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On semi-typically real functions

Abstract. Suppose that A is the family of all functions that are analytic
in the unit disk ∆ and normalized by the condition f(0) = f ′(0) − 1 = 0.
For a given A ⊂ A let us consider the following classes (subclasses of A):
A(M) := {f ∈ A : | Im f | < Mπ/4}, AM := {f ∈ A : |f | < M} and
AM,g := {f ∈ A : f ≺ Mg on ∆}, where M > 1, g ∈ A ∩ S and S consists of
all univalent members of A.

In this paper we investigate the case A = T , where T denotes the class of
all semi-typically real functions, i.e. T := {F ∈ A : F (z) > 0⇐⇒ z ∈ (0, 1)}.
We study relations between these classes. Furthermore, we find for them sets
of variability of initial coefficients, the sets of local univalence and the sets of
typical reality.

Introduction. Let A denote the family of all functions that are analytic in
the unit disk ∆ := {z ∈ C : |z| < 1} and normalized by f(0) = f ′(0)−1 = 0.
Let A be a subclass ofA and let A(2) := {f ∈ A : f(z) = −f(−z) for z ∈ ∆}.

Let T denote the well-known class of all typically real functions, i.e. T
is the subclass of A consisting of functions f such that Im z Im f(z) ≥ 0,
z ∈ ∆. From the definition we conclude that T = {f ∈ A : f(z) ∈ R ⇐⇒
z ∈ (−1, 1)}. Let S denote the subclass of A consisting of functions which
are univalent in ∆. We will consider the following subclasses of the class T:
T(M) := {f ∈ T : | Im f | < Mπ/4}, TM := {f ∈ T : |f | < M},
TM,g := {f ∈ T : f ≺ Mg}, where M > 1, g ∈ T ∩ S and the symbol
h ≺ H denotes the subordination on ∆, i.e. h(0) = H(0) and h(∆) ⊂ H(∆),
whenever H is univalent (see [4]).
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We need the following definitions:

Definition 1. A set G ⊂ ∆ is called the set of local univalence for the class
A ⊂ A, if:

(i) for all functions f ∈ A and for all z ∈ G we have f ′(z) 6= 0,
(ii) for all z ∈ ∆ \G there exists a function f ∈ A such that f ′(z) = 0.

The set of local univalence of the class A will be denoted by l.u.A.

Definition 2. A domain G ⊂ ∆ is called the domain of univalence of the
class A ⊂ A, if:

(i) all functions belonging to A are univalent in G,
(ii) for every domain H such that G ⊂ H ⊂ ∆ and G 6= H there exists

a function in A that is nonunivalent in H.

Now let A be a class of functions with real coefficients.

Definition 3. A set G ⊂ ∆ is called the set of typical reality of the class
A ⊂ A, if:

(i) Im z Im f(z) ≥ 0 for f ∈ A and z ∈ G,
(ii) for all z ∈ ∆ \G there exists f ∈ A such that Im z Im f(z) < 0.

The set of typical reality of the class A will be denoted by t.r.A.

Definition 4. The interior of the set t.r.A is called the domain of typical
reality of the class A, whenever int(t.r.A) is a domain.

On semi-typically real functions. The property of typical reality re-
stricted to a half of the interval (−1, 1) leads to some new classes de-
fined as follows: T := {F ∈ A : F (z) > 0, z ∈ ∆ ⇐⇒ 0 < z < 1},
TM := {F ∈ T : |F | < M} and T M,g := {F ∈ T : F ≺ Mg}, where M > 1
and g ∈ T ∩ S.

Theorem 1. F ∈ T ⇐⇒
√
F (z2) ∈ T(2), where

√
F (z2) := z

√
F (z2)
z2
,

√
1 = 1.

Proof. For F ∈ T we have F (z)
z 6= 0 in ∆. Hence√

F (z2) ∈ R⇐⇒ F (z2) ≥ 0⇐⇒ z2 ∈ [0, 1)⇐⇒ z ∈ (−1, 1),

which means that
√
F (z2) ∈ T(2), and conversely. �

Corollary 1. F ∈ T ⇐⇒ F (z) ≡ (1+z)2h2(z)
z for some h ∈ T.

Proof. Let h ∈ T and F (z) ≡ (1+z2)h(z2)
z . For h ∈ T we have the Robert-

son formula h(z) =
∫ 1
−1

z
1−2zt+z2dµ(t), where µ is a probability measure on
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[−1, 1] (see [1], [3]). Then

(1 + z2)h(z2)

z
=

∫ 1

−1

z(1 + z2)

1− 2z2t+ z4
dµ(t) =

∫ 1

−1

z(1 + z2)

(1 + z2)2 − 2(1 + t)z2
dµ(t)

=

∫ 1

0

z(1 + z2)

(1 + z2)2 − 4τz2
dν(τ)

with ν(A) ≡ µ(2A − 1). Clearly,
∫ 1
0

z(1+z2)
(1+z2)2−4τz2dν(τ) ∈ T(2) (see [7], the

representation formula for functions from the class T(2)). Therefore,

(1 + z2)h(z2)

z
∈ T(2).

Let now F ∈ T . Then from Theorem 1 we get F ∈ T and q(z) =√
F (z2) ∈ T(2), i.e. F (z2) = q2(z) for some q ∈ T(2). From [7] it follows

that

q(z) ≡ (1 + z2)h(z2)

z
for some h ∈ T and the proof is complete. �

Corollary 2. F ∈ TM ⇐⇒ F (z2) ≡ h2(z) for some h ∈ T
(2)√
M
.

Now we determine the set of local univalence, the set of typical reality
and the domain of typical reality for the class T .

From Definitions 1–4 we conclude that the set of local univalence, the set
of typical reality and the domain of typical reality are unique and symmetric
with respect to the real axis. If the class A is compact, then there is a disk
centered at 0 that is contained in l.u.A ∩ int(t.r.A). It appears that for a
given class A there can be more than one domain of univalence. On the
other hand, if there exists only one such a domain, then it coincides with
the set of local univalence.

According to [2] the set of local univalence and the domain of univalence
for the class T coincide. It is well known, that these sets are lens-shaped
domain {z ∈ ∆ : |z2 + 1| > 2|z|} = {z : |z+ i| <

√
2}∩ {z : |z− i| <

√
2}. If

f(z) ≡
√
F (z2), then zf ′(z)/f(z) ≡ z2F ′(z2)/F (z2), so by Theorem 1 we

conclude that l.u.T = {ζ ∈ C : ζ = z2, z ∈ l.u.T(2)}. It was proved in [7]
that the set of local univalence for the class T(2) is of the form l.u.T(2) =
{z ∈ ∆ : |3z4 + 2z2 + 3| > 8|z|2}\{z ∈ C : z2 ≤ 2

√
2−3}. Furthermore, the

lens-shaped domain {z ∈ ∆ : |z2 +1| > 2|z|} is one of domains of univalence
for T(2), which is symmetric with respect to the origin. Hence, for T we
obtain l.u.T = {z ∈ ∆ : |3z2 + 2z + 3| > 8|z|} \ {z ∈ R : z ≤ 2

√
2 − 3}

and the set {z ∈ ∆ : |z + 1|2 > 4|z|} is a domain of univalence for T . The
following three facts:

(i) the set G = {z ∈ ∆ : |z+ 1|2 > 4|z|} is a domain of univalence in T ,
(ii) all functions of the class T have real coefficients,
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(iii) the function g0 = z(1+z)2

(1−z)4 belongs to the class T and g0(G) ={
z ∈ C : z /∈

(
−∞,− 1

16

]}
,

imply equality t.r.T = (G∪ (−1, 1)) \ {1}. Thus we get the following result:

Proposition 1.
(i) l.u.T = {z ∈ ∆ : |3z2 + 2z + 3| > 8|z|} \ {z ∈ R : z ≤ 2

√
2− 3}.

(ii) t.r.T = {z ∈ ∆ : |z + 1|2 ≥ 4|z|} ∪ (−1, 1).
(iii) The domain of typical reality of the class T is equal to {z ∈ ∆ :

|z + 1|2 > 4|z|}.

The class T M,g. For the class TM,g we know that TM,g =
{
Mg(h/M) :

h ∈ TM

}
, whenever g ∈ T ∩ S and M > 1 (see [4]). We will prove an

analogous theorem for T M,g.

Theorem 2. T M,g =
{
Mg(H/M) : H ∈ TM

}
, g ∈ T ∩ S, M > 1.

Proof. Let F ∈ T M,g. Then F ∈ T and F (z) = Mg
(
H(z)/M

)
for some

H ∈ A, since H(0) = Mg−1
(
F (0)/M

)
= 0 and 1 = F ′(0) = g′(0)H ′(0) =

H ′(0). Clearly, H(z) > 0⇐⇒ F (z) > 0⇐⇒ z ∈ (0, 1), i.e. H ∈ TM . �

Corollary 3. T M,g2 =
{
Mg2

(
g−11 (H/M)

)
: H ∈ T M,g1

}
, g1, g2 ∈ T ∩ S,

M > 1.

Proof. Let H ∈ T M,g1 . Then from Theorem 2 we have H = Mg1(Q/M)
for Q ∈ TM . Hence g−11 (H/M) = Q/M . Analogously for F ∈ T M,g2 we
have F = Mg2(Q/M) for Q ∈ TM . Therefore g−12 (F/M) = Q/M . We get
g−11 (H/M) = g−12 (F/M). This implies F = Mg2

(
g−11 (H/M)

)
. �

Corollary 4.

T M,g =

{
F : F (z2) ≡Mg

(
h2(z)

M

)
for some h ∈ T

(2)√
M

}
,

g ∈ T ∩ S, M > 1.

Proof. From Corollary 2 we have Q ∈ TM ⇐⇒ Q(z2) ≡ h2(z) for h ∈ T
(2)√
M

.
Then

T M,g =
{
F : F (z) ≡Mg(Q(z)/M) for Q ∈ TM

}
=
{
F : F (z2) ≡Mg(h2(z)/M) for h ∈ T

(2)√
M

}
. �

Remark 1 (see [4], [5], [7]).
(i) TM,id = TM (where id(z) = z).

(ii) TM,g = T(M) for g(z) = 1
2 log 1+z

1−z .
(iii) T(M) =

{
M
2 log M+h

M−h : h ∈ TM

}
.

(iv) TM =
{
M tanh(f/M) : f ∈ T(M)

}
.
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(v) T(2)(M) =

{
f : f(z) ≡M

∫ 1

0

z(1 + z2)ϕ(t)dt

(1 + z2)2 − 4z2t
,

0 ≤ ϕ(t) ≤ 1,M

∫ 1

0
ϕ(t)dt = 1

}
.

(vi) σT(2)(M) =

{
f : f(z) ≡M

∫
B

z(1 + z2)

(1 + z2)2 − 4z2t
dt ,

B ⊂ [0, 1] is a finite union of intervals, |B| = 1

M

}
,

where σA is the set of all support points of A and |B| denotes the Lebesgue
measure of the set B (see [5]).

(vii) ET(2)(M) =

{
f : f(z) ≡M

∫
B

z(1 + z2)

(1 + z2)2 − 4z2t
dt ,

B ⊂ [0, 1] is a Borel subset, |B| = 1

M

}
,

where EA is the set of all extreme points of A.

From Remark 1 (iii) and (iv) we get the following result:

Corollary 5.

T(2)(M) =

{
M

2
log

M + h

M − h
: h ∈ T

(2)
M

}
;

T
(2)
M =

{
M tanh(f/M) : f ∈ T(2)(M)

}
.

Proof. Since f = M
2 log M+h

M−h we conclude that f is an odd function if and
only if h is an odd function. Hence

T(2)(M) =

{
f : f =

M

2
log

M + h

M − h
for h ∈ T

(2)
M

}
.

Because h = M tanh(f/M), we have that

T
(2)
M =

{
h : h = M tanh(f/M) for f ∈ T(2)(M)

}
. �

Corollary 6.

T M,g =
{
F : F (z2) ≡Mg

(
tanh2

(
f(z)/

√
M
))

for some f ∈ T(2)(
√
M)
}
,

g ∈ T ∩ S, M > 1.

Proof. If F ∈ T M,g, then by Theorem 2 we have F = Mg(H/M) for some
H ∈ TM and g ∈ T ∩ S, that is

F (z2) ≡Mg
(
h2(z)/M

)
for some h ∈ T

(2)√
M

, see Corollary 2.

From Remark 1 (iv) it follows that h(z) ≡
√
M tanh

(
f(z)/

√
M
)
, where

f ∈ T(2)(
√
M). Hence we get h2(z) = M tanh2

(
f(z)/

√
M
)
, so we have the

desired result. �
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From Corollary 6 we get:

Remark 2. Let g0(z) ≡ 1
2 log 1+z

1−z . Then

(i) T M,id = TM ;
(ii) T M,g0 = T (M);
(iii) T (M) =

{
F : F (z2) ≡Mg0

(
tanh2

(
f(z)/

√
M
))

for some f ∈ T(2)(
√
M)
}

;
(iv) TM =

{
F : F (z2) ≡M tanh2

(
f(z)/

√
M
)

for some f ∈ T(2)(
√
M)
}

.

Taking into account the above relations and Corollary 3 we conclude that
the results for each class T M,g, g ∈ T∩S one can obtain from corresponding
results in the class T(2)(

√
M).

Sets of variability. Let Ai,j(A) = {(ai(f), aj(f)) : f ∈ A} for A ⊂ A.
Now we determine the set A2,3(TM ).

From Remark 2 (i) and Corollary 2 we have

T M,id = TM =
{
F : F (z2) ≡ h2(z) for h ∈ T

(2)√
M

}
,

M > 1. Let F (z) = z + a2z
2 + a3z

3 + . . . ∈ TM and

h(z) = z + b3z
3 + b5z

5 + . . . ∈ T
(2)√
M
.

Since F (z2) ≡ h2(z), we get a2 = 2b3 and a3 = b23 + 2b5.
By [8] (Theorem 4, pp. 155) we have:

A3,5

(
T
(2)
M

)
=

{
(x, y) : x2 +

(
1

M2
− 1

)
x+

1

M2
− 1 ≤ y ≤ 1

1−M
x2

+
(M − 1)2

M2
x+

(M2 − 1)(2M − 1)

M3

}
.

Then

A3,5

(
T
(2)√
M

)
=

{
(x, y) : x2 +

(
1

M
− 1

)
x+

1

M
− 1 ≤ y ≤ 1

1−
√
M
x2

+
(
√
M − 1)2

M
x+

(M − 1)(2
√
M − 1)

M
√
M

}
.

Taking y = b5 = a3
2 −

a22
8 and x = b3 = a2

2 we obtain the sharp bounds:a3 ≥
3
4a

2
2 + ( 1

M − 1)a2 + 2
M − 2,

a3 ≤
√
M−3

4(
√
M−1)a

2
2 + (

√
M−1)2
M a2 + 2(M−1)(2

√
M−1)

M
√
M

.

Thus we get theorem:
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Theorem 3.

A2,3

(
TM
)

=

{
(x, y) :

2(1−M)

M
≤ x ≤ 2(

√
M − 1)(3

√
M − 1)

M
,

3

4
x2 +

(
1

M
− 1

)
x+

2

M
− 2 ≤ y ≤

√
M − 3

4(
√
M − 1)

x2

+
(
√
M − 1)2

M
x+

2(M − 1)(2
√
M − 1)

M
√
M

}
,

where M > 1.

Corollary 7. If f ∈ TM , M > 1, then

2(1−M)

M
≤ a2 ≤

2(
√
M − 1)(3

√
M − 1)

M
, a3 ≥

(7M − 1)(1−M)

3M2

and

a3 ≤


(
√
M−1)(3M2−6M

√
M−14M+10

√
M−1)

M2(
√
M−3) for M ∈

(
1, 7+3

√
5

2

]
,

19M2−64M
√
M+72M−32

√
M+5

M2 for M ∈
(
7+3
√
5

2 ,∞
)
.

Proof. Consider the function

w(x) =
3

4
x2 +

(
1

M
− 1

)
x+

2

M
− 2,

where x ∈
[
2(1−M)
M , 2(

√
M−1)(3

√
M−1)

M

]
. The coordinates of the vertex of the

parabola are xw = 2
3
M−1
M , yw = (7M−1)(1−M)

3M2 . Clearly,

2(1−M)

M
≤ xw ≤

2(
√
M − 1)(3

√
M − 1)

M

for M > 1. Thus min a3 = yw.
Now let us consider the function

W (x) =

√
M − 3

4(
√
M − 1)

x2 +
(
√
M − 1)2

M
x+

2(M − 1)(2
√
M − 1)

M
√
M

,

where x ∈
[
2(1−M)
M , 2(

√
M−1)(3

√
M−1)

M

]
. The coordinates of the vertex of the

parabola are xW = 2(
√
M−1)3

M(3−
√
M)

, yW = (
√
M−1)(3M2−6M

√
M−14M+10

√
M−1)

M2(
√
M−3) . If

2(1−M)

M
≤ xW ≤

2(
√
M − 1)(3

√
M − 1)

M
,

then max a3 = yW . If xW ≥ 2(
√
M−1)(3

√
M−1)

M or xW ≤ 2(1−M)
M or M = 9,

then max a3 = W
(
2(
√
M−1)(3

√
M−1)

M

)
= 19M2−64M

√
M+72M−32

√
M+5

M2 . �
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Now we determine the set A2,3(T (M)).
From Theorem 2 and Remark 2 (ii) we have:

T (M) = T M,g0 =
{
Mg0(H/M) : H ∈ TM

}
.

If F = Mg0(H/M), F (z) ≡ z + a2z
2 + a3z

3 + . . . and H(z) ≡ z + b2z
2 +

b3z
3 + . . ., then a2 = b2 and a3 = b3 + 1

3M2 .
Taking y = b3 = a3 − 1

3M2 and x = b2 = a2 in Theorem 3 we get:a3 ≥
3
4a

2
2 + ( 1

M − 1)a2 − 2 + 2
M + 1

3M2

a3 ≤
√
M−3

4(
√
M−1)a

2
2 + (

√
M−1)2
M a2 + 2(M−1)(2

√
M−1)

M
√
M

+ 1
3M2 .

Thus we have the following theorem:

Theorem 4.

A2,3

(
T (M)

)
=

{
(x, y) :

2(1−M)

M
≤ x ≤ 2(

√
M − 1)(3

√
M − 1)

M
,

3

4
x2 +

(
1

M
− 1

)
x− 2 +

2

M
+

1

3M2
≤ y ≤

√
M − 3

4(
√
M − 1)

x2

+
(
√
M − 1)2

M
x+

2(M − 1)(2
√
M − 1)

M
√
M

+
1

3M2

}
,

where M > 1.

Corollary 8. If f ∈ T (M), M > 1, then the following sharp bounds hold:

2(1−M)

M
≤ a2 ≤

2(
√
M − 1)(3

√
M − 1)

M
, a3 ≥

8− 7M

3M
and

a3 ≤


9M2−27M

√
M−24M+72

√
M−32

3M
√
M(
√
M−3) for M ∈

(
1, 7+3

√
5

2

]
,

57M2−192M
√
M+216M−96

√
M+16

3M2 for M ∈
(
7+3
√
5

2 ,∞
)
.

The class T is a subclass of T , i.e. T ⊂ T . Therefore, TM ⊂ TM
and T(M) ⊂ T (M), and hence A2,3

(
TM

)
⊂ A2,3

(
TM
)

and A2,3

(
T(M)

)
⊂

A2,3

(
T (M)

)
. For a comparison see results collected in Remark 3.

Remark 3. For classes TM and T(M) we have (see [8]):

(i) A2,3

(
TM

)
=

{
(x, y) :

2− 2M

M
≤ x ≤ 2M − 2

M
,

x2 +
1

M2
− 1 ≤ y ≤ 1

1−M
x2 +

(3M − 1)(M − 1)

M2

}
;

(ii) A2,3

(
T(M)

)
=

{
(x, y) :

2− 2M

M
≤ x ≤ 2M − 2

M
,

x2 +
4

3M2
− 1 ≤ y ≤ 1

1−M
x2 +

(3M − 2)2

3M2

}
;
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(iii) If f ∈ TM , then

2− 2M

M
≤ a2 ≤

2M − 2

M
and

1

M2
− 1 ≤ a3 ≤

(3M − 1)(M − 1)

M2
;

(iv) If f ∈ T(M), then

2− 2M

M
≤ a2 ≤

2M − 2

M
and

4

3M2
− 1 ≤ a3 ≤

(3M − 2)2

3M2
.

For M > 9 domains A2,3

(
TM
)

and A2,3

(
T (M)

)
are not convex sets.

Hence we get the following corollary:

Corollary 9. Classes TM and T (M) are not convex classes for M > 9.

K2 K1 0 1 2 3 4

K2

2

4

6

8

K2 K1 0 1 2 3 4

K2

2

4

6

8

Figure 1. The set A2,3(T(M)) (solid line) and the set
A2,3(T (M)) (dash line) for M = 2 and M = 20.
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