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Nonexpansive retractions in Hilbert spaces

Abstract. Let H be a Hilbert space and C ⊂ H be closed and convex. The
mapping P : H → C known as the nearest point projection is nonexpansive
(1-lipschitzian). We observed that, the natural question: “Are there nonex-
pansive projections Q : H → C other than P?” is neglected in the literature.
Also, the answer is not often present in the “folklore” of the Hilbert space
theory. We provide here the answer and discuss some facts connected with
the subject.

1. Preliminaries. Let (H, ‖·‖) be a Hilbert space and let E ⊂ H be
a closed linear subspace. A well-known fact about E is that there exists
a linear, orthogonal projection P : H → E, P 2 = P , having the following
properties:

• P is of norm one, ‖P‖ = 1.
• The complement Q = I − P is the orthogonal projection onto the

orthogonal complement E⊥ of E, Q2 = Q, ‖Q‖ = 1.
• P is the nearest point projection which means that for any x ∈ H

‖x− Px‖ = min [‖x− y‖ : y ∈ E] .

• The reflection with respect to E, S = 2P − I, is of norm one,
‖2P − I‖ = 1.

2000 Mathematics Subject Classification. 47H10.
Key words and phrases. Hilbert space, convex sets, retractions, nonexpansive

mappings.



84 K. Goebel and E. Sędłak

And the most important !
• P is the unique, linear or nonlinear, projection (retraction) on E of

norm one.
Similar facts are known when the subspace E is replaced with an arbitrary

closed and convex subset C ⊂ H. However in this case, instead of studying
linear projections of norm one, we talk about nonexpansive retractions.

Definition 1. A mapping P : H → C is said to be a nonexpansive re-
traction of H onto C if for all x ∈ C, Px = x and for all x, y ∈ H we
have

‖Px− Py‖ ≤ ‖x− y‖ .

For any nonempty, closed and convex C ⊂ H there exists at least one
such retraction. Indeed, the mapping PC : H → C moving each point x ∈ H
to the point PCx ∈ C closest to x,

‖x− PCx‖ = min [‖x− y‖ : y ∈ C]
has the following properties:

• PC is nonexpansive, ‖PCx− PCy‖ ≤ ‖x− y‖ for all x, y ∈ C,
• The complement of PC , I − PC , is nonexpansive,
• The reflection with respect to PC , SC = 2PC − I is nonexpansive.

The mapping PC is usually called nearest point projection or metric pro-
jection or proximity mapping (projection) of H onto C. Proofs of the above
facts can be found in many papers and standard books (see e.g. [1]). How-
ever the basic question:

Is PC the unique nonexpansive retraction of H onto C?
is largely ignored.

In general the answer is negative, but examples confirming this fact are
hardly found in the literature. The aim of this note is to fill this gap
and present ways to construct nonexpansive retractions other than nearest
point projections. To illustrate basic facts we provide the reader with some
examples in the two dimensional Euclidean plane.

2. Some ways to produce nonexpansive retractions. Fix a closed
convex subset C of H and let R denote the family of all nonexpansive
retractions of H onto C. Thus, R is nonempty and for any two P1, P2 ∈ R
and any α ∈ [0, 1] the averaged mapping αP1+(1− α)P2 is also a member of
R. So, the family R is convex. Moreover, since each P ∈ R is nonexpansive,
R is closed with respect to pointwise convergence.

Our first observation is the following. Let the set D ⊃ C be closed and
convex. Then the composition Q = PC ◦PD is a nonexpansive retraction of
H onto C; thus Q ∈ R. More generally, if sets D1, D2, . . . , Dn are closed,
convex and such that D1 ⊃ D2 ⊃ . . . ⊃ Dn ⊃ C, then

Q = PC ◦ PDn ◦ PDn−1 ◦ . . . ◦ PD2 ◦ PD1
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is a member of R. The picture below illustrates this construction.

Figure 1.

Our second construction is based on the fact that the reflection SC =
2PC − I is nonexpansive and equal to the identity I on C. In view of this
we can construct the sequence of retractions Qn ∈ R, n = 1, 2, . . . as

Qn = PC ◦ Sn
C = PC ◦ (2PC − I)n.

Here are some illustrations.

Figure 2.
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Now, one can produce more retractions using the fact that R is closed
and convex, for example by taking

R =
1

2
PC ◦ PD +

1

2
PC ◦ (2PC − I)

(see Figure 3), or when it exists Q∞ = limn→∞Qn. One can also mix
both observations taking various convex combinations of the retractions
constructed above, and passing to the pointwise limit if it exists.

Figure 3.

3. Ranges and inverse ranges of points under R. It now seems nat-
ural to ask the following questions. For a given x ∈ H \ C, which points y
of C are the image of x under a nonexpansive retraction of H onto C? For
a given point y ∈ C, which points of H \C can be mapped into y by at least
one nonexpansive retraction of H onto C? More precisely, let us define the
range of x ∈ H \ C under R as:

Rx = [y ∈ C : y = Rx for at least one R ∈ R] ,

and the inverse range of y under R as:

R−1y= [x ∈ H \ C : Rx = y for at least one R ∈ R] .

Our questions reduce to: What do the above sets look like? For given
x ∈ H \ C, what criterion determines that y ∈ Rx? For given y ∈ C what
criterion determines that x ∈ R−1y? The complete answer is given by two
facts:

Claim 1. For x ∈ H \ C, y ∈ Rx if and only if, for any z ∈ C, ‖z − y‖ ≤
‖z − x‖.

Geometrically this means that the hyperplane containing the point
1
2 (x+ y) and orthogonal to the vector y − x leaves the whole set C in
the closed half space to which x does not belong. The proof of the “only
if” part is obvious. For any z ∈ C, z = Rz for all R ∈ R. Thus if y = Rx,
then for all z ∈ C we have

‖z − y‖ = ‖Rz −Rx‖ ≤ ‖z − x‖ .



Nonexpansive retractions in Hilbert spaces 87

The “if” part, can be proved in two ways, abstract and constructive. The
first proof uses the fact which distinguish Hilbert spaces from other Banach
spaces and deals with an extension property ([2], [3], for the proof see e.g.
[1]).

Theorem 1 (Kirzbraun–Valentine [2]). Let A ⊂ H be an arbitrary set
A 6= ∅ and let T : A→ H be nonexpansive. Then there exists a nonexpansive
extension T̃ of T , ( T̃ = T on A), such that T (H) ⊂ convT (A).

Now, to prove the “if” part the first way, suppose that x /∈ C and y ∈ C
is such that ‖z − y‖ ≤ ‖z − x‖ for all z ∈ C. Consider the set A = C ∪ {x}
and the mapping T : A→ C defined by

Tz =

{
z if z ∈ C,
y if z = x.

The mapping T is obviously nonexpansive on A and any extension T̃ of T
satisfying Kirzbraun–Valentine condition is a member of R.

To get a constructive proof with the same setting consider the hyperplane
V ⊂ H containing the point 1

2 (x+ y) and orthogonal to x−y. Let D be the
one of two closed half spaces of H generated by V , the one which contains C.
Now for any P ∈ R the mapping P ◦ (2PD − I) is also a member of R and
sends x into y. In particular the mapping R = PC ◦ (2PD − I) represents
the nonexpansive retraction on C satisfying Rx = y.

In the same way we can prove:

Claim 2. For any y ∈ C, x ∈ R−1y if and only if, for any z ∈ C, ‖z − y‖ ≤
‖z − x‖.

The above claims justify the following procedure to describe the sets Rx
and R−1y. Suppose for now that C is bounded. Consider the family E of
all hyperplanes supporting C. Let x ∈ H \ C be fixed. For any E ∈ E let
PE and SE = 2PE − I be the orthogonal projection on E and the reflection
with respect to E. We leave it to the reader to justify that for any E the
intersection of the segment [PEx, SEx] with C is contained in Rx and

(1) Rx =
⋃
E∈E

(C ∩ [PEx, SEx]) = C ∩

(⋃
E∈E

[PEx, SEx]

)
.

If C is unbounded the situation is similar but we have to enlarge the family E
taking into account also hyperplanes E (if they exist) which do not support
C at any point, but which nevertheless leave the set C in one of the two
half spaces defined by E and such that

inf [‖z − PEz‖ : z ∈ C] = 0

(asymptotically supporting hyperplanes).



88 K. Goebel and E. Sędłak

A characterization of R−1y for y ∈ C similar to (1) reads as follows. For
any E ∈ E (or E asymptotically supporting C) consider points y, PEy, SEy.
Either all three differ or all three are equal. If y 6= PEy 6= SEy, then the
half line

[SEy,∞] = [z = y + t (SEy − y) : t ≥ 1]

is contained in R−1y.
The other case is the equality y = PEy = SEy. This means that the

hyperplane E supports C at y. In this case we also get one or two half
lines contained in R−1y. Let E0 be the subspace of H of codimension one,
parallel to E, E0 = E − y. Let u be a normal vector to E0. Then at least
one of the half lines [z = y + tu : t ≥ 0] or [z = y − tu : t ≥ 0] is contained
in R−1y. The whole line [z = y + tu : −∞ < t < +∞] is contained in R−1y
if and only if the whole set C is contained in E, C ⊂ E.

The whole set R−1y is the union of all half lines defined for y in both the
ways described above.

4. Two dimensional examples. In the geometry of plane curves the
above construction is known. Going “around the set” C with the supporting
(tangent) line (and asymptotics, if they exist) and taking the symmetric
point to the given point x we get the curve called the orthotomic of x
with respect to C. Below, we present a number of figures illustrating these
notions. The shaded areas are the ranges and inverse ranges of the given
points, the orthotomics are marked by dotted lines, and segments and half
lines appearing in the asymptotic cases are drawn with thick lines. Other
elements of our pictures are left to the reader to interpret.

Figure 4. Angle.
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Figure 5. Disk – ranges.

Figure 6. Disk – inverse ranges.

Figure 7. Parabola.
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Figure 8. Hyperbola.
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