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Remarks on best approximation in R-trees

Abstract. An R-tree is a geodesic space for which there is a unique arc
joining any two of its points, and this arc is a metric segment. If X is a closed
convex subset of an R-tree Y, and if T : X → 2Y is a multivalued mapping,
then a point z for which

0 < dist (z, T (z)) = inf
x∈X

dist (x, T (z))

is called a point of best approximation. It is shown here that if T is an ε-
semicontinuous mapping whose values are nonempty closed convex subsets of
Y, and if T has at least two distinct points of best approximation, then T must
have a fixed point. We also obtain a common best approximation theorem
for a commuting pair of mappings t : X → Y and T : X → 2Y where t is
single-valued continuous and T is ε-semicontinuous.

1. Introduction. In [3] the authors extended Ky Fan’s well-known best
approximation theorem [1] to upper semicontinuous mappings defined on
a geodesically bounded R-treeX and taking values in the family of nonempty
closed convex subsets of X. In [5] J. Markin obtained the same result for
‘almost lower semicontinuous’ mappings. Subsequently B. Piątek [6] proved
a theorem that contains both of these results by introducing a more gen-
eral concept of semicontinuity. In this note we show that under Piątek’s
assumption, if there is more than one point of best approximation, then the
mapping must have a fixed point. This can be viewed as an extension of the
following elementary fact: If [a, b] is a real line interval and if a continuous
map f : [a, b] → R satisfies f (a) ≤ a and f (b) ≥ b, then f has a fixed
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point. We also include an observation about common best approximations
for commuting mappings.

2. Notation and definitions.

Definition 2.1. An R-tree (or metric tree) is a metric space X such that:
(i) there is a unique geodesic segment (denoted by [x, y]) joining each pair
of points x, y ∈ X;
(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

From (i) and (ii) it is easy to deduce:
(iii) If p, q, r ∈ X, then [p, q] ∩ [p, r] = [p, w] for some w ∈ X.

We will use the notation (x, y] to denote [x, y] \ {x}.
Let C be a subset of an R-tree X. For x ∈ X, let

dist (x,C) = inf {d (x, y) : y ∈ C} .

By Nε (C) we will denote the set {x ∈ X : dist (x,C) ≤ ε}. B (x; ε) will
denote the closed ball centered at x with radius ε.

Definition 2.2. Let X and Y be metric spaces. A mapping T : X → 2Y

with nonempty values is said to be almost lower semicontinuous at x ∈ X
if for each ε > 0 there is an open neighborhood U of x such that⋂

u∈U
Nε (T (u)) 6= ∅.

T is said to be almost lower semicontinuous if it is almost lower semicon-
tinuous at each x ∈ X. The mapping T is said to be upper semicontinuous
at x ∈ X if for any neighborhood U of T(x) there is an ε > 0 such that
u ∈ B (x; ε) ⇒ T (u) ⊆ U . T is said to be upper semicontinuous if it is
upper semicontinuous at each x ∈ X.

In [6] Piątek introduces a definition of semicontinuity which includes both
of the above definitions.

Definition 2.3 ([6]). Let X and Y be metric spaces. A mapping T : X →
2Y with nonempty values is said to be ε-semicontinuous at x ∈ X if for
each ε > 0 there is an open neighborhood U of x such that

T (u) ∩Nε (T (x)) 6= ∅

for all u ∈ U .

1. ([6]) Suppose T is almost lower semicontinuous at x ∈ X. Then given
ε > 0 there exists a neighborhood U of x such that

Nε/3 (T (x)) ∩
⋂
u∈U

Nε/3 (T (u)) 6= ∅.
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So for each u ∈ U there exists z ∈ Nε/3 (T (x)) ∩
⋂
u∈U Nε/3 (T (u)), y ∈

T (u), and y0 ∈ T (x) such that

d (y, z) ≤ ε/2 and (y0, z) ≤ ε/2.

Hence d (y, T (x)) ≤ d (y, z) + d (y0, z) ≤ ε. This implies y ∈ Nε (T (x)).
Since y ∈ T (u),

T (u) ∩Nε (T (x)) 6= ∅.
2. Now suppose T is upper semicontinuous at x ∈ X and let ε > 0. Then

there is a neighborhood U of x such that T (u) ⊂ Nε (T (x)) for all u ∈ U .
Thus trivially

T (u) ∩Nε (T (x)) 6= ∅
for all u ∈ U .

3. Main results. Our main result is the following.

Theorem 3.1. Suppose X is a closed convex subset of a complete R-tree
Y , and T : X → 2Y is an ε-semicontinuous mapping whose values are
nonempty closed convex subsets of Y . Suppose also that there exist distinct
points z1, z2 ∈ X such that [zi, yi] ∩X = {zi} for each yi ∈ T (zi) , i = 1, 2.
Then T has a fixed point.

This result can be reworded as follows.

Theorem 3.2. Suppose X is a closed convex subset of a complete R-tree
Y , and T : X → 2Y is an ε-semicontinuous mapping whose values are
nonempty closed convex subsets of Y . Then either T has a fixed point or
there exists at most one point z ∈ X such that

(1) 0 < dist (z, T (z)) = inf
x∈X

dist (x, T (z)) .

Proof. If z satisfies (1), then (z, y] ∩X = ∅ for each y ∈ T (z). �

The above theorem, in conjunction with the result of [6] yields the follow-
ing fact. The assumption that the space X is geodesically bounded means
that X does not contain a geodesic of infinite length. This assumption is of
course much weaker than compactness.

Theorem 3.3. Suppose X is a closed convex geodesically bounded subset of
a complete R-tree Y , and let T : X → 2Y be an ε-semicontinuous mapping
whose values are nonempty closed convex subsets of X. Then either T has
a fixed point, or there exists a unique point z ∈ X such that

(2) 0 < dist (z, T (z)) = inf
x∈X

dist (x, T (z)) .

Proof. Theorem 5 of [6] assures the existence of at least one point for which
dist (z, T (z)) = infx∈X dist (x, T (z)). �
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Proof of Theorem 3.1. Let S denote the unique metric segment with
endpoints z1 and z2. For x ∈ S, let f (x) denote the unique point of T (x)
which is nearest to x. The structure of Y assures the existence of a unique
point ξ (x) ∈ S which is nearest to f (x). Clearly ξ (zi) = zi, i = 1, 2. Let

C := {x ∈ S : f (x) 6= ξ (x)} .
We assert that for each x ∈ C there exists εx > 0 such that if u ∈ S
satisfies d (u, x) < εx, then ξ (u) = ξ (x) , and in particular u ∈ C. Indeed
let δx = dist (f (x) , S) and choose εx > 0 so that d (u, x) < εx,

u ∈ X ⇒ T (u) ∩Nδx/2 (T (x)) 6= ∅.
Let w ∈ T (u) ∩ Nδx/2 (T (x)). Since the segment [w, f (x)] lies entirely in
Nδx/2 (T (x)) it must be the case that [w, f (x)] ∩ S = ∅. Now suppose
ξ (u) 6= ξ (x). Then the path

[ξ (x) , f (x)] ∪ [f (x) , w] ∪ [w, f (u)] ∪ [u, ξ (u)] ∪ [ξ (u) , ξ (x)]

would form a loop in X – a contradiction. It follows that ξ (u) = ξ (x).
Now let F := {x ∈ S : ξ (x) = x}. Any point x ∈ F\C is clearly a fixed

point of T and we are finished if F\C 6= ∅. So we suppose F ⊂ C and show
that this leads to a contradiction. The preceding argument shows that the
set F consists of isolated points of S. By redefining z1, z2 if necessary, we
may suppose that F = {z1, z2} , i.e., we may suppose that ξ (x) 6= x for all
x ∈ [z1, z2] with z1 6= x 6= z2.

Let

A := {x ∈ S : ξ (x) ∈ [x, z1]} ;
B := {x ∈ S : ξ (x) ∈ [x, z2]} .

We now show that A is an open subset of S. The argument at the outset
shows that there is a neighborhood U of z1 such that ξ (u) = z1 for each
u ∈ U . Suppose x ∈ A with x 6= z1. Then δ = d (x, ξ (x)) > 0. If some
neighborhood of x is in A there is nothing to prove. Otherwise we can
choose a point u of S sufficiently near x so that (i) T (u)∩Nδ/2 (T (x)) 6= ∅,
(ii) d (u, x) < d (x, ξ (x)) , and (iii) u /∈ A. Let w ∈ T (u) ∩ Nδ/2 (T (x)).
Conditions (ii) and (iii) imply ξ (u) 6= ξ (x). Since u /∈ T (u) , the path

[ξ (u) , w] ∪ [w, f (x)] ∪ [f (x) , ξ (x)] ∪ [ξ (x) , ξ (u)]

is a loop. Therefore we conclude that A is open, and it follows similarly that
B is open. Since A∪B = S we conclude that A∩B 6= ∅. But if x ∈ A∩B,
then ξ (x) = x, contradicting our assumption. �

Corollary 3.4. Suppose X is a closed convex subset of a complete geodesi-
cally bounded R-tree Y and suppose f : X → Y is continuous. Then either
f has a fixed point, or there exists a unique point z ∈ X such that

0 < d (z, f (z)) = inf
x∈X

d (x, f (z)) .
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4. Common best approximations. Again let X be a closed convex sub-
set of an R-tree Y . Two mappings t : X → X and T : X → 2X are said to
commute if t(T (x)) ⊂ T (t(x)) for all x ∈ X.

It is known that the nearest point projection p : Y → X is nonexpansive.

Theorem 4.1. Let X be a closed convex geodesically bounded subset of
a complete R−tree Y . Suppose t : X → Y is a continuous mapping and
T : X → 2Y is an ε-semicontinuous mapping with nonempty closed convex
values. Suppose t and T satisfy
(1) Fix(p ◦ t) is a convex subset of X,
(2) p ◦ t and p ◦ T commute.

Then t and T have a common best approximation, i.e., there exists z ∈ X
such that

d(z, t(z)) = inf
x∈X

d(x, t(z)) and

dist (z, T (z)) = inf
x∈X

dist (x, T (z)) .

Proof. The proof follows the ideas of the proofs of [3, Theorem 2.1 (p. 684)],
[7, Theorem 4.1] and [4, Theorem 5.1]. Since p : Y → X is nonexpansive
and T : X → 2Y is ε−semicontunuous, p◦T : X → 2X is ε−semicontinuous
and has a fixed point by [6, Theorem 4]. Since p ◦ t : X → X is continuous,
by Theorem 3.4 of [2] Fix(p ◦ t) 6= ∅ and it is convex by (1). It is easy to see
that Fix(p ◦ t) is closed in X. We now let A = Fix(p ◦ t). From (2) we have

p ◦ t(p ◦ T (x)) ⊂ p ◦ T (x) for all x ∈ A.
Again by [2, Theorem 3.4], p ◦ t has a fixed point in p ◦ T (x) and hence
p ◦ T (x) ∩A 6= ∅ for each x ∈ A. Now we define F : A→ 2A by

F (x) = p ◦ T (x) ∩A for each x ∈ A.
By [6, Lemma 2], F is an ε-semicontinuous mapping. By [6, Theorem 4], F
has a fixed point, i.e., there exists z ∈ A such that z ∈ p ◦ T (z) ∩ A. This
implies z ∈ p ◦ T (z) and z = p ◦ t(z). Therefore

d(z, t(z)) = d(p ◦ t(z), t(z)) = inf
x∈X

d(x, t(z)).

For showing that dist(z, T (z)) = infx∈X dist(x, T (z)) we separate to two
cases.
Case 1. T (z) ∩X = ∅. Since both T (z) and X are convex and closed, and
they are disjoint it must be the case that p ◦ T (z) = {z}. Hence

dist(z, T (z)) = dist(p ◦ T (z), T (z)) = inf
x∈X

dist(x, T (z)).

Case 2. T (z)∩X 6= ∅. Thus z ∈ p◦T (z) = X ∩T (z). This implies z ∈ T (z)
and hence the conclusion follows. �

As a consequence, we obtain the following corollary.
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Corollary 4.2. Let X be a closed convex geodesically bounded subset of
a complete R−tree Y . Suppose t : X → Y is a nonexpansive mapping and
T : X → 2Y is an ε-semicontinuous mapping with nonempty closed convex
values. Suppose that p◦ t and p◦T commute. Then t and T have a common
best approximation.
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