doi: 10.2478/v10062-009-0012-z

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

OL. LXIII, 2009	SECTIO A	133 - 138
OL. LAIII, 2009	SECTIO A	100-100

WILLIAM A. KIRK and BANCHA PANYANAK

Remarks on best approximation in \mathbb{R} -trees

ABSTRACT. An \mathbb{R} -tree is a geodesic space for which there is a unique arc joining any two of its points, and this arc is a metric segment. If X is a closed convex subset of an \mathbb{R} -tree Y, and if $T: X \to 2^Y$ is a multivalued mapping, then a point z for which

$$0 < \operatorname{dist}(z, T(z)) = \inf_{x \in X} \operatorname{dist}(x, T(z))$$

is called a point of best approximation. It is shown here that if T is an ε -semicontinuous mapping whose values are nonempty closed convex subsets of Y, and if T has at least two distinct points of best approximation, then T must have a fixed point. We also obtain a common best approximation theorem for a commuting pair of mappings $t: X \to Y$ and $T: X \to 2^Y$ where t is single-valued continuous and T is ε -semicontinuous.

1. Introduction. In [3] the authors extended Ky Fan's well-known best approximation theorem [1] to upper semicontinuous mappings defined on a geodesically bounded \mathbb{R} -tree X and taking values in the family of nonempty closed convex subsets of X. In [5] J. Markin obtained the same result for 'almost lower semicontinuous' mappings. Subsequently B. Piątek [6] proved a theorem that contains both of these results by introducing a more general concept of semicontinuity. In this note we show that under Piątek's assumption, if there is more than one point of best approximation, then the mapping must have a fixed point. This can be viewed as an extension of the following elementary fact: If [a, b] is a real line interval and if a continuous map $f : [a, b] \to \mathbb{R}$ satisfies $f(a) \leq a$ and $f(b) \geq b$, then f has a fixed

²⁰⁰⁰ Mathematics Subject Classification. 54H25, 54E40, 05C05.

Key words and phrases. Best approximation, \mathbb{R} -trees, fixed points, semicontinuity.

point. We also include an observation about common best approximations for commuting mappings.

2. Notation and definitions.

Definition 2.1. An \mathbb{R} -tree (or metric tree) is a metric space X such that: (i) there is a unique geodesic segment (denoted by [x, y]) joining each pair of points $x, y \in X$;

(ii) if $[y, x] \cap [x, z] = \{x\}$, then $[y, x] \cup [x, z] = [y, z]$.

From (i) and (ii) it is easy to deduce:

(iii) If $p, q, r \in X$, then $[p,q] \cap [p,r] = [p,w]$ for some $w \in X$. We will use the notation (x,y] to denote $[x,y] \setminus \{x\}$. Let C be a subset of an \mathbb{R} -tree X. For $x \in X$, let

$$dist (x, C) = \inf \left\{ d (x, y) : y \in C \right\}.$$

By $N_{\varepsilon}(C)$ we will denote the set $\{x \in X : \text{dist}(x, C) \leq \varepsilon\}$. $B(x; \varepsilon)$ will denote the closed ball centered at x with radius ε .

Definition 2.2. Let X and Y be metric spaces. A mapping $T : X \to 2^Y$ with nonempty values is said to be *almost lower semicontinuous at* $x \in X$ if for each $\varepsilon > 0$ there is an open neighborhood U of x such that

$$\bigcap_{u \in U} N_{\varepsilon} \left(T \left(u \right) \right) \neq \emptyset.$$

T is said to be almost lower semicontinuous if it is almost lower semicontinuous at each $x \in X$. The mapping T is said to be upper semicontinuous at $x \in X$ if for any neighborhood U of T(x) there is an $\varepsilon > 0$ such that $u \in B(x; \varepsilon) \Rightarrow T(u) \subseteq U$. T is said to be upper semicontinuous if it is upper semicontinuous at each $x \in X$.

In [6] Piątek introduces a definition of semicontinuity which includes both of the above definitions.

Definition 2.3 ([6]). Let X and Y be metric spaces. A mapping $T: X \to 2^Y$ with nonempty values is said to be ε -semicontinuous at $x \in X$ if for each $\varepsilon > 0$ there is an open neighborhood U of x such that

$$T(u) \cap N_{\varepsilon}(T(x)) \neq \emptyset$$

for all $u \in U$.

1. ([6]) Suppose T is almost lower semicontinuous at $x \in X$. Then given $\varepsilon > 0$ there exists a neighborhood U of x such that

$$N_{\varepsilon/3}(T(x)) \cap \bigcap_{u \in U} N_{\varepsilon/3}(T(u)) \neq \emptyset.$$

So for each $u \in U$ there exists $z \in N_{\varepsilon/3}(T(x)) \cap \bigcap_{u \in U} N_{\varepsilon/3}(T(u)), y \in T(u)$, and $y_0 \in T(x)$ such that

$$d(y,z) \le \varepsilon/2$$
 and $(y_0,z) \le \varepsilon/2$.

Hence $d(y, T(x)) \leq d(y, z) + d(y_0, z) \leq \varepsilon$. This implies $y \in N_{\varepsilon}(T(x))$. Since $y \in T(u)$,

$$T(u) \cap N_{\varepsilon}(T(x)) \neq \emptyset.$$

2. Now suppose T is upper semicontinuous at $x \in X$ and let $\varepsilon > 0$. Then there is a neighborhood U of x such that $T(u) \subset N_{\varepsilon}(T(x))$ for all $u \in U$. Thus trivially

$$T(u) \cap N_{\varepsilon}(T(x)) \neq \emptyset$$

for all $u \in U$.

3. Main results. Our main result is the following.

Theorem 3.1. Suppose X is a closed convex subset of a complete \mathbb{R} -tree Y, and $T : X \to 2^Y$ is an ε -semicontinuous mapping whose values are nonempty closed convex subsets of Y. Suppose also that there exist distinct points $z_1, z_2 \in X$ such that $[z_i, y_i] \cap X = \{z_i\}$ for each $y_i \in T(z_i)$, i = 1, 2. Then T has a fixed point.

This result can be reworded as follows.

Theorem 3.2. Suppose X is a closed convex subset of a complete \mathbb{R} -tree Y, and $T : X \to 2^Y$ is an ε -semicontinuous mapping whose values are nonempty closed convex subsets of Y. Then either T has a fixed point or there exists at most one point $z \in X$ such that

(1)
$$0 < \operatorname{dist}(z, T(z)) = \inf_{z \in X} \operatorname{dist}(x, T(z)).$$

Proof. If z satisfies (1), then $(z, y] \cap X = \emptyset$ for each $y \in T(z)$.

The above theorem, in conjunction with the result of [6] yields the following fact. The assumption that the space X is geodesically bounded means that X does not contain a geodesic of infinite length. This assumption is of course much weaker than compactness.

Theorem 3.3. Suppose X is a closed convex geodesically bounded subset of a complete \mathbb{R} -tree Y, and let $T: X \to 2^Y$ be an ε -semicontinuous mapping whose values are nonempty closed convex subsets of X. Then either T has a fixed point, or there exists a unique point $z \in X$ such that

(2)
$$0 < \operatorname{dist}(z, T(z)) = \inf_{x \in Y} \operatorname{dist}(x, T(z))$$

Proof. Theorem 5 of [6] assures the existence of at least one point for which $\operatorname{dist}(z, T(z)) = \inf_{x \in X} \operatorname{dist}(x, T(z)).$

Proof of Theorem 3.1. Let *S* denote the unique metric segment with endpoints z_1 and z_2 . For $x \in S$, let f(x) denote the unique point of T(x) which is nearest to *x*. The structure of *Y* assures the existence of a unique point $\xi(x) \in S$ which is nearest to f(x). Clearly $\xi(z_i) = z_i$, i = 1, 2. Let

$$C \coloneqq \{x \in S : f(x) \neq \xi(x)\}.$$

We assert that for each $x \in C$ there exists $\varepsilon_x > 0$ such that if $u \in S$ satisfies $d(u, x) < \varepsilon_x$, then $\xi(u) = \xi(x)$, and in particular $u \in C$. Indeed let $\delta_x = \text{dist}(f(x), S)$ and choose $\varepsilon_x > 0$ so that $d(u, x) < \varepsilon_x$,

$$u \in X \Rightarrow T(u) \cap N_{\delta_x/2}(T(x)) \neq \emptyset.$$

Let $w \in T(u) \cap N_{\delta_x/2}(T(x))$. Since the segment [w, f(x)] lies entirely in $N_{\delta_x/2}(T(x))$ it must be the case that $[w, f(x)] \cap S = \emptyset$. Now suppose $\xi(u) \neq \xi(x)$. Then the path

$$[\xi(x), f(x)] \cup [f(x), w] \cup [w, f(u)] \cup [u, \xi(u)] \cup [\xi(u), \xi(x)]$$

would form a loop in X – a contradiction. It follows that $\xi(u) = \xi(x)$.

Now let $F := \{x \in S : \xi(x) = x\}$. Any point $x \in F \setminus C$ is clearly a fixed point of T and we are finished if $F \setminus C \neq \emptyset$. So we suppose $F \subset C$ and show that this leads to a contradiction. The preceding argument shows that the set F consists of isolated points of S. By redefining z_1, z_2 if necessary, we may suppose that $F = \{z_1, z_2\}$, i.e., we may suppose that $\xi(x) \neq x$ for all $x \in [z_1, z_2]$ with $z_1 \neq x \neq z_2$.

Let

$$A := \left\{ x \in S : \xi \left(x \right) \in \left[x, z_1 \right] \right\};$$
$$B := \left\{ x \in S : \xi \left(x \right) \in \left[x, z_2 \right] \right\}.$$

We now show that A is an open subset of S. The argument at the outset shows that there is a neighborhood U of z_1 such that $\xi(u) = z_1$ for each $u \in U$. Suppose $x \in A$ with $x \neq z_1$. Then $\delta = d(x, \xi(x)) > 0$. If some neighborhood of x is in A there is nothing to prove. Otherwise we can choose a point u of S sufficiently near x so that (i) $T(u) \cap N_{\delta/2}(T(x)) \neq \emptyset$, (ii) $d(u, x) < d(x, \xi(x))$, and (iii) $u \notin A$. Let $w \in T(u) \cap N_{\delta/2}(T(x))$. Conditions (ii) and (iii) imply $\xi(u) \neq \xi(x)$. Since $u \notin T(u)$, the path

$$[\xi(u), w] \cup [w, f(x)] \cup [f(x), \xi(x)] \cup [\xi(x), \xi(u)]$$

is a loop. Therefore we conclude that A is open, and it follows similarly that B is open. Since $A \cup B = S$ we conclude that $A \cap B \neq \emptyset$. But if $x \in A \cap B$, then $\xi(x) = x$, contradicting our assumption.

Corollary 3.4. Suppose X is a closed convex subset of a complete geodesically bounded \mathbb{R} -tree Y and suppose $f: X \to Y$ is continuous. Then either f has a fixed point, or there exists a unique point $z \in X$ such that

$$0 < d(z, f(z)) = \inf_{x \in X} d(x, f(z)).$$

4. Common best approximations. Again let X be a closed convex subset of an \mathbb{R} -tree Y. Two mappings $t: X \to X$ and $T: X \to 2^X$ are said to *commute* if $t(T(x)) \subset T(t(x))$ for all $x \in X$.

It is known that the nearest point projection $p: Y \to X$ is nonexpansive.

Theorem 4.1. Let X be a closed convex geodesically bounded subset of a complete \mathbb{R} -tree Y. Suppose $t: X \to Y$ is a continuous mapping and $T: X \to 2^Y$ is an ε -semicontinuous mapping with nonempty closed convex values. Suppose t and T satisfy

(1) $\operatorname{Fix}(p \circ t)$ is a convex subset of X,

(2) $p \circ t$ and $p \circ T$ commute.

Then t and T have a common best approximation, i.e., there exists $z \in X$ such that

$$d(z, t(z)) = \inf_{x \in X} d(x, t(z)) \text{ and}$$

dist $(z, T(z)) = \inf_{x \in X} \text{dist} (x, T(z)).$

Proof. The proof follows the ideas of the proofs of [3, Theorem 2.1 (p. 684)], [7, Theorem 4.1] and [4, Theorem 5.1]. Since $p: Y \to X$ is nonexpansive and $T: X \to 2^Y$ is ε -semicontunuous, $p \circ T: X \to 2^X$ is ε -semicontinuous and has a fixed point by [6, Theorem 4]. Since $p \circ t: X \to X$ is continuous, by Theorem 3.4 of [2] Fix $(p \circ t) \neq \emptyset$ and it is convex by (1). It is easy to see that Fix $(p \circ t)$ is closed in X. We now let $A = \text{Fix}(p \circ t)$. From (2) we have

$$p \circ t(p \circ T(x)) \subset p \circ T(x)$$
 for all $x \in A$.

Again by [2, Theorem 3.4], $p \circ t$ has a fixed point in $p \circ T(x)$ and hence $p \circ T(x) \cap A \neq \emptyset$ for each $x \in A$. Now we define $F : A \to 2^A$ by

$$F(x) = p \circ T(x) \cap A$$
 for each $x \in A$.

By [6, Lemma 2], F is an ε -semicontinuous mapping. By [6, Theorem 4], F has a fixed point, i.e., there exists $z \in A$ such that $z \in p \circ T(z) \cap A$. This implies $z \in p \circ T(z)$ and $z = p \circ t(z)$. Therefore

$$d(z,t(z)) = d(p \circ t(z),t(z)) = \inf_{x \in X} d(x,t(z))$$

For showing that $dist(z, T(z)) = inf_{x \in X} dist(x, T(z))$ we separate to two cases.

Case 1. $T(z) \cap X = \emptyset$. Since both T(z) and X are convex and closed, and they are disjoint it must be the case that $p \circ T(z) = \{z\}$. Hence

$$\operatorname{dist}(z, T(z)) = \operatorname{dist}(p \circ T(z), T(z)) = \inf_{x \in X} \operatorname{dist}(x, T(z)).$$

Case 2. $T(z) \cap X \neq \emptyset$. Thus $z \in p \circ T(z) = X \cap T(z)$. This implies $z \in T(z)$ and hence the conclusion follows.

As a consequence, we obtain the following corollary.

Corollary 4.2. Let X be a closed convex geodesically bounded subset of a complete \mathbb{R} -tree Y. Suppose $t: X \to Y$ is a nonexpansive mapping and $T: X \to 2^Y$ is an ε -semicontinuous mapping with nonempty closed convex values. Suppose that $p \circ t$ and $p \circ T$ commute. Then t and T have a common best approximation.

Acknowledgement. The research of the first author was supported in part by the Research Center for Nonlinear Analysis and Discrete Mathematics at the National Sun Yat-sen University. He thanks the Department of Applied Mathematics at National Sun Yat-sen University for its kind hospitality during his visit in June/July, 2009. The research of the second author was supported by the Centre of Excellence in Mathematics.

References

- Fan, K., Extensions of two fixed point theorems of F. E. Browder, Math. Zeit. 112 (1969), 234–240.
- [2] Kirk, W. A., Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 2004:4 (2004), 309–316.
- [3] Kirk, W. A., Panyanak, B., Best approximation in ℝ-trees, Numer. Funct. Anal. Optimiz. 28 (2007), 681–690; Erratum: Numer. Funct. Anal. Optimiz. 30 (2009), 403.
- [4] Lin, T., Proximity maps, best approximations and fixed points, Approx. Theory Appl. (N.S.) 16, no. 4 (2000), 1–16.
- [5] Markin, J. T., Fixed points, selections and best approximation for multivalued mappings in R-trees, Nonlinear Anal. 67 (2007), 2712–2716.
- [6] Piątek, B., Best approximation of coincidence points in metric trees, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 113–121.
- [7] Shahzad, N., Markin, J., Invariant approximations for commuting mappings in CAT(0) and hyperconvex spaces, J. Math. Anal. Appl. 337 (2008), 1457–1464.

W. A. Kirk	B. Panyanak
Department of Mathematics	Department of Mathematics
University of Iowa	Faculty of Science
Iowa City, IA 52242-1419	Chiang Mai University
USA	Chiang Mai 50200
e-mail: kirk@math.uiowa.edu	Thailand
	e-mail: banchap@chiangmai.ac.th

Received September 18, 2009