x) = u0(x) + h(x), h ∈ C1(Ω), ∂h
∂ν = 0 on ∂Ω, h(x) ≥ 0 in Ω.

Here (0, Th) is the maximal time interval on which the solution v of (4)–(6)
exists. When Th is finite, we say that the solution v of (4)–(6) quenches in
a finite time and the time Th is called the quenching time of the solution
v. From the maximum principle, we have v ≥ u as long as all of them are
defined. We deduce that Th ≥ T . In the present paper, we prove that if
‖h‖∞ is small enough, then the solution v of (4)–(6) quenches in a finite
time and its quenching time Th goes to T as ‖h‖∞ goes to zero where T is
the quenching time of the solution u of (1)–(3) and ‖h‖∞ = supx∈Ω |h(x)|.
Similar results have been obtained in [5], [8], [16], [19], [18], [21]–[23], [30]
where the authors have considered the phenomenon of blow-up (we say that
a solution blows up in a finite time if it reaches the value infinity in a finite
time). The rest of the paper is organized as follows. In the next section,
under some assumptions, we show that the solution v of (4)–(6) quenches
in a finite time and estimate its quenching time. In the third section, we
prove the continuity of the quenching time and finally in the last section,
we give some numerical results to illustrate our analysis.
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2. Quenching time. In this section, under some assumptions, we show
that the solution v of (4)–(6) quenches in a finite time and estimate its
quenching time.
Using an idea of Friedman and McLeod in [15], we may prove the following
result.

Theorem 2.1. Suppose that there exists a constant A ∈ (0, 1] such that the
initial data at (6) satisfies

∆v0(x)− v−p
0 (x) ≤ −Av−p

0 (x) in Ω.(7)

Then, the solution v of (4)–(6) quenches in a finite time Th which obeys the
following estimate

Th ≤
‖v0‖p+1

inf

A(p + 1)
,

where ‖v0‖inf = minx∈Ω v0(x).

Proof. Since (0, Th) is the maximal time interval of existence of the solution
v, our aim is to show that Th is finite and satisfies the above inequality.
Introduce the function J(x, t) defined as follows

J(x, t) = vt(x, t) + Av−p(x, t) in Ω× (0, Th).

A straightforward computation yields

Jt −∆J = (vt −∆v)t −Apv−p−1vt −A∆v−p in Ω× [0, Th).(8)

By a direct calculation, we observe that

∆v−p = p(p + 1)v−p−2|∇v|2 − pv−p−1∆v,

which implies that ∆v−p ≥ −pv−p−1∆v. Using this estimate and (8), we
arrive at

Jt −∆J ≤ (vt −∆v)t −Apv−p−1(vt −∆v) in Ω× (0, Th).(9)

It follows from (4) and (9) that

Jt −∆J ≤ pv−p−1vt + Apv−2p−1 in Ω× (0, Th).

Taking into account the expression of J, we find that

Jt −∆J ≤ pv−p−1J in Ω× (0, Th).

We also have
∂J

∂ν
=

(
∂v

∂ν

)
t

−Apv−p−1 ∂v

∂ν
= 0 on ∂Ω× (0, Th)

and due to (7), we discover that

J(x, 0) = ∆v0(x)− v−p
0 (x) + Av−p

0 (x) ≤ 0 in Ω.

From the maximum principle, we have

J(x, t) ≤ 0 in Ω× (0, Th),
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which implies that

vt(x, t) + Av−p(x, t) ≤ 0 in Ω× (0, Th).

This estimate may be rewritten in the following manner

vpdv ≤ −Adt in Ω× (0, Th).(10)

Integrate the above inequality over (0, Th) to obtain

Th ≤
(v(x, 0))p+1

A(p + 1)
for x ∈ Ω.(11)

We deduce that

Th ≤
‖v0‖p+1

inf

A(p + 1)
.(12)

Consequently, v quenches at the time Th because the quantity on the right
hand side of the above inequality is finite and the proof is complete. �

Remark 2.1. Let t0 ∈ (0, Th). Integrating the inequality in (10) from t0
to Th, we get

Th − t0 ≤
(v(x, t0))p+1

A(p + 1)
for x ∈ Ω.

We deduce that

Th − t0 ≤
(vmin(t0))p+1

A(p + 1)
.

3. Continuity of the quenching time. In this section, under some as-
sumptions, we show that the solution v of (4)–(6) quenches in a finite time
and its quenching time goes to that of the solution u of (1)–(3) when ‖h‖∞
goes to zero.
Firstly, we show that the solution v approaches the solution u in Ω ×

[0, T − τ ] with τ ∈ (0, T ) when ‖h‖∞ tends to zero. This result is stated in
the following theorem.

Theorem 3.1. Let u be the solution of (1)–(3). Suppose that u ∈ C2,1(Ω×
[0, T − τ ]) and mint∈[0,T−τ ] umin(t) = α > 0 with τ ∈ (0, T ). Then, the
problem (4)–(6) admits a unique solution v ∈ C2,1(Ω × [0, Th)) and the
following relation holds

sup
t∈[0,T−τ ]

‖v(·, t)− u(·, t)‖∞ = 0(‖h‖∞) as ‖h‖∞ → 0.

Proof. The problem (4)–(6) has for each h, a unique solution v ∈ C2,1(Ω×
[0, Th)). In the introduction of the paper, we have seen that Th ≥ T . Let
t(h) ≤ T the greatest value of t > 0 such that

‖v(·, t)− u(·, t)‖∞ ≤ α

2
for t ∈ (0, t(h)).(13)
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By a direct calculation, we see that ‖v(·, 0)−u(·, 0)‖∞ = ‖v0−u0‖∞ = ‖h‖∞,
which implies that ‖v(·, 0) − u(·, 0)‖∞ tends to zero as ‖h‖∞ goes to zero.
Due to this fact, we deduce that t(h) > 0 for ‖h‖∞ sufficiently small. By
the triangle inequality, we obtain

vmin(t) ≥ umin(t)− ‖v(·, t)− u(·, t)‖∞ for t ∈ (0, t(h)),

which leads us to

vmin(t) ≥ α− α

2
=

α

2
for t ∈ (0, t(h)).

Introduce the function e(x, t) defined as follows

e(x, t) = v(x, t)− u(x, t) in Ω× [0, t(h)).

A routine computation reveals that

et −∆e = pθ−p−1e in Ω× (0, t(h)),

∂e

∂ν
= 0 on ∂Ω× (0, t(h)),

e(x, 0) ≥ h(x) in Ω,

where θ is an intermediate value between u and v. Let

z(x, t) = e(L+1)t‖h‖∞ in Ω× [0, T ],

where L = p(α
2 )−p−1. It is not hard to see that L = p(α

2 )−p−1 ≥ pθ−p−1.
Thanks to this observation, a straightforward calculation yields

zt −∆z ≥ pθ−p−1z in Ω× (0, t(h)),

∂z

∂ν
= 0 on ∂Ω× (0, t(h)),

z(x, 0) ≥ e(x, 0) in Ω.

It follows from the maximum principle that

z(x, t) ≥ e(x, t) in Ω× (0, t(h)).

By the same way, we also prove that

z(x, t) ≥ −e(x, t) in Ω× (0, t(h)),

which implies that

‖e(·, t)‖∞ ≤ e(L+1)t‖h‖∞ for t ∈ (0, t(h)).

Let us show that t(h) = T . Suppose that t(h) < T . From (13), we obtain
α

2
= ‖v(·, t(h))− u(·, t(h))‖∞ ≤ e(L+1)T ‖h‖∞.

Since the term on the right hand side of the above inequality goes to zero
as ‖h‖∞ goes to zero, we deduce that α

2 ≤ 0, which is impossible. Conse-
quently, t(h) = T and the proof is complete. �
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Now, we are in a position to prove the main result of the paper.

Theorem 3.2. Suppose that the problem (1)–(3) has a solution u which
quenches at the time T and u ∈ C2,1(Ω × [0, T )). Under the assumption
of Theorem 2.1, the problem (4)–(6) has a solution v which quenches in a
finite time Th and the following relation holds

lim
‖h‖∞→0

Th = T.

Proof. Let ε > 0. There exists ρ > 0 such that

yp+1

A(p + 1)
≤ ε

2
, 0 ≤ y ≤ ρ.(14)

Since u quenches in a finite time T, there exists T0 ∈ (T − ε
2 , T ) such that

0 < umin(t) <
ρ

2
for t ∈ [T0, T ).

Set T1 = T0+T
2 . It is not hard to see that

umin(t) > 0 for t ∈ [0, T1].

From Theorem 3.1, the problem (4)–(6) has a solution v and we get

‖v(·, t)− u(·, t)‖∞ <
ρ

2
for t ∈ [0, T1],

which implies that ‖v(·, T1)−u(·, T1)‖∞ ≤ ρ
2 . An application of the triangle

inequality leads us to

vmin(T1) ≤ ‖v(·, T1)− u(·, T1)‖∞ + umin(T1) ≤
ρ

2
+

ρ

2
= ρ.

From Theorem 2.1, v quenches at the time Th. We deduce from Remark 2.1
and (14) that

0 ≤ Th − T = Th − T1 + T1 − T ≤ (vmin(T1))p+1

A(p + 1)
+

ε

2
≤ ε,

and the proof is complete. �

4. Numerical results. In this section, we give some computational exper-
iments to confirm the theory given in the previous section. We consider the
radial symmetric solution of the following initial-boundary value problem

ut = ∆u− u−p in B × (0, T ),

∂u

∂ν
= 0 on S × (0, T ),

u(x, 0) = u0(x) in B,

where B =
{
x ∈ RN ; ‖x‖ < 1

}
, S =

{
x ∈ RN ; ‖x‖ = 1

}
. The above

problem may be rewritten in the following form
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ut = urr +
N − 1

r
ur − u−p, r ∈ (0, 1), t ∈ (0, T ),(15)

ur(0, t) = 0, ur(1, t) = 0, t ∈ (0, T ),(16)

u(r, 0) = ϕ(r), r ∈ (0, 1).(17)

Here, we take ϕ(r) = 2+cos(πr)
4 + ε(1 + cos(πr)) where ε ∈ [0, 1]. We start

with the construction of an adaptive scheme as follows. Let I be a positive
integer and let h = 1/I. Define the grid xi = ih, 0 ≤ i ≤ I and approximate
the solution u of (15)–(17) by the solution U

(n)
h = (U (n)

0 , . . . , U
(n)
I )T of the

following explicit scheme

U
(n+1)
0 − U

(n)
0

∆tn
= N

2U
(n)
1 − 2U

(n)
0

h2
− (U (n)

0 )−p−1U
(n+1)
0 ,

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)
ih

U
(n)
i+1 − U

(n)
i−1

2h

− (U (n)
i )−p−1U

(n+1)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

∆tn
= N

2U
(n)
I−1 − 2U

(n)
I

h2
− (U (n)

I )−p−1U
(n+1)
I ,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where ∆tn = min
{

(1−h2)h2

2N , h2
∥∥U

(n)
h

∥∥p+1

inf

}
with

∥∥U
(n)
h

∥∥
inf

= min0≤i≤I U
(n)
i .

Let us notice that the restriction on the time step ensures the positivity of
the discrete solution. We also approximate the solution u of (15)–(17) by
the solution U

(n)
h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

∆tn
= N

2U
(n+1)
1 − 2U

(n+1)
0

h2
− (U (n)

0 )−p−1U
(n+1)
0

U
(n+1)
i − U

(n)
i

∆tn
=

U
(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)
ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

− (U (n)
i )−p−1U

(n+1)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

∆tn
= N

2U
(n+1)
I−1 − 2U

(n+1)
I

h2
− (U (n)

I )−p−1U
(n+1)
I ,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where ∆tn = h2
∥∥U

(n)
h

∥∥p+1

inf
.

Let us again remark that for the above implicit scheme, the existence and
positivity of the discrete solution is also guaranteed using standard methods
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(see for instance [6]). It is not hard to see that uxx(1, t) = limr→1
ur(r,t)

r and

uxx(0, t) = limr→0
ur(r,t)

r . Hence, if r = 0 and r = 1, we see that

ut(0, t) = Nurr(0, t)− u−p(0, t), t ∈ (0, T ),

ut(1, t) = Nurr(1, t)− u−p(1, t), t ∈ (0, T ).

These observations have been taken into account in the construction of our
schemes when i = 0 and i = I. We need the following definition.

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit

scheme or the implicit scheme quenches in a finite time if

lim
n→∞

‖U (n)
h ‖inf = 0

and the series
∑∞

n=0 ∆tn converges. The quantity
∑∞

n=0 ∆tn is called the

numerical quenching time of the discrete solution U
(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, the CPU times and the orders of the approxima-
tions corresponding to meshes of 16, 32, 64, 128. We take for the numerical
quenching time Tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |Tn+1 − Tn| ≤ 10−16.

The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for p = 1, N = 2.
First case: ε = 0.

Table 1: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method.

I Tn n CPUt s
16 0.055728 1921 4 -
32 0.054213 7048 27 -
64 0.053488 25371 195 1.06
128 0.053127 82924 1836 1.00



Continuity of the quenching time in a semilinear parabolic equation 45

Table 2: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
first implicit Euler method.

I Tn n CPUt s
16 0.054900 1908 5 -
32 0.053847 7020 29 -
64 0.053319 28007 429 1.00
128 0.053111 87262 1965 0.99

Second case: ε = 1/50.

Table 3: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method.

I Tn n CPUt s
16 0.058875 1946 5 -
32 0.057148 7152 28 -
64 0.056321 25803 215 0.88
128 0.056012 102818 20237 0.82

Table 4: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
first implicit Euler method.

I Tn n CPUt s
16 0.057270 1934 5 -
32 0.055651 7100 30 -
64 0.054877 25590 204 1.05
128 0.054525 98037 1203 1.15

Third case: ε = 1/100.

Table 5: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method.

I Tn n CPUt s
16 0.057270 1934 5 -
32 0.055651 7100 30 -
64 0.054877 25590 204 1.05
128 0.054525 98037 1203 1.15
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Table 6: Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
first implicit Euler method.

I Tn n CPUt s
16 0.056356 2009 6 -
32 0.055248 7436 30 -
64 0.054689 27070 328 0.98
128 0.054426 98873 1318 1.08

Remark 4.1. If we consider the problem (15)–(17) in the case where the
initial data ϕ(r) = 2+cos(πr)

4 and p = 1, we see that the numerical quenching
time of the discrete solution for the explicit scheme or the implicit scheme
is slightly equal 0.053 (see Tables 1 and 2). We observe from Tables 3, 4,
5 and 6 that if the above initial data increases slightly, then the numeri-
cal quenching time also increases slightly. This result confirms the theory
established in the previous section.

References

[1] Abia, L. M., López-Marcos, J. C. and Mart́ınez, J., On the blow-up time convergence
of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998),
399–414.

[2] Acker, A., Walter, W., The quenching problem for nonlinear parabolic differential
equations, Ordinary and partial differential equations (Proc. Fourth Conf., Univ.
Dundee, Dundee, 1976), Lecture Notes in Math., Vol. 564, Springer, Berlin, 1976,
1–12.

[3] Acker, A., Kawohl, B., Remarks on quenching, Nonlinear Anal. 13 (1989), 53–61.
[4] Bandle, C., Braumer, C. M., Singular perturbation method in a parabolic problem
with free boundary, BAIL IV (Novosibirsk, 1986), Boole Press Conf. Ser., 8, Boole,
Dún Laoghaire, 1986, 7–14.

[5] Baras, P., Cohen, L., Complete blow-up after Tmax for the solution of a semilinear
heat equation, J. Funct. Anal. 71 (1987), 142–174.

[6] Boni, T. K., Extinction for discretizations of some semilinear parabolic equations, C.
R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795–800.

[7] Boni, T. K., On quenching of solutions for some semilinear parabolic equations of
second order, Bull. Belg. Math. Soc. 7 (2000), 73–95.

[8] Cortazar, C., del Pino, M. and Elgueta, M., On the blow-up set for ut = ∆um + um,
m > 1, Indiana Univ. Math. J. 47 (1998), 541–561.

[9] Cortazar, C., del Pino, M. and Elgueta, M., Uniqueness and stability of regional
blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Linéare 19
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BP 1093 Yamoussoukro 02 BP 801 Abidjan 02
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