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On univalence of an integral operator

Abstract. We consider the problem of univalence of the integral operator

(1) h(z;α, β) =

∫ z

0

(f ′(t))α(g(t))βt−βdt.

Imposing on functions f(z), g(z) various conditions and making use of a close-
to-convexity property of the operator, we establish many sufficient conditions
for univalence. Our results extend earlier ones. Some questions remain open.

1. Introduction. Denote by H the class of all functions of the form

f(z) = z +
∞∑
n=2

anz
n

that are analytic in the unit disk ∆ = {z : |z| < 1}. For given α, β ∈ R
denote

(2) h(z;α, β) =

∫ z

0
(f ′(t))α(g(t))βt−βdt = z +

∞∑
n=2

anz
n

provided f ′(z) ·g(z) 6= 0 for z ∈ ∆, f(z), g(z) ∈ H and we consider principal
branches of the powers. Our objective of this paper is the question of
univalence of h(z;α, β) in the unit disk.

This problem was studied earlier by many authors (see [3] for instance).
A. Wesołowski [6] proved that if f(z), g(z) are univalent in ∆, then h(z;α, β)
is univalent in ∆ provided the condition α, β ∈ C, 3|β| + 2|2α + β| ≤ 1 is
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satisfied. J. Godula [2] proved that if f(z), g(z) are univalent and close-to-
convex in ∆, then h(z;α, β) is univalent and close-to-convex in ∆ provided
α, β are non-negative and 0 ≤ α+β ≤ 1. E. P. Merkes and D. J. Wright [4]
considered cases h(z;α, 0), h(z; 0, β), where they imposed on f(z) or g(z)
respectively various conditions. M. Dorff and J. Szynal [1] considered the
case f(z) = g(z) in (1).

In this paper we shall extend cited above results included in [2], [4] and [1].
Our method is based on a property of h(z;α, β) which, according to the best
of our knowledge, has not been used in such a context. Let us recall that
a function f(z) ∈ H is said to be:

• convex, f(z) ∈ K, if Re(1 + zf ′′(z)/f(z)) > 0 for z in ∆,
• starlike, f(z) ∈ S∗, if Re(zf ′(z)/f(z)) > 0 for z in ∆,
• close-to-convex, f(z) ∈ L, if there exist a starlike function g(z) and

a constant θ ∈ (−π/2, π/2) such that

Re
(
eiθzf ′(z)/g(z)

)
> 0, z ∈ ∆.

The last definition can be stated in an equivalent form as follows: f(z) ∈ L
if there exist a constant θ ∈ (−π/2, π/2) and a function g(z) ∈ K such that

Re
(
eiθf ′(z)/g′(z)

)
> 0, z ∈ ∆.

We denote by S the subclass of H that consists of all univalent functions
in ∆.

2. Main results. We shall start with a lemma which is the main tool in
our considerations.

Lemma 1. Let h(z;α, β) be given by (1). If the function h(z;α, β) is close-
to-convex for given fixed points (α1, β1), (α2, β2), then it is also close-to-
convex for each pair (αt, βt) given by (αt, βt) = t(α1, β1) + (1 − t)(α2, β2)
and 0 ≤ t ≤ 1.

Proof. We have the identity

h′(z;αt, βt) = (f ′(z))tα1+(1−t)α2(g(z))tβ1+(1−t)β2z−tβ1−(1−t)β2

=
(
(f ′(z))α1(g(z))β1z−β1

)t(
(f ′(z))α2(g(z))β2z−β2

)1−t
= (h′(z;α1, β1))

t(h′(z;α2, β2))
1−t.

Since h(z;α1, β1), h(z;α2, β2) are in L, there exist functions X(z), Y (z) in
K and functions p(z), q(z) of positive real part in ∆ for which we have

h′(z;α1, β1) = X ′(z)p(z), h′(z;α2, β2) = Y ′(z)q(z).

It is well known that functions of positive real part in ∆ form a convex
family. This implies that the function D(z) = p(z)tq(z)1−t is of positive
real part. If we set

W ′(z) = (X ′(z))t(Y ′(z))1−t,
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then we have

W ′′(z) = t(X ′(z))t−1X ′′(z)(Y ′(z))1−t + (1− t)(X ′(z))t(Y ′(z))−tY ′′z,
hence

Re(1 + zW ′′(z)/W ′(z)) = Re(1 + ztX ′′(z)/X ′(z) + z(1− t)Y ′′(z)/Y ′(z))
= Re(t+ ztX ′′(z)/X ′(z)) +Re(1− t+ z(1− t)Y ′′(z)/Y ′(z)) > 0.

It shows that W (z) ∈ K. Hence h(z;αt, βt) ∈ L. �

We shall also need a result of W. Royster [5] (see also [3]) which we
state as:

Lemma 2. The function

(1− z)β = eβln(1−z), β 6= 0,

is univalent in ∆ if and only if β is either in the closed disk |β − 1| ≤ 1 or
in the closed disk |β + 1| ≤ 1.

Theorem 1.
1. Assume that

A1 = conv({(−1/2, 0), (0, 3), (3/2, 0), (0,−1), (−1/2, 2), (1,−1)})
and f(z), g(z) ∈ K. Then for each pair (α, β) ∈ A1 the operator h(z;α, β)
is in L.

2. Assume that

B1 = {(x, y) ∈ R2 : (y < −1) ∨ (y > 3) ∨ (x < −1/2) ∨ (x > 3/2)

∨ (y < −2x− 1) ∨ (y > −2x+ 3)}.
Then for each pair (α, β) ∈ B1 there exist functions f(z) and g(z) both con-
vex such that the function h(z;α, β) =

∫ z
0 (f ′(t))α(g(t))βt−βdt is not univa-

lent in ∆.

Proof. The set A1 is a convex polygon. In view of Lemma 1 it is sufficient
to establish close-to-convexity of h(z;α, β) at the vertices of A1. The points
(−1/2, 0), (0, 3), (3/2, 0), (0,−1) were handled in [4]. The corresponding
functions h(z;α, β) are in L.

For the vertex (−1/2, 2) we have

h′(z;−1/2, 2) = (f ′(z))−
1
2 (g(z))2z−2.

It is known (see [3]) that Re((f ′(z))−
1
2 ) > 0 and (g(z))2z−2 is a derivative

of a function in K. Hence h(z;−1/2, 2) ∈ L.
For the vertex (1,−1) there is

h′(z; 1,−1) = f ′(z)(g(z))−1z.

But Re
(
(g(z))−1z

)
> 0 (see [3]) so h(z; 1,−1) ∈ L. This ends the first part

of the proof and gives a sufficient condition for univalence of h(z;α, β).
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We now prove the second part of the theorem.
1. Let us set f(z) = z or g(z) = z, then we have

h(z;α, β) =

∫ z

0
(f ′(t))α(g(t))βt−βdt =

∫ z

0
(g(t))βt−βdt = h(z; 0, β)

or

h(z;α, β) =

∫ z

0
(f ′(t))α(g(t))βt−βdt =

∫ z

0
(f ′(t))αdt = h(z;α, 0)

and these cases were considered in [4]. We get that h(z;α, β) is not univalent
if (β < −1) ∨ (β > 3) ∨ (α < −1/2) ∨ (α > 3/2).

2. Setting f(z) = z/(1− z) = g(z) we have

h(z;α, β) =

∫ z

0
(1− t)−2α(1− t)−βdt = k(1− z)−2α−β+1 − k,

where k is a constant. From Lemma 2 it follows that h(z;α, β) is not uni-
valent for −2α − β + 1 > 2 or −2α − β + 1 < −2, in other words for
β < −2α− 1 or β > −2α+ 3.

Cases 1 and 2 define the set B1. This ends the proof. �

For (α, β) ∈ C1 = R2\(A1 ∪ B1) = T1 ∪ T2 the problem of univalence of
h(z;α, β) is open (see Figure 1).

Figure 1.
When f(z) = g(z), then

(3) h(z;α, β) =

∫ z

0
(f ′(t))α(f(t))βt−βdt = H(z;α, β).
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M. Dorff and J. Szynal proved in their paper [1], that the function H(z;α, β)
defined by (3) is univalent in ∆ if f(z) is a convex, univalent function and
(α, β) ∈ A, where

A = {(α, β) : α ∈ [0, 3/2], β ∈ [−1, 3− 2α]}
∪ {(α, β) : α ∈ [−1/2, 0], β ∈ [−1− 2α, 3]}.

See Figure 2.

Figure 2.

We shall extend these results.

Theorem 2.
1. Assume that

E1 = conv({(−1, 3), (−1, 1), (0,−1), (2,−1), (0, 3)})

and f(z) ∈ K. Then for each pair (α, β) ∈ E1 the operator

H(z;α, β) =

∫ z

0
(f ′(t))α(f(t))βt−βdt

is in L.
2. Assume that

E2 = {(x, y) ∈ R2 : (y < −2x− 1) ∨ (y > −2x+ 3)}.



122 S. Ignaciuk

Then for each pair (α, β) ∈ E2 there exists a function f(z) ∈ K such that
the function

H(z;α, β) =

∫ z

0
(f ′(t))α(f(t))βt−βdt

is not univalent in ∆.

Proof. The set E1 is a convex polygon. In view of Lemma 1 it is sufficient
to establish close-to-convexity of H(z;α, β) at the vertices of E1. The points
(0, 3), (0,−1) were handled in [4]. The corresponding functions H(z;α, β)
are in L.

For the vertex (−1, 3) we have

H ′(z;−1, 3) = (f ′(z))−1(f(z))3z−3,

H ′(z;−1, 3) = (f(z)/zf ′(z))(f(z))2z−2.

It is known that Re(f(z)/zf ′(z)) > 0 and (f(z))2z−2 is a derivative of
a function in K. Hence H(z;−1, 3) ∈ L.

For the vertex (−1, 1) there is

H ′(z;−1, 1) = (f(z)/zf ′(z))

and so H ′(z;−1, 1) ∈ L. At the point (2,−1) we have

H ′(z; 2,−1) = (zf ′(z)/f(z))f ′(z).

This ends the first part of the proof and gives a sufficient condition for
univalence of H(z;α, β).

We now prove the second part of the theorem. Setting f(z) = z/(1− z)
we have

H(z;α, β) =

∫ z

0
(1− t)−2α(1− t)−βdt = k(1− z)−2α−β+1 − k,

where k is a constant. From Lemma 2 it follows that H(z;α, β) is not
univalent for −2α − β + 1 > 2 or −2α − β + 1 < −2, in other words for
β < −2α−1 or β > −2α+3. It defines the set E2. This ends the proof. �
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Figure 3.

We can prove that H(z;α, β) is not close-to-convex if β > 3 or β < −1.

Theorem 3.
1. Assume that

A2 = conv({(−1/2, 0), (0, 3/2), (3/2, 0), (0,−1/2), (−1/2, 1), (1,−1/2)})
and f(z) ∈ K, g(z) ∈ S∗. Then for each pair (α, β) ∈ A2 the operator
h(z;α, β) is in L.

2. Assume that

B2 = {(x, y) ∈ R2 : (y < −1/2) ∨ (y > 3/2) ∨ (x < −1/2)

∨ (x > 3/2) ∨ (y < −x− 1/2) ∨ (y > −x+ 3/2)}.
Then for each pair (α, β) ∈ B2 there exist functions f(z) ∈ K and g(z) ∈ S∗
such that the function

h(z;α, β) =

∫ z

0
(f ′(t))α(g(t))βt−βdt

is not univalent in ∆.
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Proof. The set A2 is a convex polygon. In view of Lemma 1 it is sufficient
to establish close-to-convexity of h(z;α, β) at the vertices of A2. The points
(−1/2, 0), (0, 3/2), (3/2, 0), (0,−1/2) were handled in [4]. The correspond-
ing functions h(z;α, β) are in L.

For the vertex (−1/2, 1) we have

h′(z;−1/2, 1) = (f ′(z))−
1
2 g(z)z−1,

where Re
(
(f ′(z))−

1
2

)
> 0 and g(z) ∈ S∗. Hence

h(z;−1/2, 1) ∈ L.

For the vertex (1,−1/2) we have the relation

h(z; 1,−1/2) = f ′(z)(g(z))−
1
2 z

1
2 .

Re
(
(g(z))−

1
2 z

1
2

)
> 0 for each starlike function g(z) (see [3]) so

h(z; 1,−1/2) ∈ L.

This ends the first part of the proof and gives a sufficient condition for
univalence of h(z;α, β).

We now prove the second part of the theorem.
1. Proceeding analogously to the proof of Theorem 1 we obtain that

h(z;α, β) is not univalent for (β < −1/2) ∨ (β > 3/2) ∨ (α < −1/2) ∨ (α >
3/2) as was shown in [4].

2. Setting f(z) = z(1− z)−1 and g(z) = z(1− z)−2 we have

h(z;α, β) =

∫ z

0
(1− t)−2α(1− t)−2βdt = k(1− z)−2α−2β+1 − k,

where k – constant.
From Lemma 2 it follows that h(z;α, β) is not univalent for −2α−2β+1 >

2 or −2α− 2β+ 1 < −2, in other words for β < −α− 1/2 or β > −α+ 3/2.
The cases 1 and 2 define the set B2. This ends the proof. �

For

(α, β) ∈ C2 = R2\(A2 ∪B2) = T3 ∪ T4

the problem of univalence of h(z;α, β) is open (see Figure 4).
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Figure 4.

Lemma 3. If f(z) ∈ L and −1/3 ≤ b ≤ 1/3, then there exists α ∈
(−π/2, π/2), such that Re

(
eiα(f ′(z))b

)
> 0 in ∆.

Proof. If f(z) ∈ L, then there exist a constant θ ∈ (−π/2, π/2) and a func-
tion w(z) ∈ K such that

Re
(
eiθf ′(z)w′(z)

)
> 0, z ∈ ∆.

If we set α = bθ, then α ∈ (−π/6, π/6). Now

Re
(
eiα(f ′(z))b

)
= Re

(
eibθ(f ′(z))b

)
= Re

(
(eiθf ′(z))b

)
= Re

(
(p(z)w′(z))b

)
,

where Re(p(z)) > 0 and w(z) ∈ K.
Next we have the equality

Re
(
eiα(f ′(z))b

)
= Re

(
(p(z)w′(z))b

)
= Re

(
(p(z))b

(
(w′(z))

1
2
)2b)

= Re((p(z))b(q(z))2b),

where Re(q(z)) > 0. Hence

Re
(
eiα(f ′(z))b

)
= Re

(
(p(z))b(q(z))2b

)
> 0,

because p(z) and q(z) are both such that Re(p(z)) > 0, Re(q(z)) > 0, and
|b|+ |2b| ≤ 1. �
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The lemma above implies that if f(z) is in L and −1/3 ≤ b ≤ 1/3, then
h(z;α, 0) =

∫ z
0 (f ′(t))αdt ∈ L. This fact was first proved in [4]. The proof

presented here is simpler.

Theorem 4.
1. Assume that

A3 = conv({(0, 3), (0,−1), (1, 0), (−1/3, 0), (−1/3, 2)})
and f(z) ∈ S∗, g(z) ∈ K. Then for each pair (α, β) ∈ A3 the operator
h(z;α, β) is in L.

2. Assume that

B3 = {(x, y) ∈ R2 : (y < −1) ∨ (y > 3) ∨ (x < −1/2) ∨ (y < −2x− 1)

∨ (y > −2x+ 3) ∨ (y > 4x+ 4) ∨ (y > −4x+ 4) ∨ (y < 4x− 4)}.

Then for each pair (α, β) ∈ B3 there exist functions f(z) ∈ S∗, g(z) ∈ K
such that the function h(z;α, β) =

∫ z
0 (f ′(t))α(g(t))βt−βdt is not univalent

in ∆.

Proof. The set A3 is a convex polygon. In view of Lemma 1 it is sufficient
to establish close-to-convexity of h(z;α, β) at the vertices of A3. The points
(0, 3), (0,−1) were considered in [4]. The corresponding functions h(z;α, β)
are in L.

For the vertex (1, 0) we have

h(z; 1, 0) =

∫ z

0
f ′(t)dt = f(z) ∈ S∗ ⊂ L.

Univalence at the vertex (−1/3, 0) follows directly from Lemma 3. For the
vertex (−1/3, 2) we have the relation

h′(z;−1/3, 2) = (f ′(z))−
1
3 (g(z))2z−2.

From Lemma 3 we know that there exists θ ∈ (−π/2, π/2), such that
Re
(
eiθ(f ′(z))−

1
3

)
> 0 and (g(z))2z−2 is a derivative of a function in K.

We have
h′(z;−1/3, 2) = e−iθ

(
eiθ(f ′(z))−

1
3
)
(g(z))2z−2.

Hence h(z;−1/3, 2) ∈ L. This ends the first part of the proof and gives
a sufficient condition for univalence of h(z;α, β).

We now prove the second part of the theorem.
1. Proceeding analogously to the proof of Theorem 1 we obtain that

h(z;α, β) is not univalent for (β < −1) ∨ (β > 3) ∨ (α < −1/2) and these
cases were handled in [4].

2. Cases (β < −2α − 1) ∨ (β > −2α + 3) are discussed in the proof of
Theorem 1.

3. Setting f(z) = z(1− z)−2 and g(z) = z(1− z)−1 we have

h′′(z;α, β) = α(1 + z)α−1(1− z)−3α−β + (3α+ β)(1 + z)α(1− z)−3α−β−1.
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By the well-known Bieberbach theorem: if h(z) = z+
∑∞

n=2 anz
n is univalent

in ∆, then |a2| ≤ 2, which shows that

|h′′(0)/2| ≤ 2⇔ |h′′(0)| ≤ 4.

Let us observe that in our case we have h′′(0;α, β) = 4α + β, hence, if
4α + β > 4 that is β > 4 − 4α, then |h′′(0;α, β)| > 4. In other words
h(z;α, β) =

∫ z
0 ((t(1− t)−2)′)α(1− t)−βdt is not univalent in ∆.

4. Setting f(z) = z(1 + z)−2 and g(z) = z/(1− z) we have

h′′(z;α, β) = (β − α)(1 + z)−3α(1− z)α−β−1 − 3α(1 + z)−3α−1(1− z)α−β.
Again, from the Bieberbach theorem it follows, that |h′′(0)| ≤ 4.

In our case we have h′′(0;α, β) = −4α+ β, hence, if −4α+ β > 4 that is
β > 4 + 4α or −4α+ β < −4 that is β < −4 + 4α, then |h′′(0;α, β)| > 4. In
other words h(z;α, β) =

∫ z
0 ((t(1 + t)−2)′)α(1− t)−βdt is not univalent in ∆.

Cases 1, 2, 3, 4 complete this part of the proof and determine the set B3.
This ends the proof. �

For (α, β) ∈ C3 = R2\(A3 ∪B3) = T5 ∪T6 ∪T7 the problem of univalence
of h(z;α, β) is open (see Figure 5).

Figure 5.

Theorem 5.
1. Assume that

A4 = conv({(0, 3/2), (0,−1/2), (1, 0), (−1/3, 0), (−1/3, 1)})
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and f(z), g(z) ∈ S∗. Then for each pair (α, β) ∈ A4 the operator h(z;α, β)
is in L.

2. Assume that

B4 = {(x, y) ∈ R2 : (y < −1/2) ∨ (y > 3/2) ∨ (x < −1/2) ∨ (y < −x− 1/2)

∨ (y > 2x+ 2) ∨ (y > −x+ 3/2) ∨ (y > −2x+ 2) ∨ (y < 2x− 2)}.

Then for each pair (α, β) ∈ B4 there exist functions f(z), g(z) ∈ S∗ such
that the function h(z;α, β) =

∫ z
0 (f ′(t))α(g(t))βt−βdt is not univalent in ∆.

Proof. The set A4 is a convex polygon. In view of Lemma 1 it is sufficient
to establish close-to-convexity of h(z;α, β) at the vertices of A4. The points
(0, 3/2), (0,−1/2) were considered in [4] and the corresponding functions
h(z;α, β) were shown to be in L. For the vertex (1, 0) we have

h(z; 1, 0) =

∫ z

0
f ′(t)dt = f(z) ∈ S∗ ⊂ L.

The vertex (−1/3, 0) we get directly from Lemma 3. For the vertex (−1/3, 1)
we have

h′(z;−1/3, 1) = (f ′(z))−
1
3 g(z)z−1

and from Lemma 3 we know that there exists θ ∈ (−π/2, π/2), such that
Re(eiθ(f ′(z))−

1
3 > 0 and g(z) ∈ S∗. We have

h′(z;−1/3, 1) = e−iθ
(
eiθ(f ′(z))−

1
3
)
g(z)z−1.

Hence h(z;−1/3, 1) ∈ L. This ends the first part of the proof and gives
a sufficient condition for univalence of h(z;α, β).

We now prove the second part of the theorem.
1. Proceeding analogously to the proof of Theorem 1 we obtain that

h(z;α, β) is not univalent for (β < −1/2) ∨ (β > 3/2) ∨ (α < −1/2) and
these cases were handled in [4].

2. Cases (β < −α− 1/2)∨ (β > −α+ 3/2) were discussed in the proof of
Theorem 3.

3. Setting f(z) = z(1− z)−2 and g(z) = z(1− z)−2 we have

h′′(z;α, β) = α(1 + z)α−1(1− z)−3α−2β + (3α+ 2β)(1− z)−3α−2β−1(1 + z)α.

From the Bieberbach theorem: for univalence of h(z) = z+
∑∞

n=2 anz
n there

must be |h′′(0)| ≤ 4.
But in our case we have h′′(0;α, β) = 4α + 2β. Hence, if 4α + 2β > 4

that is β > 2 − 2α, then |h′′(0;α, β)| > 4. It means that h(z;α, β) =∫ z
0 ((t(1− t)−2)′)α(1− t)−2βdt is not univalent in ∆.

4. Setting f(z) = z(1 + z)−2 and g(z) = z(1− z)−2 we have

h′′(z;α, β) = −3α(1+z)−3α−1(1−z)α−2β+(2β−α)(1−z)−2β+α−1(1+z)−3α.
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The condition |h′′(0)| ≤ 4 is satisfied. But in our case we have h′′(0;α, β) =
−4α + 2β. Hence, if −4α + 2β > 4 that is β > 2 + 2α or −4α + 2β < −4
that is β < −2 + 2α, then |h′′(0;α, β)| > 4, which means that h(z;α, β) =∫ z
0 ((t(1 + t)−2)′)α(1− t)−2βdt is not univalent in ∆.

Cases 1, 2, 3 and 4 complete this part of proof and define the set B4.
This ends the proof. �

For (α, β) ∈ C4 = R2\(A4∪B4) = T8∪T9∪T10 the problem of univalence
of h(z;α, β) is open (see Figure 6).

Figure 6.

Proofs of the remaining theorems are very similar to those presented
above. So we have decided to omit them, but nevertheless we provide the
corresponding geometric interpretations.

Theorem 6.
1. Assume that

A5 = conv({(0, 3), (0,−1), (1, 0), (−1/3, 0), (−1/3, 2)})

and f(z) ∈ L, g(z) ∈ K, then for each pair (α, β) ∈ A5 the operator
h(z;α, β) is in L.
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2. Assume that

B5 = {(x, y) ∈ R2 : (y < −1) ∨ (y > 3) ∨ (x < −1/3) ∨ (y < −3x− 1)

∨ (y > −3x+ 3) ∨ (y > 4x+ 4) ∨ (y < 4x− 4)}.

Then for each pair (α, β) ∈ B5 there exist functions f(z) ∈ L, g(z) ∈ K
such that the function h(z;α, β) =

∫ z
0 (f ′(t))α(g(t))βt−βdt is not univalent

in ∆.

For (α, β) ∈ C5 = R2\(A5 ∪B5) = T11 ∪ T12 the problem of univalence of
h(z;α, β) is open (see Figure 7).

Figure 7.

Theorem 7.
1. Assume that

A6 = conv({(0, 3/2), (0,−1/2), (1, 0), (−1/3, 0), (−1/3, 1)})

and f(z) ∈ L, g(z) ∈ S∗. Then for each pair (α, β) ∈ A6 the operator
h(z;α, β) is in L.

2. Assume that

B6 = {(x, y) ∈ R2 : (y < −1/2) ∨ (y > 3/2) ∨ (x < −1/3)

∨ (y < −3/2x− 1/2) ∨ (y > −3/2x+ 3/2)

∨ (y > 2x+ 2) ∨ (y < 2x− 2)}.
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Then for each pair (α, β) ∈ B6 there exist functions f(z) ∈ L, g(z) ∈ S∗
such that the function h(z;α, β) =

∫ z
0 (f ′(t))α(g(t))βt−βdt is not univalent

in ∆.

For (α, β) ∈ C6 = R2\(A6 ∪B6) = T13 ∪ T14 the problem of univalence of
h(z;α, β) is open (see Figure 8).

Figure 8.

Theorem 8.
1. If f(z) ∈ K, g(z) is a function of positive real part in ∆, (α, β) ∈ D,

where

(4) D = conv({(−1/2, 0), (0, 1), (3/2, 0), (0,−1), (1, 1), (1,−1)}),

then

h(z;α, β) =

∫ z

0
(f ′(t))α(g(t))βdt ∈ L.

2. For (α, β) /∈ D, where set D is given by (4) there exist functions f(z) ∈
K and g(z) of positive real part in ∆ such that the function h(z;α, β) =∫ z
0 (f ′(t))α(g(t))βdt is not univalent in ∆.
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Figure 9.
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