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Some remarks on strong factorization
of tent spaces

Abstract. We provide new assertions on factorization of tent spaces.

In this note, we provide new assertions concerning strong factorization of
so-called tent spaces. In order to formulate our results we will need some
standard definitions ([3, 4, 5]).

Let
Rn+1

+ = {(x, t) : x ∈ Rn, t > 0},

Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t}

and B(x, t) = B be a ball with center x ∈ Rn.
For x ∈ Rn, let

A∞(f)(x) = N(f)(x) = sup
(y,t)∈Γ(x)

|f(y, t)|,

Aq(f)(x) =

(∫
Γ(x)

|f(y, t)|q

tn+1
dydt

)1/q

and

Cq(f)(x) =

(
sup
x∈B

1

|B|

∫
T (B)

|f(y, t)|q

t
dydt

)1/q

,

where T (B) is a tent on B in Rn (see [3, 4]).
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Define spaces T pq , T p∞ and T∞q respectively

T pq = {f : f is measurable in Rn+1
+ satisfying

‖f‖T pq = ‖Aq(f)(x)‖Lp(Rn) <∞},

T p∞ = {f : f is measurable in Rn+1
+

with continuous boundary values on Rn

such that ‖f‖T p∞ = ‖A∞(f)(x)‖Lp(Rn) <∞}

and

T∞q = {f : f is measurable in Rn+1
+

satisfying ‖f‖T∞q = ‖Cq(f)(x)‖L∞ <∞}.

One of the main results of [3, 4] asserts that

(A) T pq = T p∞T
∞
q for 0 < p, q <∞.

The mentioned equality was for the first time obtained in [3] for p > 2,
q = 2. Such type strong factorization theorems have numerous applications
in the theory of analytic spaces ([2, 4, 6]). We give some results similar in
spirit to (A). As we can easily notice mentioned factorizations of T pq classes
were not considered before for p =∞. In this note we, in particular, intend
to give an answer to that natural question. On the other hand T pq type
classes that were defined above are heavily based on classical Lp spaces in
Rn. Our next intention is to replace them by their natural extensions: the
well-known Lpq Lorentz spaces in Rn and to prove, if possible, a result similar
to (A) equality.

Let C(n)−1 be the volume of the unit ball ([4]) so that ‖P 0
t ‖L1(Rn) = 1,

where P 0
t (x) = C(n)t−nχB(0,t)(x) and χB(0,t)(x) is the characteristic func-

tion of the set B(0, t). For x ∈ Rn, define

(P ∗0 µ)(x) = C(n)

∫
Γ(x)

dµ(y, t)

tn

where µ is a positive Borel measure in Rn+1
+ .

Lemma 1. Let P0(g)(x, t) = C(n)
tn

∫
B(x,t) g(y)dy, g ∈ L1

loc(R
n), S(µ) =

P0(P ∗0 µ)−τ , where 0 < τ ≤ 1 and µ is a positive Borel measure on Rn+1.
Then

1

|B|

∫
T (B)

Sµ(x, t)dµ(x, t) ≤ C

∥∥∥∥∥∥
(∫

T (B)∩Γ(y)

dµ(x, t)

tn

)1−τ
∥∥∥∥∥∥
L∞(B,dy)

.

Remark 1: For τ = 1, Lemma 1 was proved in [4].
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Proof. Let h(y) = P ∗0 µ(y), y ∈ Rn. Modifying proofs in [4] we have∫
T (B)

Sµ(x, t)dµ(x, t) ≤ C(n)

∫
T (B)

∫
B(x,t)

h(y)−τ
dµ(x, t)

tn
dy

≤ C
∫
Rn
h(y)−τ

∫
T (B)∩Γ(y)

dµ(x, t)

tn
dy

≤ C|B| sup
y∈Rn

(∫
T (B)∩Γ(y)

dµ(x, t)

tn

)1−τ

.

The proof is complete. �

Let X, Y and Z be quasinormed subspaces of the class of all measurable
functions in Rn. For 0 < α ≤ 1, we say X

α
⊂ Y Z, if for any u ∈ X, there

exist w ∈ Y , v ∈ Z such that u = w · vα.
Let T∞,∞q be the class of measurable functions f satisfying

‖f‖T∞,∞q
=

∥∥∥∥∥∥
(∫

Γ(y)

|f |q

tn+1
dxdt

)1/q
∥∥∥∥∥∥
L∞(Rn)

<∞.

Theorem 1. Let 0 < q < ∞, p > 0 and 0 < α = s/q ≤ 1. Then

T∞,∞q
α
⊂ T p∞T∞q .

Remark 2: If we replace T∞∞q classes in Theorem 2 with larger T pq classes,
then for s = q Theorem 1 is known (see [3, 4]).

Proof. We will modify the proof of [3, 4]. As the proof in [4] (p. 316), we
have

(∗)
(∫

X
|f |−sdν

)−1/s

≤
(∫

X
|f |rdν

)1/r

, r, s > 0,

where ν is a measure in Rn. Let us put dν = P 0
t (x)dx, f = Aq(u) in (∗).

Then we have

V = (P0(Aq(u))r)1/r ≥ C(P0(Aq(u))−s)−1/s,

that is, V −s ≤ C(P0(Aq(u))−s).
Let dµ(x, t) = u(x, t)q dxdtt . Then (Aq(u))q = CP ∗0 µ and

V −s ≤ CP0(P ∗0 µ)−s/q = P0(P ∗0 µ)−α,
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where 0 < α = s/q ≤ 1. Since ωq = uq

V s , from Lemma 1 we have∫
T (B)

ω(x, t)q
dxdt

t
≤ C

∫
T (B)

V −sdµ(x, t)

≤ C
∫
T (B)

Sα(µ)dµ

≤ C|B|

∥∥∥∥∥
∫
T (B)∩Γ(y)

|u(x, t)|qdxdt
tn+1

∥∥∥∥∥
1−s/q

L∞(B,dy)

≤ C|B|‖u‖q−s
T∞,∞q

,

which proves that for u ∈ T∞,∞q and ωq = uq

V s , we have ω ∈ T∞q .
For u ∈ T∞,∞q , let V = (P0(Aq(u))r)1/r. Then (see [3, 4]) NP0(f) ≤

CM(f) and hence N(V ) ≤ C(M(Aq(u))r)1/r, p > r, where M(f) is the
Hardy–Littlewood maximal function. Thus V ∈ T p∞ for every p. Indeed M
is a bounded operator from Lp(Rn) into Lp(Rn), p > 1. Hence V ∈ T p∞ for
every p > 0. One the other hand if ω = ( u

q

V s )1/q, then we can show that for
u ∈ T∞,∞q and V ∈ T p∞, p > 0(

1

|B|

∫
T (B)

ω(x, t)q
dxdt

t

)1/q

≤ C‖u‖1−s/q
T∞,∞q

for s ≤ q.

The proof is complete. �

We now turn to another extension of (A). The following facts from the
theory of Lorentz classes Lp,q(Rn) are needed (see [1, 7]).

For q, p ∈ (1,∞), the Hardy–Littlewood maximal operator is extended in
Lp,q(Rn) (see [5, 1, 7]) and we have

(1) ‖M(f)‖Lp,q ≤ C‖f‖Lp,q ,

and

(2) ‖M(f)‖Lp,∞ ≤ C‖f‖Lp,∞ .

Let f be a measurable function in Rn+1
+ . Define

‖f‖LT p,sq = ‖Aq(f)‖Lp,s(Rn),

‖f‖LT p,s∞ = ‖N(f)‖Lp,s .
For 0 < p <∞, the spaces LT p,sq and LT p,s∞ are defined by

LT p,sq = {f : f is measurable in Rn+1
+ satisfying ‖f‖LT p,sq <∞},

LT p,s∞ = {f : f is measurable in Rn+1
+ satisfying ‖f‖LT p,s∞ <∞}.

Theorem 2. Let s ≤ p ≤ q <∞. Then LT p,sq = LT p,s∞ T∞q .
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Remark 3: For p = s, this was obtained in [3, 4] before and it coincides
with (A).

Proof. We again use some ideas from [3, 4]. Note first, if ‖Aq(f)‖Lp,s(Rn) <

∞, putting V = (P0(Aq(f))r)1/r as in the previous case we have NV ≤
C(M(Aq(f)r))1/r, p, s > r, where M is the Maximal Hardy–Littlewood
operator. By (1) we have

‖NV ‖Lp,s ≤ C‖Aq(f)‖Lp,s(Rn) <∞ for p, s > 0

since
‖|f |r‖Lp,s = ‖f‖Lrp,rs , p, s, r > 0.

The proof of the fact that ω = u
V ∈ T

∞
q follows from the same arguments

as in [4]. Let us show the reverse with the same restriction on parameters.
Let ω ∈ T∞q , V ∈ LT p,s∞ . We will show that∥∥∥∥∥∥

(∫
Γ(y)

|ωV |q

tn+s
dxdt

)1/q
∥∥∥∥∥∥
Lp,s(Rn)

<∞.

By Hölder inequality for Lorentz classes (see [5]), the following estimate
holds:

D =

∥∥∥∥∥∥
(∫

Γ(y)

|ω(x, t)V (x, t)|q

tn+s
dxdt

)1/q
∥∥∥∥∥∥
Lp,s(Rn)

≤ C‖NV ‖
L
p1τ
q ,

s1τ
q

∥∥∥∥∥
∫

Γ(y)

V q−τωq

tn+s

∥∥∥∥∥
L
p2
q ,

s2
q

= AB,

where 1
p1

+ 1
p2

= 1
p and 1

s1
+ 1

s2
= 1

s . Choosing τ such that τp1
q = p, τs1q = s,

then p2
q = s2

q = 1 and B ≤ C‖ω‖T∞q ‖NV ‖Lq−τ which follows (A). Hence
D ≤ ‖NV ‖Lp,s‖NV ‖Lq−τ,q−τ . Note that τ = qs

s1
= pq

p1
, q − τ = q(1 − p

p1
) =

p = q − qp(1
p −

1
q ). Hence using known embeddings for Lorentz classes (see

[1, 7]) we have D ≤ ‖NV ‖Lp,s(Rn) for s ≤ p. The proof is complete. �
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