ANNALES
 UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
 LUBLIN - POLONIA

VOL. LXII, 2008
SECTIO A
31-36

ANNA BEDNARSKA

Canonical vector valued 1-forms on higher order adapted frame bundles over category of fibered squares

Abstract

Let Y be a fibered square of dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$. Let V be a finite dimensional vector space over \mathbb{R}. We describe all $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ canonical V-valued 1-form $\Theta: T P_{A}^{r}(Y) \rightarrow V$ on the r-th order adapted frame bundle $P_{A}^{r}(Y)$.

A fibered square (or fibered-fibered manifold) is any commutative diagram

where maps π, π_{0}, q, p are surjective submersions and induced map $Y \rightarrow$ $X \times_{M} N, y \mapsto(\pi(y), q(y))$ is a surjective submersion. We will denote a fibered square (1) by Y in short, [3], [5].

A fibered square (1) has dimension ($m_{1}, m_{2}, n_{1}, n_{2}$), if $\operatorname{dim} Y=m_{1}+m_{2}+$ $n_{1}+n_{2}, \operatorname{dim} X=m_{1}+m_{2}, \operatorname{dim} N=m_{1}+n_{1}, \operatorname{dim} M=m_{1}$. For two fibered squares Y_{1}, Y_{2} of the same dimension ($m_{1}, m_{2}, n_{1}, n_{2}$), a fibered squares morphism $f: Y_{1} \rightarrow Y_{2}$ is quadruple of local diffeomorphisms $f: Y_{1} \rightarrow Y_{2}$,

[^0]$f_{1}: X_{1} \rightarrow X_{2}, f_{2}: N_{1} \rightarrow N_{2}, f_{0}: M_{1} \rightarrow M_{2}$ such that all squares of the cube in question are commutative.

All fibered squares of given dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$ and their morphisms form a category which we denote by $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$.

Every object from the category $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$ is locally isomorphic to the standard fibered square

which we denote by $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$, where arrows are obvious projections.
Let Y be a fibered square (1) of dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$. We define the r-th order adapted frame bundle

$$
\begin{align*}
P_{A}^{r}(Y)=\left\{j_{(0,0,0,0)}^{r} \varphi \mid \varphi:\right. & \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow Y \text { is } \\
& \left.\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}-\text { morphism }\right\} \tag{3}
\end{align*}
$$

over Y with the projection $\beta: P_{A}^{r}(Y) \rightarrow Y, \beta\left(j_{(0,0,0,0)}^{r} \varphi\right)=\varphi(0,0,0,0)$. The adapted frame bundle $P_{A}^{r}(Y)$ is a principal bundle with Lie group $G_{m_{1}, m_{2}, n_{1}, n_{2}}^{r}=P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{(0,0,0,0)}$ (with multiplication given by the composition of jets) acting on the right on $P_{A}^{r}(Y)$ by composition of jets. Every $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphism $\Phi: Y_{1} \rightarrow Y_{2}$ induces a local diffeomorphism $P_{A}^{r} \Phi: P_{A}^{r}\left(Y_{1}\right) \rightarrow P_{A}^{r}\left(Y_{2}\right)$ given by $P_{A}^{r} \Phi\left(j_{(0,0,0,0)}^{r} \varphi\right)=j_{(0,0,0,0)}^{r}(\Phi \circ \varphi)$, [1], [4].
Definition 1. Let V be a finite dimensional vector space over \mathbb{R}. A $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1-form Θ on P_{A}^{r} is any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ invariant family $\Theta=\left\{\Theta_{Y}\right\}$ of V-valued 1-forms $\Theta_{Y}: T P_{A}^{r}(Y) \rightarrow V$ on $P_{A}^{r}(Y)$ for any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object $Y,[2],[4]$.

The invariance of canonical 1-form Θ means that two V-valued forms $\Theta_{Y_{1}}$ and $\Theta_{Y_{2}}$ are $P_{A}^{r} \Phi$-related (that is $P_{A}^{r} \Phi^{*} \Theta_{Y_{2}}=\Theta_{Y_{1}}$, where $P_{A}^{r} \Phi^{*} \Theta_{Y_{2}}=$ $\left.\Theta_{Y_{2}} \circ T P_{A}^{r} \Phi\right)$ for any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphism $\Phi: Y_{1} \rightarrow Y_{2}$.
Example 1. For every $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object Y we define $\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$ valued 1-form θ_{Y} on $P_{A}^{1}(Y)$ as follows. Consider the projection $\beta: P_{A}^{1}(Y) \rightarrow$ Y given by $\beta\left(j_{(0,0,0,0)}^{1} \varphi\right)=\varphi(0,0,0,0)$, an element $u=j_{(0,0,0,0)}^{1} \psi \in P_{A}^{1}(Y)$ and a tangent vector $W=j_{0}^{1} c \in T_{u} P_{A}^{1}(Y)$. We define the form θ_{Y} by

$$
\begin{align*}
\theta_{Y}(W) & =u^{-1} \circ T \beta(W) \\
& =j_{0}^{1}\left(\psi^{-1} \circ \beta \circ c\right) \in T_{(0,0,0,0)} \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}=\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \tag{4}
\end{align*}
$$

Obviously, $\theta=\left\{\theta_{Y}\right\}$ is a $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical 1-form on P_{A}^{1}.
A vector field W on Y is projectable-projectable on $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ object (1), if there exists vector fields W_{1} on X and W_{2} on N and W_{0} on
M such that W, W_{1} are π-related and W, W_{2} are q-related and W_{1}, W_{0} are p-related and W_{2}, W_{0} are π_{0}-related, [5].

We therefore see that vector field W on Y is projectable-projectable on $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object (1) if and only if the flow $\left\{\Phi_{t}\right\}$ of vector field W is formed by local $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-maps.

The space of all projectable-projectable vector fields on $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ object Y will be denoted by $\mathfrak{X}_{\text {proj-proj }}(Y)$. It is Lie subalgebra of Lie algebra $\mathfrak{X}(Y)$ of all vector fields on Y.

For projectable-projectable vector field $W \in \mathfrak{X}_{\text {proj-proj }}(Y)$ the flow lifting $\mathcal{P}_{A}^{r} W$ is vector field on $P_{A}^{r}(Y)$ such that if $\left\{\Phi_{t}\right\}$ is the flow of field W, then $\left\{P_{A}^{r}\left(\Phi_{t}\right)\right\}$ is the flow of field $\mathcal{P}_{A}^{r} W$. (Since Φ_{t} are $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-maps, we can apply functor P_{A}^{r} to Φ_{t}).

To present a general example of a $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1form on P_{A}^{r} we need the following lemma, which is an obvious modification of the known fact for usual manifolds.

Lemma 1. Let Y be a fibered square (1) from the category $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$. Then any vector $w \in T_{v} P_{A}^{r}(Y)$, where $v \in\left(P_{A}^{r}(Y)\right)_{y}, y \in Y$, is of the form $w=\mathcal{P}_{A}^{r} W_{v}$ for any projectable-projectable vector field $W \in \mathfrak{X}_{\text {proj-proj }}(Y)$, where $\mathcal{P}_{A}^{r} W \in \mathfrak{X}\left(P_{A}^{r}(Y)\right)$ is the flow lifting of field W to $P_{A}^{r}(Y)$. Moreover $j_{y}^{r} W$ is uniquely determined.

Proof. We can assume that $Y=\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ and $y=(0,0,0,0) \in$ $\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$. Since $P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ is obviously a principal subbundle of the r-th order frame bundle $P^{r}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$, by the well-known manifolds version of Lemma 1 , we find $W \in \mathfrak{X}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ such that $w=\mathcal{P}^{r} W_{v}$ and $j_{(0,0,0,0)}^{r} W$ is uniquely determined, where $\mathcal{P}^{r} W$ is a vector field on $P^{r}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ being a flow lifting of vector field W and $v \in P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$.

For a projectable-projectable vector field $\widetilde{W} \in \mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ the vector $\mathcal{P}^{r} \widetilde{W}_{v} \in T_{v} P^{r}\left(\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right)$ is tangent to $P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ at the point v. On the other hand, the dimension of space $P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ and the dimension of space of r-jets $j_{(0,0,0,0)}^{r} \widetilde{W}$ of projectable-projectable vector fields $\widetilde{W} \in \mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ are equal. Then Lemma 1 follows from dimension equality, since flow operators are linear.

Example 2. Let

$$
\begin{equation*}
\lambda: J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)\right) \rightarrow V \tag{5}
\end{equation*}
$$

be a \mathbb{R}-linear map, where $J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)\right)$ is the vector space of all $(r-1)$-jets $j_{(0,0,0,0)}^{r-1} W$ at point $(0,0,0,0) \in \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$ of projectable-projectable vector fields $W \in \mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$. Given
a fibered square Y, (1), from the category $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$ we define V valued 1-form $\Theta_{Y}^{\lambda}: T P_{A}^{r}(Y) \rightarrow V$ on $P_{A}^{r}(Y)$ as follows. Let $w \in T_{v} P_{A}^{r}(Y)$, where $v=j_{(0,0,0,0)}^{r} \varphi \in\left(P_{A}^{r}(Y)\right)_{y}, y \in Y$. By Lemma 1, we have $w=$ $\mathcal{P}_{A}^{r} W_{v}$ for some projectable-projectable vector field $W \in \mathfrak{X}_{\text {proj-proj }}(Y)$ and $j_{y}^{r} W$ is uniquely determined. Then is uniquely determined the $(r-1)$-jet $j_{(0,0,0,0)}^{r-1}\left(\left(\varphi^{-1}\right)_{*} W\right)$, where $\left(\varphi^{-1}\right)_{*} W=T \varphi^{-1} \circ W \circ \varphi$. We define

$$
\begin{equation*}
\Theta_{Y}^{\lambda}(w):=\lambda\left(j_{(0,0,0,0)}^{r-1}\left(\left(\varphi^{-1}\right)_{*} W\right)\right) . \tag{6}
\end{equation*}
$$

Obviously, $\Theta^{\lambda}=\left\{\Theta_{Y}^{\lambda}\right\}$ is $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1-form on P_{A}^{r}.

The main result of this note is the following classification theorem.
Theorem 1. Any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1 -form on P_{A}^{r} is of the form Θ^{λ} for some uniquely determined \mathbb{R}-linear map

$$
\lambda: J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)\right) \rightarrow V
$$

In the proof of Theorem 1 we use the following fact.
Lemma 2. Let $W_{1}, W_{2} \in \mathfrak{X}_{\text {proj-proj }}(Y)$ be projectable-projectable vector
 pose that $j_{y}^{r-1} W_{1}=j_{y}^{r-1} W_{2}$ and $W_{1}(y)$ is not vertical vector with respect to composition of projections $\pi: Y \rightarrow X$ and $p: X \rightarrow M$. Then there exists a (locally defined) $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}-$ map $\Phi: Y \rightarrow Y$ such that $j_{y}^{r}(\Phi)=j_{y}^{r}\left(i d_{Y}\right)$ and $\Phi_{*} W_{1}=W_{2}$ near y.

Proof. It is a direct modification of the proof of Lemma 42.4 in [2].
Proof of Theorem 1. Let Θ be $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1form on P_{A}^{r}. We must define $\lambda: J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)\right) \rightarrow V$ by

$$
\begin{equation*}
\lambda(\xi):=\left(\Theta_{\left.\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)}\right)\left(\mathcal{P}^{r} \widetilde{W}_{j_{(0,0,0,0)}^{r}}\left(i d_{\left.\mathbb{R}^{m}, m_{2}, n_{1}, n_{2}\right)}\right)\right. \tag{7}
\end{equation*}
$$

for all $\xi \in J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)\right.$), where \widetilde{W} is a unique (germ at $(0,0,0,0))$ of projectable-projectable vector field on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ such that $j_{(0,0,0,0)}^{r-1} \widetilde{W}=\xi$ and coefficients of \widetilde{W} with respect to the basis of space $\mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ composed of canonical vector fields are polynomials of degree $\leq r-1$. We are going to show that $\Theta=\Theta^{\lambda}$. Because of the $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-invariance of Θ and Θ^{λ} it remains to show that

$$
\begin{equation*}
\left(\Theta_{\left.\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)}\right)(w)=\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}^{\lambda}\right)(w) \tag{8}
\end{equation*}
$$

for any $w \in T_{j_{(0,0,0,0)}^{r}}\left(i d_{\mathbb{R}} m_{1}, m_{2}, n_{1}, n_{2}\right) \quad P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$.
By the definition of λ and Θ^{λ} we have (8) for any w of the form

$$
w=\mathcal{P}_{A}^{r} \widetilde{W}_{\left.j_{(0,0,0,0}\right)}\left(i d_{\mathbb{R}} m_{1}, m_{2}, n_{1}, n_{2}\right),
$$

where $\widetilde{W} \in \mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ is a projectable-projectable vector field such that coefficients \widetilde{W} with respect to the above mentioned basis of the space $\mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ are polynomials of degree $\leq r-1$.

Now, let $w \in T_{\left.j_{(0,0,0,0}^{r}\right)}\left(i d_{\mathbb{R}} m_{1}, m_{2}, n_{1}, n_{2}\right) \quad P_{A}^{r}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$. Then by Lemma 1 , w is of the form $w=\mathcal{P}_{A}^{r} W_{j_{(0,0,0,0)}^{r}}\left(i d_{\left.\mathbb{R}^{m} m_{1}, m_{2}, n_{1}, n_{2}\right)}\right)$ for some projectable-projectable vector field $W \in \mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ and $j_{(0,0,0,0)}^{r} W$ is uniquely determined. We can additionally assume that $W(0,0,0,0)$ is not vertical vector with respect to projection $\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \rightarrow \mathbb{R}^{m_{1}}$. Let $\widetilde{W} \in$ $\mathfrak{X}_{\text {proj-proj }}\left(\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)$ be projectable-projectable vector field such that $j_{(0,0,0,0)}^{r-1} \widetilde{W}=j_{(0,0,0,0)}^{r-1} W$ and coefficients of field \widetilde{W} with respect to the basis of constant vector fields on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ are polynomials of degree $\leq r-1$. Let $\widetilde{w}=\mathcal{P}_{A}^{r} \widetilde{W}_{j_{(0,0,0,0)}^{r}}\left(i d_{\left.\mathbb{R}^{m}, m_{1}, m_{1}, n_{2}\right)}\right.$. Then (see above) it holds $\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}\right)(\widetilde{w})=\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}^{\lambda}\right)(\widetilde{w})$.

On the other hand by Lemma 2 there exists a $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2} \text {-map }}$ $\Phi: \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ such that $j_{(0,0,0,0)}^{r} \Phi=j_{(0,0,0,0)}^{r}\left(i d_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}\right)$ and $\Phi_{*} \widetilde{W}=W$ near $(0,0,0,0) \in \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$. Since $j_{(0,0,0,0)}^{r} \Phi=i d$, then Φ preserves $j_{(0,0,0,0)}^{r}\left(i d_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}\right)$. Then since $\Phi_{*} \widetilde{W}=W$, so Φ sends \widetilde{w} into w. Then because of invariance of Θ and Θ^{λ} with respect to Φ, we obtain

$$
\begin{aligned}
\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}\right)(w) & =\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}\right)(\widetilde{w})=\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}^{\lambda}\right)(\widetilde{w}) \\
& =\left(\Theta_{\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}^{\lambda}\right)(w) .
\end{aligned}
$$

For $r=1$ we have $J_{(0,0,0,0)}^{0}\left(T_{\text {proj-proj }} \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right) \cong \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$. Then by Theorem 1 , the vector space of $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1-forms is of dimension $\left(m_{1}+m_{2}+n_{1}+n_{2}\right) \operatorname{dim} V$. Then we have:

Corollary 1. Any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical 1-form $\Theta=\left\{\Theta_{Y}\right\}$ on P_{A}^{1} is of the form

$$
\begin{equation*}
\Theta_{Y}=\lambda \circ \theta_{Y}: T P_{A}^{1}(Y) \rightarrow V \tag{9}
\end{equation*}
$$

for some unique linear map $\lambda: \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \rightarrow V$, where $\theta=\left\{\theta_{Y}\right\}$ is a canonical $\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}$-valued 1 -form on P_{A}^{1} from Example 1.

Example 3. Notice that it holds

$$
\begin{equation*}
J_{(0,0,0,0)}^{r-1}\left(T_{\text {proj-proj }} \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}}\right) \cong \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \oplus \mathfrak{g}_{m_{1}, m_{2}, n_{1}, n_{2}}^{r-1} \tag{10}
\end{equation*}
$$

where $\mathfrak{g}_{m_{1}, m_{2}, n_{1}, n_{2}}^{r-1}=\mathcal{L} i e\left(G_{m_{1}, m_{2}, n_{1}, n_{2}}^{r-1}\right)$.

In this way for $\lambda=i d_{\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \nmid \mathfrak{g}_{m_{1}, m_{2}, n_{1}, n_{2}}^{r-1}}$ we have $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}{ }^{-}$ canonical 1-form

$$
\begin{align*}
\theta_{Y}^{r}:=\Theta^{i d_{\mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \oplus_{\mathfrak{g}}^{m_{1}, m_{2}, n_{1}, n_{2}}}^{r-1}} & \quad T P_{A}^{r}(Y) \rightarrow \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \oplus \mathfrak{g}_{m_{1}, m_{2}, n_{1}, n_{2}}^{r-1} \tag{11}
\end{align*}
$$

on P_{A}^{r} (see Example 2). For $r=1$, we have $\theta^{1}=\theta$ as in Example 1.
Analogously as in Corollary 1 we have
Corollary 2. Any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-canonical V-valued 1 -form $\Theta=\left\{\Theta_{Y}\right\}$ on P_{A}^{r} is of the form:

$$
\begin{equation*}
\Theta_{Y}=\lambda \circ \theta_{Y}^{r}: T P_{A}^{r}(Y) \rightarrow V \tag{12}
\end{equation*}
$$

for some uniquely determined linear map $\lambda: \mathbb{R}^{m_{1}+m_{2}+n_{1}+n_{2}} \oplus \mathfrak{g}_{m_{1}, m_{2}, n_{1}, n_{2}}^{r-1} \rightarrow$ V, where θ^{r} is from Example 3.

Remark 1. A notion of fibered square is a generalization of a fibered manifold. The theory of projectable natural bundles over fibered manifolds is essentially related with the idea of fibered square, [2], [3], [5].

References

[1] Doupovec, M., Mikulski, W. M., Gauge natural constructions on higher order principal prolongations, Ann. Polon. Math. 92 (2007), no. 1, 87-97.
[2] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[3] Kolář, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67-76.
[4] Kurek, J., Mikulski, W. M., Canonical vector valued 1-forms on higher order adapted frame bundles, Arch. Math. (Brno) 44 (2008), 115-118.
[5] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3-4) (2001), 441-458.

```
Anna Bednarska
Institute of Mathematics
M. Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: bednarska@hektor.umcs.lublin.pl
```

Received April 7, 2008

[^0]: 2000 Mathematics Subject Classification. 58A20, 58A32.
 Key words and phrases. Fibered square, projectable-projectable vector field, r-th order adapted frame bundle, canonical 1-forms.

